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Purpose: Changes in the expression of water channels (aquaporins; AQP) have been reported in several diseases. However,
such changes and mechanisms remain to be evaluated for retinal injury after optic nerve crush (ONC). This study was
designed to analyze changes in the expression of AQP4 (water selective channel) and AQP9 (water and lactate channel)
following ONC in the rat.
Methods: Rat retinal ganglion cells (RGCs) were retrogradely labeled by applying FluoroGold onto the left superior
colliculus 1 week before ONC. Retinal injuries were induced by ONC unilaterally. Real-time PCR was used to measure
changes in AQP4, AQP9, thy-1, Kir4.1 (K+ channel), and β-actin messages. Changes in AQP4, AQP9, Kir4.1, B cell
lymphoma-x (bcl-xl), and glial fibrillary acidic protein (GFAP) expression were measured in total retinal extracts using
western blotting.
Results: The number of RGCs labeled retrogradely from the superior colliculus was 2,090±85 cells/mm2 in rats without
any treatment, which decreased to 1,091±78 (47% loss) and 497±87 cells/mm2 (76% loss) on days 7 and 14, respectively.
AQP4, Kir4.1, and thy-1 protein levels decreased at days 2, 7, and 14, which paralleled a similar reduction in mRNA
levels, with the exception of Kir4.1 mRNA at day 2 showing an apparent upregulation. In contrast, AQP9 mRNA and
protein levels showed opposite changes to those observed for the latter targets. Whereas AQP9 mRNA increased at days
2 and 14, protein levels decreased at both time points. AQP9 mRNA decreased at day 7, while protein levels increased.
GFAP (a marker of astrogliosis) remained upregulated at days 2, 7, and 14, while bcl-xl (anti-apoptotic) decreased.
Conclusions: The reduced expression of AQP4 and Kir4.1 suggests dysfunctional ion coupling in retina following ONC
and likely impaired retinal function. The sustained increase in GFAP indicates astrogliosis, while the decreased bcl-xl
protein level suggests a commitment to cellular death, as clearly shown by the reduction in the RGC population and
decreased thy-1 expression. Changes in AQP9 expression suggest a contribution of the channel to retinal ganglion cell
death and response of distinct amacrine cells known to express AQP9 following traumatic injuries.

The glaucomas represent a heterogeneous group of
diseases that result in a progressive optic neuropathy
characterized by functional and structural impairment of
ocular tissues. Particularly affected are the trabecular
meshwork, the optic nerve head, and the retinal ganglion cells.

One of the risk factors in primary open angle glaucoma
(POAG) is an associated elevation in intraocular pressure
(IOP) [1]. Elevation of IOP results in the blockade of axonal
transport in animals as well as displacement of the optic nerve
head [2-7]. Abnormalities in water balance play an important
role in the pathophysiology of a variety of neurologic
disorders. Neuronal activity is associated with a redistribution
of water—shrinkage of the extracellular space around active
synapses while enhancement of the extracellular space
volume at more distant sites [8]. The discovery of aquaporins
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(AQPs) has provided a molecular basis for understanding
water transport in several tissues, including the ocular system
[9]. Using Reverse-transcription-Polymerase Chain Reaction
(RT–PCR), Tenckhoff et al. showed that human retina
expresses    mRNAs    for        AQP0            to            AQP12            ,    whereas    rat 
retina    has   the    mRNAs     for     AQP0,     AQP1,  AQP3, 
 AQP4,    AQP5,    AQP6,    AQP7,    AQP8,     AQP9,     and   
 AQP11.  The  mRNAs  for  AQP2,  AQP10, and AQP12 were 
not detected in the rat neural retina [10]. The same study
reported   that    the    human   Müller   cell   line

 MIO-M1 [11] expressed  mRNA  for  AQP0,  AQP1,  AQP3, 
AQP4,    AQP5,    AQP7,    AQP8,    AQP9,    AQP10,    and

  AQP11   but   not  AQP2,  AQP6,  and  AQP12  [10].  AQP0   
is expressed in lens fiber [12] and rodent bipolar cells [13,
14] and has been reported in distinct amacrines and ganglion
cells of the rat retina [14]. While AQP1 is expressed by cornea
endothelium, ciliary and lens epithelia, trabecular meshwork
[15], pigment epithelial cells [16], rodent amacrine cells [17,
18], and photoreceptor cells [19], AQP3 is detected in
conjunctiva [20]. AQP4 is expressed by ciliary epithelium and
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Müller cells and astrocytes [21-23], and AQP5 has been
reported in corneal and lacrimal gland epithelia [24]. AQP9
has been detected in tyrosine hydroxylase-expressing
amacrine cells in the rat retina [25], rat retinal ganglion cells
(RGCs) [26], and human and rat pigment epithelial retinal
cells [27].

