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We present a recently developed one-dimensional dipole lattice model that accurately captures the
key properties of water in narrow nanopores. For this model, we derive three equivalent
representations of the Hamiltonian that together yield a transparent physical picture of the energetics
of the water chain and permit efficient computer simulations. In the charge representation, the
Hamiltonian consists of nearest-neighbor interactions and Coulomb-like interactions of effective
charges at the ends of dipole ordered segments. Approximations based on the charge picture shed
light on the influence of the Coulomb-like interactions on the structure of nanopore water. We use
Monte Carlo simulations to study the system behavior of the full Hamiltonian and its
approximations as a function of chemical potential and system size and investigate the bimodal
character of the density distribution occurring at small system sizes. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3106223�

I. INTRODUCTION

Confinement of water into molecularly narrow pores
dramatically influences its structure and dynamics. For in-
stance, the water flow through single wall carbon nanotubes
is orders of magnitude faster than that expected from con-
tinuum hydrodynamics,1 with water fluxes comparable with
those of transmembrane proteins.2 In carbon nanotubes with
subnanometer diameters, water forms wires that provide
ideal routes for proton conduction.3–5 Due to these proper-
ties, water-filled carbon nanotubes are promising building
blocks for future high flux membranes,1,6–9 desalination
systems,2,6,10,11 and nanofluidic devices,7 as well as models
for biological water and ion transport.12,13

Several recent computer simulation studies have focused
on the structure and energetics as well as the transport prop-
erties of water in the interior of narrow carbon
nanotubes.3–5,14 These simulations indicate that in a water
bath at ambient conditions such nanotube channels fill with
water despite the non-polar nature of their walls,14 a predic-
tion which has been confirmed by experiment.15,16 For suffi-
ciently small nanotube diameters, the smooth inner tube wall
forces the water molecules to stay near the tube axis such
that they form a hydrogen bonded and orientationally or-
dered single-file chain. Remarkably, these chains remain or-
dered to almost macroscopic length scales of about 0.1 mm
due to the relatively high energy of orientational defects.17

For larger system sizes these defects destroy the order and no
true order/disorder phase transitions occur in the thermody-
namic limit, as required by theory.18,19

Due to the reduced mobility of the water molecules in
the one-dimensional �1D� confinement, single-file water
chains in narrow pores can be modeled using lattice models
with discrete degrees of freedom. Such simplified models

capture the essential physics of diverse phenomena ranging
from tube filling to the protonic conduction and water
diffusion.3,20–22 Recently, we have introduced such a 1D lat-
tice model, in which water molecules are represented as
point dipoles oriented either parallel or orthogonal to the
tube axis.3,17 In contrast to other lattice models, our dipole
model quantitatively reproduces the structure of quasi-1D
water in the tube interior including the formation of defects
and their interactions. Moreover, simulations of this model
are computationally inexpensive such that studies of large
systems are possible that would not be feasible otherwise.

Here, we present a detailed derivation of our lattice
model and its various different, mathematically equivalent,
representations. In this model, dipoles are arranged on a
regular 1D-lattice and interact via 1 /r3 dipole-dipole interac-
tions. This dipole picture can be simplified by grouping do-
mains with equal orientation into segments. In the resulting
segment picture, the total energy of the system is written as a
sum of the internal energies of the segments and their inter-
actions, which are of the dipole-dipole type. As we shall see,
this segment picture is especially useful for the formulation
of Monte Carlo moves that satisfy the configurational con-
straints dictated by the model. Resummation of the internal
energy of the ordered segments finally leads to the charge
picture, in which the total energy is expressed as a sum of
Coulomb-like interactions of effective charges placed at the
end points of the ordered segments. In this physically appeal-
ing picture, the Coulomb-like interactions account for all ef-
fective interactions of defects, chain ends, and protons. Be-
cause of its reduced computational complexity, the charge
representation permits simulations of tubes of macroscopic
length and investigations of the approach of the thermody-
namic limit. The charge picture lends itself to approxima-
tions in which the long-range interactions of the effective
charges are neglected and which allow the investigation of
the role of the Coulomb-like interactions. In these approxi-a�Electronic mail: christoph.dellago@univie.ac.at.
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mations the filling of the tube is reproduced correctly, but the
defect number at the filling transition is not. For small sys-
tem sizes, the particle-number distribution function is bimo-
dal with peaks at low and high densities and is captured
nicely by the approximations. However, we find that neglect-
ing Coulomb-like interactions qualitatively alters the form of
the low-density peak.