Hypoxia and ischemia are associated with changes in the
densities of AQP expression and are also considered key risk
factors in the development of glaucomatous optic nerve
neuropathy [1]. Interestingly, other insults, such as hypo-
osmotic stress, known to affect AQP levels have also been
reported to cause glaucoma [28-30]. However, changes in the
expression of ocular AQPs upon retinal injuries have not been
fully characterized. In the current study we analyzed changes
in AQP4 and AQP9 following optic nerve crush (ONC). The
crush model closely mimics the damage that occurs in
traumatic optic neuropathy, which results from indirect
trauma to the optic nerve. Such injuries appear to involve both
mechanical (primary) and ischemic-induced (secondary)
processes that include degeneration of nerve axons and loss
of myelin. Many studies have observed loss of retinal ganglion
cells following crush that is comparable to glaucoma, with the
crush model regarded as an acute model of glaucoma
[31-37].

METHODS
Materials: Monoclonal anti-thy-1 and rabbit anti-kir4.1
antibodies were from Chemicon (Temecula, CA); AQP4
(mouse and rabbit), AQP9 (goat and rabbit), B cell lymphoma-
x (bcl-xl; mouse), and thy-1 (rabbit) antibodies were from
Santa Cruz Inc. (Santa Cruz, CA); monoclonal anti-glial
fibrillary acidic protein antibodies were from Neomarkers
(Fremont, CA); monoclonal anti-tubulin antibodies were from
Upstate Inc. (Lake Placid, NY); and secondary antibodies
(donkey anti-mouse-conjugated Alexa 633, goat anti-rabbit-
conjugated Alexa 633, and goat anti-mouse-conjugated Alexa
488) were from Invitrogen Inc. (Carlsbad, CA).
Animals: Nine-week-old male Wistar rats were purchased
from Japan SLC (Shizuoka, Japan). The rats were housed in
an air-conditioned room with a temperature of approximately
23 °C and 60% humidity and on a 12 h:12 h light–dark cycle.
All animals were handled in accordance with the ARVO
resolution for the Use of Animals in Ophthalmic and Vision
Research. The experimental protocol was approved by the
Committee of Animal Use and Care of the Osaka Medical
College.
Optic nerve crush: Eight animals were anesthetized with 7%
chloral hydrate solution (400 mg/kg). After making a skin
incision along the superior orbital margin, the superior surface
of the right eye was exposed. Removing the superior rectus
muscle exposed the optic nerve, which was crushed with
forceps 2 mm behind the eye for 10 s, as described [38]. Care
was taken not to cause retinal ischemia, and we confirmed by

indirect ophthalmoscopy that the retinal circulation was not
blocked. This procedure induced nearly complete damage to
the optic nerve, and none of the RGCs could be retrogradely
labeled from the superior colliculus [39]. A sham operation
was performed on the right eyes of other animals, and the optic
nerve was exposed in the same way but not crushed as in the
experimental animals. The left eyes were not used as controls
because crushing one optic nerve affects the morphology of
the contralateral retina [40].
Rat retinal ganglion cells labeling and counting: To
determine how the RGCs were lost following ONC, RGCs
were retrogradely labeled by applying FluoroGold
(hydroxystilbamidine; Biotium, Hayward, CA) onto the left
superior colliculus. Because no RGCs were labeled when the
tracer was applied after the optic nerve was crushed, the tracer
was applied 1 week before crushing the right optic nerve. After
anesthesia with 7% chloral hydrate, a skin incision was made,
the skull was exposed, and the bone over the left hemisphere
was drilled along the sagittal, coronal, and lambdoidal sutures
and removed. After the dura was peeled off, the gray and white
matter of the left hemisphere was carefully removed by
aspiration through the window, and the surface and brachium
of the superior colliculus were exposed. Then, a small sponge
soaked with 2% FluoroGold solution in saline containing 10%
DMSO (DMSO) was placed directly onto the superior
colliculus, as described [41]. Seven days after FluoroGold
application, the right optic nerve was crushed. The operated
rats were perfused transcardially with 4% paraformaldehyde
in phosphate-buffered saline (PBS; 150 mM NaCl, 3.8 mM
NaH2PO4, 16.2 mM Na2HPO4) on day 7 (n=4) and 14 (n=4)
after the optic nerve crush, and the eyes were enucleated. The
retinas were dissected, flatmounted, and examined under a
fluorescence microscope (E800; Nikon, Tokyo, Japan) with a
UV filter (365 nm).We counted the number of FluoroGold-
labeled RGCs that had round-shaped somata and had fine
regular dot-like fluorescent particles of FluoroGold in the
cytoplasm. The number of RGCs was counted in 12 areas
(0.48×0.48 mm2) at a distance of 1, 2, and 3 mm from the optic
disc along the nasotemporal and dorsoventral midlines (upper,
lower, nasal, and temporal direction). The mean density of
RGC/mm2 was calculated, and the loss of RGCs was evaluated
by comparing the density in the retinas with ONC to that in
untreated retinas (n=4).
Real-time analyses of AQP4/AQP9/Kir4.1/thy-1/ACTB
mRNA levels: On days 2, 7, and 14, total RNA was isolated
from the retina after the ONC or sham operation with Trizol
(Life Technology, Grand Island, NY) as described by
manufacturer’s instructions. Retina was removed and lysed
directly by adding 1 ml Trizol and pipetting up and down
several times. Two hundred μl of chloroform were added
followed by inverting tubes for several times then samples
were put on ice for 5 min. Tubes were then centrifuged for 10
min at 16,000× g and the upper 600 μl supernatant was
removed to new tubes. Six hundred microliters of isopropanol

Molecular Vision 2010; 16:330-340 <http://www.molvis.org/molvis/v16/a39> © 2010 Molecular Vision

331

http://www.molvis.org/molvis/v16/a39


were added followed by inversion of samples several times
then samples were put on ice for 10 min. RNA was recovered
by repeating centrifugation for 10 min at the same speed.
Supernatant was discarded and RNA pellet was washed with
1 ml of 70% ethanol and centrifugation was repeated (10 min
at 16,000× g). The ethanol solution was removed and RNA
pellet was allowed to dry for 10 min at room temperature. In
each tube, 50 μl TE buffer was added (10 mM Tris-HCl, pH
8, 1 mM EDTA) following by pipetting up and down several
times to resuspend RNA. RNA concentration was determined
by adding 6 μl from each sample in 600 μl water and
measuring the absorbance at 260 nm (when absorbance is 1,
the RNA concentration is 40 ng/ml). In this study, 2 µg of total
RNA was reverse transcribed using the One-step reverse
transcriptase (RT)–PCR kit (Qiagen, Valencia, CA),
according to the manufacturers instructions. Control
quantative (Q)-PCR reactions were performed in the absence
of cDNA templates. β-actin (ACTB) was used as a
housekeeping gene. The primers for retinal AQP4 were 5′-
CGG TTC ATG GAA ACC TCA CT-3′ (sense) and 5′-CAT
GCT GGC TCC GGT ATA AT-3′ (antisense), giving a 191-
bp amplicon. The primers for retinal Kir4.1 were 5′-GCA
AGA TCT CCC CCT CCG CAG-3′ (sense) and 5′-CAG ACG
TTA CTA ATG CGC ACA CT-3′ (antisense), giving a 345-
bp amplicon. The primers for ACTB were 5′-TGT GAT GGT
GGG AAT GGG TCA G-3′ (sense) and 5′-TTT GAT GTC
ACG CAC GAT TTC C-3′ (antisense), giving a 514-bp
amplicon. The primers for retinal AQP9 were 5′-CTC AGT
CCC AGG CTC TTC AC-3′ (sense) and 5′-ATG GCT CTG
CCT TCA TGT CT-3′ (antisense), giving a 184-bp amplicon.
The primers for retinal thy-1 were 5′-CGC TTT ATC AAG
GTC CTT ACT C-3′ (sense) and 5′-GCG TTT TGA GAT
ATT TGA AGG T-3′ (antisense), giving a 344-bp amplicon.
A 2.5-µl sample of cDNA from each treatment was used for
RT–PCR amplification of each primer in a Cepheid smart
cycler (Cepheid, Sunnyvale, CA). For retinal AQP4 and
Kir4.1, it was 45 cycles of denaturation at 95 °C for 30 s,
annealing at 60 °C for 30 s, and extension at 72 °C for 1 min.
For retinal AQP9, it was 45 cycles of denaturation at 95 °C
for 30 s, annealing at 60 °C for 30 s, and extension at 72 °C
for 1 min. For retinal thy-1, it was 50 cycles of denaturation
at 95 °C for 15 s, annealing at 55 °C for 10 s, and extension
at 72 °C for 20 s. For ACTB, it was 40 cycles of denaturation
at 95 °C for 1 min, annealing at 60 °C for 1 min, and extension
at 72 °C for 2 min. The melting curves were generated to detect
the melting temperatures of the specific products immediately
after the PCR run. The relative mRNA levels were determined
by the comparative cycle number at threshold (CT) method,
as described in PE Biosystems User Bulletin #2. The fold
change was determined by the formula: fold change=2–
Δ(ΔCt), where ΔCt=Ct,target-Ct,β-actin, where “target” is the
gene of interest. To verify the sequence of products, regular
PCR was performed, and the PCR products were run on a
1.5% agarose gel in parallel with 100-bp DNA markers and