The remainder of this paper is organized as follows. In
Sec. II, we develop the dipole model and derive the two
other equivalent formulations of the Hamiltonian. One of
these, the charge picture, is then used to obtain approxima-
tions of the Hamiltonian. In Sec. III, we introduce the simu-
lation methods and in Sec. IV we discuss the parametriza-
tion. The filling/emptying transition and the bistability of the
particle-number distribution are presented and discussed in
the context of the approximations in Sec. V. The paper con-
cludes with a discussion in Sec. VI.

II. MODEL

Water in nanopores forms hydrogen-bonded chains of
molecules. Such a chain is dipole ordered if all molecules
accept a hydrogen bond from the neighboring molecule on
the left and donate a hydrogen bond to a molecule on the
right �or the other way around�. This order is destroyed by
orientational defects. Note, however, that hydrogen-bond de-
fects within a contiguous chain preserve the total number of
hydrogen bonds. Figure 1�a� shows a chain of water mol-
ecules that consists of three ordered segments connected by
defect molecules. The segments consist of two molecules
each and are orientationally ordered. The D-defect connects
two segments pointing toward each other and an L-defect
connects two segments pointing away from each other. In

contrast to molecules within ordered segments which donate
a single hydrogen bond and accept a single hydrogen bond,
the D-defect molecule accepts two hydrogen bonds without
donating any and the L-defect donates two hydrogen bonds
without accepting any. This also means that defects cannot
be located at chain ends. Another configurational constraint
is that defects cannot be located next to each other, because
the corresponding molecular configurations are unstable and
lead to immediate recombination of the defects. Note that the
defect structures shown in Fig. 1�a� are the most typical con-
figurations, but others can occur as well.

The free energetics of such a chain of water molecules
are captured with great accuracy by a 1D dipole lattice
model. Molecular simulations show that due to the hydrogen
bonds the water molecules are on average located on the sites
of a 1D lattice and that the long-range interaction of water
molecules in an ordered chain is given by the dipole-dipole
interaction. The magnitude of the dipoles is given by the
average of the component of the dipole moment along the
tube axis of a water molecule in an ordered chain. As a
consequence, in the dipole model, an ordered segment con-
sists of equally oriented dipoles parallel to the tube axis,
located on the site of a 1D lattice �Fig. 1�b��. The dipole
moments of defect molecules are on average perpendicular to
the tube axis and we only include their next-neighbor
interactions.

On this basis, we can formulate an effective Hamiltonian
with a reduced number of degrees of freedom. This
Hamiltonian describes the free energetics of arbitrarily filled
tubes that in general consist of ordered or disordered
hydrogen-bonded chains of water molecules �or fragments�,
with gaps between them.

Let us assume that our lattice has N sites. The lattice
spacing is a and the dipole moment is p. A dipole located on
site � has a direction ��=1 if it points “up,” and ��=−1 if it
points “down” the tube axis. The interaction potential of two
dipoles located on sites � and � separated by a distance
d��= ��−��a�0 is given by

��� = − �
����

�� − ��3
. �1�

If a site � carries a defect or if it is empty, we assign this site
��=0. In these cases Eq. �1� remains valid as ���=0. Here,
we introduced the energy �=2p2 / �4��0a3�, where �0 is the
dielectric constant, setting the scale for the dipole-dipole in-
teraction. In the following, we use reduced units, i.e., � as
unit for the energy, a as unit for the length, and p as unit for
the dipole moment.

A. Dipole picture

Molecular simulations show that the interaction energy
of next-neighbor molecules, the so-called contact energy, is
different from the dipole-dipole interaction energy of next
neighbors, which is given by ��,�+1=−1 for ����+1=1. It
will be useful to include the next-neighbor dipole-dipole in-
teraction in the Hamiltonian and correct for it to get the right
contact energies. Let the configuration consist of n water
molecules �occupied sites�, nc hydrogen-bonded chains of

FIG. 1. �Color online� 1D water wires in nanopores. �a� Chain configuration
with a D-defect and an L-defect, and the corresponding lattice model in the
�b� dipole representation, �c� the segment representation, and �d� the effec-
tive charge representation. In the lattice model, sites are marked by filled
circles, dipoles are represented by short arrows, segments by long arrows,
and effective charges by circles with their sign at the center. �a� The
D-defect molecule accepts two hydrogen bonds from the two neighboring
water molecules; in contrast, the L-defect molecule donates two hydrogen
bonds. �b� The next-neighbor dipoles of the defect sites point to the defect
site for the D-defect and away from it for the L-defect. �c� The configura-
tional energy of the water wire due to the dipoles is determined by the
length, orientation, and distance of segments. �d� In the effective charge
representation, the segments are replaced by charges at the ends with signs
according to their orientations. As a consequence, defects are formed by
pairs of equal charges which are positive for the D-defect and negative for
the L-defect.
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molecules �fragments�, and nd defects. We add the contact
energy Ec for each of the �n−nc� hydrogen bonds and sub-
tract the next-neighbor dipole interaction for the �n−nc

−2nd� next-neighbor pairs of parallel dipoles. This leads to
the following effective Hamiltonian for water in nanopores,

H = �
�=1

N−1

�
�=�+1

N

��� + �n − nc��1 + Ec� − 2nd + ncSc, �2�

where the double sum extends over all pairs of sites. Sc is an
entropic contribution that accounts for the different contribu-
tions to the phase space volume of molecules at the chain
ends and at defect sites compared to molecules within the
chain. These different contributions are related to the number
of dangling OH bonds �see Sec. IV�. As we will see, this
Hamiltonian is just one of the three equivalent descriptions
of the system. We will refer to this way of calculating the
Hamiltonian as the dipole picture �see Fig. 1�b��, as we sum
over all dipole-dipole interactions.

B. Segment picture

We can also formulate the Hamiltonian of Eq. �2� in
terms of the ns=nc+nd segments, numbered from left to
right, leading to the so-called segment picture �see Fig. 1�c��.

For this purpose, we need the dipolar internal energy of
a segment, which stems from the interaction of the dipoles
within a segment, and the dipolar interaction energy of two
segments, which stems from the interaction of dipoles be-
longing to two different segments. For brevity we will drop
the term “dipolar” and speak only of internal and interaction
energies of segments in the following.

The beginning of the segment with index i is given by its
coordinate xi and its length is denoted by li. The coordinates
of the dipoles of segment i are given by xi+n−1 /2 with 1
�n� li. As all dipoles within a segment i have the same
direction, i.e., ��=si for all dipoles within the segment i, we
assign each segment a direction si= �1. The internal energy
E�li� of a segment i is given by the sum over all pair inter-
actions of dipoles � within the segment, i.e.,

E�li� = − �
�=1

li−1

�
�=�+1

li 1

�� − ��3
. �3�

The interaction energy I�li , lj ,sisj ,	lij�� Iij of segments i
and j, with i
 j, is defined as

Iij = − sisj�
�=1

li

�
�=1

lj 1

�� − � + 	lij + li�3 , �4�

with the size of the gap between the two segments given by
	lij =xj − �xi+ li��0.

In the segment picture we obtain for the Hamiltonian

H = �
i=1

ns

E�li� + �
i=1

ns−1

�
j=i+1

ns

Iij + �n − nc��1 + Ec� − 2nd + ncSc.

�5�

The calculation of the energy according to Eq. �5� in the
segment picture can be simplified considerably by deriving
an explicit functional form for the internal energy and ex-

pressing the interaction energies in terms of the internal en-
ergy. First, we can avoid the double sum in the calculation of
the internal energy of Eq. �3� by counting all pairs of dipoles
separated by a certain distance. In a segment of length l, the
interaction potential of dipoles separated by a distance j with
1� j
 l appears �l− j� times. This leads to

E�l� = − �
j=1

l−1

�l − j�j−3

=�
j=1

l−1

j−2 − l�
j=1

l−1

j−3 �6�

for Eq. �3�.
For l→�, the two sums in Eq. �6� can be expressed in

terms of Riemann’s zeta function:23

�m� = �
j=1

�

j−m. �7�

Accordingly, for long segments we can approximate the in-
ternal energy E�l� as

El�1�l� = �2� − l�3� . �8�

The difference, ��l�=El�1�l�−E�l�, between the above ap-
proximation and the exact internal energy is given by

��l� = �
j=l

�
1

j2 − l�
j=l

�
1

j3 �9�

and can be rewritten as

��l� = ���l� +
l

2
���l� �10�

using the polygamma function23

��m��l� = �− 1�m+1m ! �
j=0

�
1

�l + j�m+1 . �11�

Hence, the internal energy of a segment of length l can be
written as the sum of a linear part, Eq. �8�, and a nonlinear
part, Eq. �10�, leading to the exact expression

E�l� = �2� − l�3� − ��l� . �12�

The next step toward a simpler energy calculation in the
segment picture is to express the interaction energy of two
segments i and j in terms of internal energies �see Fig. 2�. As
the directions of the segments only determine the sign of
their interaction energy, we assume, for the moment, that the
two segments of length li and lj have the same direction
�Fig. 2�e��.