stained with ethidium bromide. Bands were cut and sequenced
to verify identity. The authenticity of PCR products was
confirmed using a BLAST search of the sequence through the
NCBI.
Western blotting: Retinas from eight rats that underwent ONC
and eight rats that underwent a sham operation were dissected.
Western blotting was performed on either total retinal lysates
or enriched plasma membrane and cytosolic fractions, as
described by Dibas et al. 2008 [42]. To prepare total retinal
lysate, retinas were dissected from eyes and solubilized in
250 µl of a solution containing 20 mM Tris (pH 7.4), 10%
sucrose, 2 mM Ethylenediamine-tetraacetic acid (EDTA),
2 mM Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-
tetraacetic acid (EGTA), 50 mM NaF, 1% Triton X-100, 0.1%
sodium dodecyl sulfate, and protease inhibitors (aprotonin
(10 μg/ml), soybean trypsin inhibitor (10 μg/ml), leupeptin
(10 μg/ml), and phenylmethanesulfonyl fluoride (100 μM)) at
4 °C. Retinal lysates were incubated for 30 min on ice, briefly
sonicated before centrifugation at 14,000× g for 15 min, and
the supernatant collected. Protein concentration was
measured using a bicinchoninic acid (BCA) protein assay kit
(Sigma, St. Louis, MO) with bovine serum albumin (BSA) as
the standard. To enrich plasma membrane fractions, retinas
were dissected from eyes and homogenized into 700 µl of a
solution containing 20 mM Tris (pH 7.4), 10% sucrose, 2 mM
EDTA, 2 mM EGTA, 50 mM NaF, and protease inhibitors at
4 °C, using a Potter homogenizer (Fisher Scientific, Houston
TX, 60 strokes) followed by centrifugation at 3,000× g for 5
min. The unbroken tissue was sonicated 7X, and
centrifugation was repeated. The retinal supernatant was then
centrifuged for 30 min at 100,000× g at 4 °C. The resultant
supernatant (enriched cytosol) and pellet (enriched plasma
membrane) were collected for protein measurement using the
BCA protein assay. Proteins were separated by 10% sodium
dodecyl sulfate- PAGE (PAGE), with 20–30 µg (enriched
fraction) or 100 µg (total retinal extract) of protein loaded in
each lane. Gels were equilibrated in transfer buffer (192 mM
glycine, 20% methanol, and 25 mM Tris-HCl, pH 8.3) for 10
min at room temperature and electroblotted on nitrocellulose
membranes for 75 min at 100 V using a Bio-Rad (Hercules,
CA) electroblotting unit. The membranes were dried at room
temperature. Western blotting was performed using a
chemiluminescent kit (Amersham Biosciences, Bedford,
MA). Membranes were incubated with primary antibodies for
60 min (1 µg/ml) and with the horseradish peroxidase-
conjugated secondary antibody for 30 min (1:10,000).
Membranes were exposed to an X-ray film for 30 s, then 1
min then 5 min. X-ray film was removed at the end of each
time point and immediately developed. Membranes were
stripped and probed with anti-β-tubulin antibodies for
normalization. Experiments were repeated three times. Band
densities were quantified with image analysis software (Scion,
Frederick, MD), and the intensity of AQP4/AQP9/thy-1/ glial
fibrillary acidic protein (GFAP)/bcl-xl/kir4.1 bands was
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normalized for every sample relative to the intensity of the
respective tubulin bands.
Statistical analyses: Data are reported as means±standard
error of the mean. All experiments were repeated at least three
times with to three to four replicates per condition each time.
Statistical significance was determined by using one-way
ANOVA and Tukey multiple comparison tests at p<0.05.