In the following, we use the simple fact that the internal
energy E�l� of a chain of length l can be calculated from its
parts of length l� and l�, with l= l�+ l�, as

E�l� = E�l�� + E�l�� + I�l�,l�,1,0� . �13�

For brevity we drop sij and 	lij as arguments of
I�li , lj ,sij ,	ij�� I�li , lj� here. Using the equation above the
internal energy of a segment with length l= li+ lj +	lij

�Fig. 2�a�� can be written as
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E�l� = E�li� + E�lj� + E�	lij� + I�li,lj� + I�li,	lij� + I�	lij,lj� .

�14�

To get the desired interaction energy, I�li , lj�, on the right
hand side of Eq. �14�, we subtract the internal energies of a
segment of length li+	lij and of a segment of length 	lij

+ lj �Fig. 2�b� and 2�c��. These two energies, given by

E�li + 	lij� = E�li� + E�	lij� + I�li,	lij� �15�

and

E�	lij + lj� = E�	lij� + E�lj� + I�	lij,lj� , �16�

include the internal energies of the two segments i and j, and
the interaction energies of the segments i and j with the
segment of length 	lij separating them. They also include
twice the internal energy E�	lij� of the segment in the
middle. To correct for this double subtraction, we have to
add this energy once �Fig. 2�d��. As the linear terms of Eq.
�12� cancel, we obtain for the interaction energy

Iij = − sisj���li + lj + 	lij� + ��	lij�

− ��li + 	lij� − ��lj + 	lij�� . �17�

Note that this expression for the interaction energy is also
valid for continuous gap distances 	lij �0.

This result can also be obtained by simply inserting the
expressions for the interaction energies I�li ,	lij� and
I�	lij , lj� following from Eqs. �15� and �16�,

I�li,	lij� = E�li + 	lij� − E�li� − E�	lij� , �18�

I�	lij,lj� = E�	lij + lj� − E�	lij� − E�lj� , �19�

into Eq. �14�.
Using Eqs. �12� and �17�, we can write the total energy

in the segment picture, Eq. �5� as

H = − �
i=1

ns−1

�
j=i+1

ns

sisj���li + lj + 	lij� + ��	lij� − ��li + 	lij�

− ��lj + 	lij�� − �
i=1

ns

��li� + ndcd + nccc + nc . �20�

This Hamiltonian contains terms linear in the number of de-

fects nd, the number of fragments nc, and the number of
occupied sites n. The corresponding coefficients cd, cc, and c,
which depend on the contact energy Ec and the entropic con-
tribution Sc, are given by

cd = �2� + �3� − 2, �21�

cc = �2� − 1 − Ec + Sc, �22�

and

c = 1 + Ec − �3� . �23�

C. Charge picture

We can use this expression for the Hamiltonian in the
segment picture to derive another equivalent description of
the system, the so-called charge picture �see Fig. 1�d��. The
first few terms of the series expansion of the nonlinear part
of the internal energy,

��l� �
1

2l
−

1

12
	1

l

3

+
1

20
	1

l

5

− O�	1

l

7� , �24�

show that for large chain lengths l the nonlinear part is pro-
portional to 1 / l, i.e., Coulombic. Thus, we replace all seg-
ments by charges at their beginnings and their ends accord-
ing to their orientations. As each segment carries two
charges, the indices of the charges are given by 2i−1 for the
charge at the beginning and 2i for the charge at the ends of
segment i. The charge at the beginning of segment i is
q2i−1=−si and the charge at the end is q2i=si. The coordinates
of these charges are z2i−1=xi and z2i=xi+ li. The interaction
potential of two charges qm and qn separated by a distance
zmn= �zn−zm� is given by �c�zmn�=qmqn��zmn�. This interac-
tion is Coulombic in character for large distances and we can
rewrite this interaction as