RESULTS
Reduction of rat retinal ganglion cells after optic nerve crush
and correlation with thy-1 mRNA and protein levels: ONC

caused a massive reduction in the RGC population with time.
While the mean number of sham RGCs was 2,090±85 cells/
mm2 in rats (n=4, Figure 1A), the number decreased to
1,091±78 (n=4, 47% loss, Figure 1B) and 497±87 cells/mm2

(n=4, 76% loss versus sham, p<0.0001, Figure 1C) on days 7
and 14, respectively. Thy-1, a known RGC stress marker
commonly used to measure RGC populations, was quantified.
There was a reduction in thy-1 protein (94±18%, 33±6%, and
24±7% at days 2, 7, and 14, respectively, Figure 1D, p<0.005,
n=7), although changes in thy-1 protein levels at day 2 were

Figure 1. Optic nerve crush decreased
number of retinal ganglion cells
(RGCs), thy-1 protein, and mRNA
levels. The mean number of RGCs
labeled retrogradely from superior
colliculus was 2090±85/mm2 in sham
rats without any treatment (A), which
decreased to 1091±78 (47% loss, B) and
497±87/mm2 (76% loss, C) on day 7 and
14, respectively. Thy-1 expressed by
retinal ganglion cells is widely used as
marker for RGC stress and was shown
to be reduced following optic nerve
crush. Following retinal injuries with
optic nerve crush, retinas were dissected
and plasma membrane proteins were
isolated or total RNA was isolated and
transcribed into cDNA. Thirty
microgram protein was loaded into each
lane. D: Immunoreactive bands for
thy-1 and β-tubulin at 2, 7, and 14 days
following crush showing a significant
reduction in thy-1 protein levels at 7 and
14 day but not at 2 days (94±18%,
33±6%, 24±7% at 2, 7, and 14 day,
respectively, n=7). Densitometric
quantification is shown in E. Data are
expressed as a ratio of the control value
and each measurement represents mean
±SEM *Denotes statistical significance
of thy-1 protein levels in optic nerve
crushed retinas versus sham (p<0.005)
as determined by one-way ANOVA and
Tukey multiple comparison test. Optic
nerve crush also decreased thy-1
transcripts significantly (58±7%, 6±2%,
at 2 and 7 day, respectively, % p<0.001
versus sham, n=8), as determined by
quantitative real-time PCR (E). Thy1-
mRNA at 2-weeks was below detection
levels and considered zero. Gene
expression data of thy-1 is calculated
after normalizing with β-actin.
**Denote significant differences
compared with sham-retinas at p<0.05.
Abbreviations: sham eye (C), and
crushed (R).
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not statistically significant. In addition, ONC decreased thy-1
mRNA significantly (58±7% and 6±2%, days 2 and 7,
respectively, p<0.001 versus sham, Figure 1E; data expressed
as a ratio of the control value, n=8). Thy-1 mRNA at 2 weeks
was below detection levels. Figure 1E shows parallel changes
in thy-1 mRNA to protein levels. When changes in thy-1
expression were compared to the time course of RGC cell loss,
it is clear that a significant loss of thy-1 mRNA and protein
occurs well in advance of RGC cell loss. For example, while
the RGC population decreased by approximately 47% at day
7, thy-1 mRNA decreased by 94%, showing that the reduction
of thy-1 mRNA is much greater than the loss of RGCs.
Effect of optic nerve crush on AQP4 in rat retinas:
Hypertrophy of the optic nerve has been reported in glaucoma
subjects, and patients with normal tension glaucoma [43] or
POAG [44] have a larger optic disc compared to normal
patients. Therefore, the effect of ONC on AQP4 expression in
retina was tested. As shown in Figure 2A, ONC resulted in a
decrease in AQP4 protein (60±10, 63±10, and 38±10, p<0.001
at days 2, 7, and 14, respectively, Figure 2A,B, n=7), and there

as a similar reduction in AQP4 mRNA (~40%), as determined
by Q-PCR (61±5%, 60±8%, and 58±6 at days 2, 7, and 14,
respectively, p<0.001 versus control, Figure 2B, n=7). Figure
2B shows parallel changes in AQP4 mRNA to protein levels.
Data are expressed as a ratio of the control value, and each
measurement represents mean±SEM.
Effect of optic nerve crush on Kir4.1 in rat retinas: In Müller
cells, AQP4 co-localizes with an important retinal potassium
channel known as Kir4.1 (mediates bidirectional K+ currents),
and the co-expression of AQP4 with Kir4.1 suggests that
water transport is coupled to the spatial buffering K+ currents
[45,46]. The co-expression also suggests that osmotic
gradients between the retina and the blood and vitreous can
be compensated by K+ and water influxes and effluxes from
Müller cells. Therefore, the effect of optic nerve crush on
Kir4.1 expression in retina was tested. As shown in Figure 3A,
ONC caused a significant reduction in Kir4.1 protein levels at
all time points (34±10, 72±6, and 22±9, p=0.001 at days 2, 7,
and 14, respectively, Figure 3A,B, n=7). However, while
ONC resulted in an increase in Kir4.1 mRNA at day 2