��c�zmn� � �
qmqn

2zmn
=

1

4��0

QmQn

zmna
, �25�

with the magnitude of the charges then given by �Qm�= p /a.
Figure 3 shows a comparison of this Coulomb-like interac-
tion, ��r�, with the Coulomb interaction 1 /r. The main dif-
ference is that for a distance r→0 the Coulomb-like interac-
tion converges to a finite value, ��0�=�2�, whereas the

FIG. 2. �Color online� Calculation of the interaction energy. The interaction
energy I of configuration �e�, consisting of two chains of length li and lj,
separated by a distance, 	lij, of four sites, can be calculated by subtracting
the internal energies E of configurations �b� and �c� from the internal energy
of �a�, and adding the internal energy of the configuration �d�.

0 1 2 3 4
r

-2

-1

0

-Φ(r)
-1/(2 r)

ζ(3)-ζ(2)

-ζ(2)

FIG. 3. �Color online� Comparison of the Coulomb interaction with the
nonlinear part of the internal energy. Whereas the Coulomb interaction di-
verges for r→0, ��0�=�2�.
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Coulomb-interaction diverges to −�. Note that for all pos-
sible distances, zmn�1, the difference is small.

Rearranging the Hamiltonian in the segment picture
given by Eq. �20�, we obtain the Hamiltonian in the charge
picture as

H = �
m=1

2ns−1

�
n=m+1

2ns

qmqn��zmn� + ndcd + nccc + nc . �26�

The sum in Eq. �26� includes the interaction of the charges
belonging to the same defect. Using Eq. �12� and E�1�=0,
we obtain ��1�=�2�−�3� for this interaction, which occurs
nd times in the above Hamiltonian. Introducing the defect
excitation energy, i.e., the energy �the free energy in the mo-
lecular model� needed to introduce a single defect in an in-
finitely long chain,

ED = cd + ��1� = 2�2� − 2, �27�

we can write the Hamiltonian in the charge picture as

H = �
m=1

2ns−1

�
n=m+1

2ns

� qmqn��zmn� + ndED + nccc + nc . �28�

where the prime indicates that the sum does not include the
interaction between the two charges belonging to the same
defect. The coefficient cc corresponds to the energy needed
to break an infinitely long chain, and move the resulting
fragments infinitely far apart from each other. The coefficient
c is the energy required to add a single dipole to an infinitely
long chain. The Hamiltonian in the charge picture depends
on the charge positions zj, the number of particles n, the
number of chains nc, and the number of defects nd. We note
that these quantities are not sufficient to specify a configura-
tion of the dipole model unambiguously.

The Hamiltonian in the charge picture �Eq. �28�� high-
lights the Coulomb-like effective interactions of defects and
chain ends. L- and D-defects attract each other Coulomb-
ically whereas defects of the same kind repel each other.
Defects next to a chain end are always attracted by the
charge at this end.

D. Approximate representations

If the distances between charges are large, we should be
able to neglect their Coulomb-like interactions that decay as
1 /r. Then, only the linear terms of Eq. �28� remain. The
Hamiltonian in this simplest approximation, which we refer
to as the no-charge-approximation �NCA�, is given by

H0 = nc + nccc + ndED. �29�

For small distances of effective charges, the Coulomb
interaction is strong and cannot be neglected. This is the case
for short chains and segments which carry charges at their
ends. In particular, chains and segments of length 1 are rep-
resented by two charges of opposite sign which are separated
by one lattice constant only. At the next higher level of ap-
proximation, we add the interaction energy −��1�=−�2�
+�3� between the charge pairs associated with each of the nI

segments of length 1. The resulting Hamiltonian is

H1 = nc + nccc + ndED + nI�− �2� + �3�� . �30�

We will refer to this Hamiltonian as the singlet-charge ap-
proximation �SCA� since we include the interaction of
charge pairs associated with single dipoles.

The NCA and SCA do not depend on the lengths, posi-
tions, or orientations of the segments. States specified by the
particle number n and n0= nc ,nd� for the NCA and by n and
n1= nc ,nd ,nI� for the SCA are thus degenerate. Calculating
the degeneracy of these states requires to count the number
of states for these approximations as a function of these vari-
ables. For the NCA, the number of states, �0�N ,n ,n0�, is
given by

�0 = 2nc	n − nd − 1

ns − 1

	ns − 1

nc − 1

	N + 1 − n

nc

 , �31�

with the number of segments, ns=nc+nd, being a function of
the defect number and the chain number. For the SCA the
number of states, �1�N ,n ,n1�, is given by

�1 = 2nc	n − 2ns + nc − 1

ns − nI − 1

	ns

nI

	ns − 1

nc − 1

	N + 1 − n

nc


�32�

for n�0. If ns=nc=n then �0=�1=2n� N+1−n
n

�. For a deriva-
tion of these equations, see Appendix A.

E. Proton defects

Up to now we have only considered chains of intact
water molecules. If an excess proton is introduced into the
system, it forms a hydronium ion consisting of one oxygen
atom and three hydrogen atoms. In a single-file chain, this
hydronium ion donates two hydrogen bonds without accept-
ing any. Thus, structurally the hydronium ion corresponds to
an L-defect with an additional proton.3 In the charge picture,
the effective interaction of this protonated L-defect is given
by the sum of the effective interaction of a regular L-defect
and the effective interaction of the proton with defects and
chain ends.

In Ref. 3 an approximate expression for this effective
interaction was derived. For completeness we show next how
the effective interaction of an additional proton located on an
L-defect is included in the charge picture. In the dipole
model, the interaction of a proton located on an L-defect at
site i and a dipole with direction � j = �1 at site j is given by

Wij =
1

4��0

� jpe�j − i�
a2�j − i�3

= ��
� j�j − i�
�j − i�3

, �33�

where e is the elementary charge and ��=�ae / �2p� the unit
of the energy for the rest of this subsection.

Using the ideas of the derivation of the segment and the
charge picture, we calculate the interaction energy of a pro-
ton and an ordered segment with l dipoles of relative orien-
tation s=� j�j− i� / �j− i� with respect to the position of the
proton, i.e., s=1 �s=−1� for dipoles pointing away �toward�
the proton. Let us assume the proton is located at the site
with index zero, the first dipole of the segment is located at
j1 and the last at j2= j1+ l−1. Using the polygamma function,
we obtain
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W�j1,l� = �
j=j1

j2

Wij = s�
j=j1

j2

j−2

=s�
j=j1

�

j−2 − s �
j=j2+1

�

j−2

=s�− ���j1� + ���j1 + l�� �34�

for the interaction energy of the proton with the segment. In
the charge picture, the charges are located at the beginnings
and ends of segments, i.e., between dipoles, whereas the
above expression depends on the positions of the first and the
last dipole of the segment. To obtain consistency with the
charge picture, we rewrite this interaction energy as a func-
tion of the distance x= j1−1 /2 between the proton and the
beginning of the segment,

W�x,l� = s�− ���x + 1/2� + ���x + l + 1/2��

= s���x� + ��x + l�� , �35�

where x+ l is the end of the segment. The Coulomb-like in-
teraction ��x� is given by

��x� = ��	x +
1

2

 �

1

x
−

1

12
	1

x

3

+ O�x−5� . �36�

Thus, the interaction energy of a proton with the dipoles of a
segment is equal to a Coulomb-like interaction of the proton
with charges at the beginning and at the end of the segment.
For a protonated L-defect in an infinitely long chain, we
obtain a proton energy of Ep=−2�2�, stemming from the
two charges next to the defect.

For large distances, the interaction energy of a hydro-
nium ion with a defect can be written as

�PL�z� =
1

4��0

�Q

az
�e − Q� , �37�

where Q=2p /a is the magnitude of the total effective charge
of a defect. The plus sign is valid for the interaction with a
D-defect and the minus sign for that with an L-defect. Since
the proton charge is larger than Q, a hydronium ion is re-
pelled by D-defects and attracted to L-defects, in agreement
with Ref. 3. Also, the hydronium is repelled by the end
points of an otherwise ordered water chain. As a conse-
quence, the preferred position of an excess proton in an iso-
lated water wire is at the chain center.

III. MONTE CARLO SIMULATION

Next, we examine the thermodynamic behavior of water
in nanopores in contact with a heat bath and a particle res-
ervoir. Thus, we perform canonical and grand-canonical
Monte Carlo simulations of the dipole model.