Figure 2. Optic nerve crush decreased
AQP4 protein and mRNA levels.
Following retinal injuries with optic
nerve crush, retinas were dissected and
plasma membrane proteins were
isolated or total RNA was isolated and
transcribed into cDNA. Thirty
microgram protein was loaded into each
lane. Immunoreactive bands for AQP4
and β-tubulin 2, 7, and 14 days after
optic nerve crush showing a significant
reduction in AQP4 protein levels.
Quantitative measurement using
western blot showed that optic nerve
crush decreased AQP4 protein levels by
~40% (60±10, 63±10, 38±10, at 2, 7,
and 14 day, respectively, n=7, A).
Densitometric quantification is shown
in B. Data are expressed as a ratio of the
treated to control or sham value and each
measurement represents mean±SEM
*Denote statistical significance of
AQP4 protein levels in optic nerve
crushed retinas versus sham (p<0.005)
as determined by one-way ANOVA and
Tukey multiple comparison test. Optic
nerve crush also decreased AQP4
transcripts significantly (61±5%,
60±8%, 58±6, at 2, 7, and 14 day,
respectively, n=7), as determined by
quantitative real-time PCR (B). Gene
expression data of AQP4 is calculated
after normalizing with ACTB. **Denote
significant differences compared with
sham-retinas at p<0.05. Abbreviations:
sham eye (C), and crushed (R).
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(~300%), as determined by Q-PCR (325±81%, p<0.001
versus control, Figure 3B, n=6), it caused a significant
decrease at days 7 and 14 (55±7% and 41±9%, respectively,
p<0.001 versus control, Figure 3B, n=6). Changes in Kir4.1
mRNA and protein levels are shown in Figure 3B.

Effect of optic nerve crush on AQP9 in rat retinas: Several
studies have shown that ONC induced hypoxia to the optic
nerve [31-33]. A key channel that undergoes changes is
AQP9, and its expression also appears to be upregulated after
ischemic insult in the brain [47] and following IOP elevation
(Dibas et al., unpublished observation). Therefore, the effect
of ONC on AQP9 expression in retina was evaluated.
Surprisingly, AQP9 protein levels showed an opposite trend
to changes in message (mRNA) where they increased at day
7 (174±27%, p<0.001 versus sham, Figure 4A,B, n=6) but

decreased at days 2 and 14 (38±19% and 50±13%,
respectively, p<0.001 versus sham, Figure 4A,B, n=8). ONC
resulted in novel changes in AQP9; its mRNA increased at
days 2 and 14 (150±30% and 200±30%, respectively, p<0.001
versus control, Figure 4B, n=5) but decreased at day 7
(44±13%, p<0.001 versus sham, Figure 4B, n=6). The
relationship between AQP9 mRNA and protein changes is
shown in Figure 4B.
Effect of optic nerve crush on glial fibrillary acidic protein
and bcl-xl in rat retinas: A universal early cellular marker for
retinal injury is the upregulation of the intermediate filament
protein GFAP, and its levels are commonly used as an index
of gliosis [48]. As expected, ONC also resulted in an increase
in GFAP protein levels that persisted at all time points (Figure

Figure 3. Optic nerve crush decreased
Kir4.1 protein and mRNA levels.
Following retinal injuries with optic
nerve crush, retinas were dissected and
plasma membrane proteins were
isolated. Total RNA was isolated and
transcribed into cDNA. Real-time PCR
was performed using specific primers
(see Methods). mRNA expression of
Kir4.1 was adjusted to the mRNA
copies of ACTB (reference gene). Thirty
microgram protein was loaded into each
lane. Immunoreactive bands for Kir4.1
and β-tubulin 2, 7, and 14 days after
optic nerve crush showing a significant
reduction in Kir4.1 protein levels.
Quantitative measurement using
western blot showed that elevation of
optic nerve crush decreased Kir4.1
protein levels (34±10, 72±6, 22±9, at 2,
7, and 14 day, respectively, A, n=7).
Densitometric quantification is shown
in B. Data are expressed as a ratio of the
control value and each measurement
represents mean±SEM *Denote
statistical significance of Kir4.1 protein
levels in optic nerve crushed retinas
versus sham (p<0.005) as determined by
one-way ANOVA and Tukey multiple
comparison test. Results indicate that
mRNA expression level of Kir4.1 was
significantly lower in optic nerve
crushed retinas compared to sham at 7
and 14 days (55±7%, 41±9%, at 7, and
14 day, respectively, B, n=6). By
contrast, optic nerve crush increased
Kir4.1 mRNA at 2 days (325±81%, B,
n=6). **Denote significant differences
compared with sham-retinas at p<0.05.
Abbreviations: sham eye (C), and
crushed (R).
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5A, 450±190%, 262±30%, and 300±34% at days 2, 7, and 14,
respectively, p<0.005, n=7).