For the Monte Carlo simulations of the dipole model, we
describe configurations in the segment picture in which gaps
of unoccupied sites are represented as segments with s=0.
Thus, a configuration consists of occupied sections �seg-
ments� and empty sections �gaps�. �In the following, we use
the term “segments” only for segments of chains and the
term “section” for segments of chains and empty gaps.� Be-

tween segments one finds either a defect or an empty section.
The boundary conditions are given by two empty gaps at the
beginning and at the end of the lattice �see Appendix A�. A
configuration is unambiguously defined by the beginning xi,
the length li, and the value of si for each section i. Defects
are located between the next-neighbor sections with s�0.
Including the empty end sections, there are n0=nc+1 sec-
tions with s=0 corresponding to gaps.

With a configuration given by Ci= xj , lj ,sj� :1� j�ns

+n0�, the canonical partition function can be written as

ZN��,n� = �
Ci�

e−�H�Ci�. �38�

The grand-canonical partition function is given by

�N��,z� = 1 + �
n=1

�

ZN��,n�zn. �39�

The fugacity is defined as z=e��, where � is the chemical
potential and �=1 / �kBT� is the reciprocal temperature with
kB being the Boltzmann constant.

To enhance the sampling, we use nonlocal Monte Carlo
moves. Monte Carlo simulations with only local moves, in
which individual dipoles are flipped, are inefficient for large
systems. Here, we apply efficient nonlocal trial moves with
asymmetric generation probabilities for which we have to
correct in the acceptance probability. These trial moves
change the lengths of sections and their orientations for the
generation and recombination of defects, for the displace-
ment of defects and chains, and for the insertion and deletion
of particles. For details see Appendix B.

We also perform Monte Carlo simulations for the NCA
and SCA for which the canonical partition functions are
given by

ZN
�i��n� = �

Cj�
e−�Hi�n,ni�, �40�

with i=0 for the NCA and i=1 for the SCA, and ni implicitly
depending on the configurations C j. Using the degeneracies
given by Eqs. �31� and �32�, Eq. �40� can be rewritten as

ZN
�i��n� = �

ni

�i�N,n,ni�e−�Hi�n,ni�, �41�

which permits us to formulate new effective Hamiltonians:

Hi� = Hi − kBT ln �i�N,n,ni� , �42�

with canonical partition functions given by

ZN
�i��n� = �

ni

e−�Hi��n,ni�. �43�

We can calculate these partition functions either numerically
by direct summation or perform Monte Carlo simulations in
the space of n0= nc ,nd� for the NCA and of n1= nc ,nd ,nI�
for the SCA. The applied trial moves simply increase or
decrease the values of the variables of the Hamiltonian
within the limits of the phase space given in Appendix A.

To study the system behavior over a broad range of the
chemical potential, we use the Wang–Landau algorithm24

with the particle number as order parameter to find a bias
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function w�n� corresponding to the negative free energy as a
function of the particle number. We use this function for a
biased simulation25 at the fugacity z, resulting in a flat histo-
gram of the particle number, with the Hamiltonian in the
biased system given by

H� = H − kBTw�n�ln z . �44�

The output are samples of the total energy, chain number,
defect number, number of particles, and the total dipole mo-
ment, E�i� ,nc

�i� ,nd
�i� ,n�i� ,D�i��. By unfolding the bias function

w�n� and reweighting,25 we obtain estimates for observables
that are functions of the above quantities �see Appendix C�.

IV. PARAMETRIZATION

The dipole model was parametrized with and validated
against detailed molecular simulations.17 The molecular
model consists of a �6,6�-type carbon nanotube,14,26 filled
with up to 100 water molecules. We used the TIP3P �Ref. 27�
potential for the water-water interactions and the carbon-
water potential as in Ref. 14. Boundary effects are mini-
mized by using tubes that are longer than the volume acces-
sible to the water molecules.

The lattice spacing a, the dipole moment p, and the con-
tact energy Ec can be determined in a canonical Monte Carlo
simulation of a single hydrogen-bonded chain of water mol-
ecules in a nanopore.

The lattice spacing is given by the average distance of
neighboring molecules within a chain for which we obtain
a=2.65 Å. The dipole moment is given by the average di-
pole moment of a water molecule in an ordered chain along
the tube axis, p=1.9975 D. This determines the energy scale
for the dipole-dipole interaction as �=2p2 / �4��0a3�
=25.8236 kJ /mol, such that ���10.42 at T=298 K. The
contact energy Ec=−20.8 kJ /mol is determined as the aver-
age interaction energy of two neighboring water molecules
within a chain.