Finally, we tested the effect of ONC on bcl-xl (anti-
apoptotic factor). Bcl-xl downregulation is involved in
initiating apoptosis and not surprisingly was reduced
following ONC (Figure 5B, 67±9% and 56±10% at days 7 and
14, respectively, p<0.005, n=7). However, changes in bcl-xl
protein levels at day 2 were not statistically significant.

DISCUSSION
Human traumatic optic nerve injuries are usually the
consequence of severe head trauma, with prospects for the
recovery of vision being poor. Matsuzaki et al. [49] reported
that when the visual acuity was zero at the time of the first
examination, no visual improvement could be obtained. In an
attempt to develop experimental models for traumatic optic
neuropathy, several groups have used direct mechanical injury
to the optic nerve to induce axonal damage and retinal
ganglion cell loss. The ONC model closely mimics the
damage that occurs in traumatic optic neuropathy, which
results from an indirect trauma to the optic nerve due to an
impact to the head. However, the crush model is regarded as
an acute model of glaucoma [31-33].

Based on clinical and experimental studies, it appears that
optic nerve damage involves multiple mechanisms that have

yet to be elucidated [49]. Two key channels that affect retinal
function are AQP4 (water) and Kir4.1 (potassium) channels.
Both channels co-localize in distinct membrane domains of
glial cells in retina [46] and brain [47]. However, AQP4 is
expressed alone in the plexiform layer, whereas Kir4.1 is not.
Both channels play important roles in ion homeostasis and “K
+ spatial buffering” [50-57]. Retinal water transport or changes
in extracellular space volume appear to parallel transglial K+

currents, and mice lacking AQP4 have a significant delayed
cellular re-uptake of K+ from the extracellular space [46,58,
59]. K+ spatial buffering within the inner retina occurs via the
redistribution (siphoning) of excess K+ from the extraneuronal
space toward fluid reservoirs of low K+ (or sinks), such as
vitreous body, subretinal space, and blood vessels [60,61].
This is especially important since firing of neurons changes
the extracellular concentration of K+ ions ([K+]o) due to excess
K+ ions liberated from neurons into the intracellular space and
causes a slow depolarization of glial cells, which have the
ability to maintain [K+]o at a constant level. Spatial K+

buffering generates osmotic gradients, leading to the uptake
of sodium and bicarbonate, which causes the intracellular
osmolarity to increase and drives water into the glial cells
through AQP4. An imbalanced reduction of AQP4 levels may
therefore impair retinal K+ buffering, and uncontrolled
increases in [K+]o may induce uncontrolled hyperexcitability

Figure 4. Optic nerve crush induced
novel changes in AQP9 protein and
mRNA levels. AQP9 protein levels
showed opposite trend to changes in
mRNA where they increased at 7 day
(174±27%, p<0.001 versus control, A,
n=6) but decreased at 2 and 14 day
(38±19%, 50±13%, at 2, and 14 day,
respectively, A, n=8). AQP9 shows a
doublet and both bands were used in
densitometric quantification in B. Data
are expressed as a ratio of the control
value and each measurement represents
mean±SEM *Denote statistical
significance of AQP9 protein levels in
optic nerve crushed retinas versus sham
(p<0.005) as determined by one-way
ANOVA and Tukey multiple
comparison test. Optic AQP9 transcripts
were quantified by quantitative real-
time PCR (B). Gene expression data of
AQP9 is calculated after normalizing
with ACTB. AQP9 mRNA increased at
2 and 14 day (150±30%, 200±30%, at 2,
and 14 day, respectively, n=5) but
decreased at 7 day (44±13%, n=6, B).
**Denote significant differences
compared with sham-retinas at p<0.05.
Abbreviations: sham eye (C), and
crushed (R).
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and abnormal synchronization of retinal neurons. In the
present study using the rat ONC model, we have shown for
the first time that such injury causes a significant decrease in
AQP4 and Kir4.1 protein and mRNA levels in retina,
suggesting impaired ion homeostasis and K+ spatial buffering.

However, AQP4 downregulation may be initially
neuroprotective. AQP4 deletion in mice is neuroprotective in
a transient ischemia model of retinal injury [62], and the
permanent middle cerebral artery occlusion model in rodents
(similar to ischemic hemispheric stroke in humans)
demonstrated that wild-type mice had a higher mortality rate
and a significantly greater neurologic deficit at 24 h compared
with AQP4 null mice [63].

Several studies have suggested that AQP4 levels vary
depending on the insult being studied. For example, while
middle cerebral artery occlusion and hyperosmotic stress
induced by intraperitoneal infusion of mannitol increased
AQP4 in rodent brain [64,65], hypoxia evoked a marked
decrease in AQP4 in astrocytes in vitro, and subsequent re-
oxygenation elicited the restoration of the expression of AQP4
to its basal levels [66].

Another key channel is AQP9. Although lactate can be
transported by special proteins known as monocarboxylate
transporters, it can also be transported by AQP9. AQP9
possesses general features of a water channel, but in addition
it is permeable to a wide variety of noncharged solutes, such
as lactate, β-hydroxybutyrate, glycerol, purines, pyrimidines,
urea, mannitol, and sorbitol [67]. ONC exerted novel changes
in AQP9 mRNA and protein levels where it appears that
increased mRNA slowed protein translation, and whenever

mRNA decreased, protein production increased. Although the
exact mechanism for such a relationship is unknown, it may
reflect the retinal fuel supply and demand changes following
a massive injury, such as crush, or an attempt at
osmoregulation. It has been accepted that glucose conversion
by Müller cells and astrocytes into lactate followed by its
release into the extracellular space can serve as a fuel for
neurons [68-72]. It is also thought that the glial–neuronal
lactate shuttle is important for recovery of neurons after
hypoxic injury as the blockade of lactate transport exacerbates
neuronal damage in a rat model of cerebral ischemia [73].
While AQP9 expression was upregulated after an ischemic
insult [67], hypoxia evoked a significant decrease in AQP9 in
astrocytes [66].

A universal early cellular marker for retinal injury is the
upregulation of the intermediate filament protein GFAP.
Although the exact function of GFAP is unknown, its
immunoreactivity is commonly used as an index of gliosis
[74]. The current study has shown an increase in GFAP protein
levels (by western blot) following the ONC procedure. GFAP
was upregulated following elevation of IOP [75-79], and
increased GFAP staining was observed in astrocytes at the
optic nerve head; this staining correlated strongly with the
severity of glaucoma in POAG patients [74]. Furthermore,
retinal injuries induced by intravitreal enthothelin injection
increased GFAP expression in rat retina [42,80], which further
confirms that GFAP is a universal indicator for cellular/tissue
injuries and where glia replace dead neurones. When changes
in thy-1 expression were compared to the time course of RGC
cell loss, it is clear that a significant loss of thy-1 mRNA and

Figure 5. Glial fibrillary acidic protein
is upregulated following optic nerve
crush, while B cell lymphoma-x (bcl-xl)
is downregulated. Following retinal
injuries with optic nerve crush, retinas
were dissected and cytosolic proteins
were isolated. Fifty micrograms protein
was loaded into each lane. Glial
fibrillary acidic protein (GFAP), a
cellular marker for retinal injury, was
upregulated (A: 450 ±190%, 262±30%,
and 300±34%, days 2, 7, and 14,
respectively, p<0.001, n=7). Bcl-xl
(anti-apoptotic factor) downregulation
is involved in initiating apoptosis and
not surprisingly was reduced following
optic nerve crush (B: 67±9% and
56±10%, at days 7 and 14, respectively,
p<0.005, n=7). However, changes in
bcl-xl protein levels at day 2 were not
statistically significant.
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protein precedes RGC cell loss. Our results are in agreement
with earlier reports showing that thy-1 is an early marker of
RGC stress but not a marker of RGC loss and that thy-1 mRNA
and protein levels do not reflect the number of RGCs present
in models of retinal damage [81-83].

In summary, in the current study we report changes in key
AQPs (AQP4 and AQP9) and the K+ channel that may explain
multiple mechanisms mediating optic nerve degeneration
following mechanical injury that resembles human traumatic
optic nerve injuries resulting from a severe head trauma. A
better understanding of the cascade of events following optic
nerve injuries will help provide better medical intervention
and pioneer new therapeutics for prevention or restoring
irreversible vision loss in patients after a traumatic optic nerve
injury.
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