To perform grand-canonical simulations of the dipole
model, we have to determine the effective tube-water inter-
action. Since it couples to the particle number, we can absorb
it in the chemical potential. We also need the entropic con-
tribution which couples to the number of chains. We deter-
mine both quantities by comparing the transfer free energies
of the molecular model and the dipole model and tuning the
fugacity and the entropic contribution to obtain agreement
between these two models. The transfer free energy, given by
�A�n�=−ln�P�n� / P�0��, where P�n� is the particle-
occupancy distribution function, is the free energy needed to
introduce n water molecules into a tube of length L at the
reciprocal temperature �. We obtain for a tube of length L
=30a in contact with a heat bath and a particle reservoir at
ambient conditions, i.e., at room temperature and atmo-
spheric pressure, a fugacity z0=0.000 327, and an entropic
contribution �Sc=−3.96.

Figure 4 shows a comparison of the transfer free ener-
gies of the molecular and the dipole model for system sizes
N=5, 10, 15, and 30 as a function of the density �=n /N.
Since the dipole model is a coarse-grained description of the
molecular model, all states in the molecular model with an

occupation number equal to or larger than the number of
sites contribute to the completely filled state, i.e., to P�N�.
The agreement is excellent as the curves for the molecular
and the dipole model lie practically on top of each other. We
observe that for small sizes the system shows two minima,
one for the empty and one for the filled state. Thus, the
particle-number distribution function is bimodal, i.e., has two
peaks �see Sec. V B�. With increasing system size, the mini-
mum corresponding to the filled state deepens and the mini-
mum corresponding to the empty state vanishes.

By reweighting the particle-number distribution func-
tions corresponding to the transfer free energies shown in
Fig. 4, we obtain the adsorption isotherms and the relative
particle-number fluctuations as a function of the relative
fugacity �Figs. 5 and 6, respectively�. The relative fugacity is
the actual fugacity divided by the fugacity of a system in
contact with a heat and particle reservoir at room tempera-
ture and atmospheric pressure. For low fugacities the relative
fugacity is equal to the relative humidity. For larger system
sizes, the density shown in Fig. 5 exhibits a steeper increase
at the filling transition, which moves to smaller fugacities.

The relative variance, i.e., the variance of the particle
number divided by the average particle number, is a measure
for the fluctuations of the particle number. For macroscopic
volumes, the relative variance is related to the isothermal
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FIG. 4. �Color online� The transfer free energy as a function of the density
for different system sizes for the molecular model �solid lines� and the
dipole model �dashed lines�. The excellent agreement renders the curves for
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0 0.2 0.4 0.6 0.8 1
z/z

0

0

0.2

0.4

0.6

0.8

1

ρ

N = 5
N = 10
N = 15
N = 30

FIG. 5. �Color online� The particle density as a function of the relative
fugacity. The solid lines are the results from molecular simulations and the
dashed lines are the results for the dipole model.

154110-7 A dipole lattice model for nanopore water J. Chem. Phys. 130, 154110 �2009�



compressibility �T via ��n2�− �n�2� / �n�=�kBT�T, where vari-
ables in angular brackets denote ensemble averages. The
relative variance �Fig. 6� has its maximum at the filling tran-
sition. The fluctuations become larger with increasing system
size. The properties of the filling transition for increasing
system size are discussed in detail in Sec. V.

The excellent agreement of the dipole model and the
molecular model for different system sizes supports the va-
lidity of the entropic contribution. It accounts for the differ-
ent contributions to the phase space volume of water mol-
ecules according to the number of their dangling OH bonds.
In an ordered chain all molecules donate a single hydrogen
bond except one molecule at one of the chain ends. In con-
trast to all other molecules of the chain which have a single
dangling OH bond, this molecule has 2. Thus, it has more
freedom to move and a higher contribution to the entropy of
the chain than the other molecules. If we generate an
L-defect, which donates two hydrogen bonds without accept-
ing any, both molecules at the chain ends have two dangling
OH, thus conserving the number of dangling OH bonds. The
situation for the D-defect is similar and thus the number of
dangling OH bonds is conserved for any number of L- and
D-defects in the chain. Only if a hydrogen bond is broken/
formed, the number of dangling OH bonds is increased/
decreased by 1.

Since the entropic contribution accounts for the differ-
ence in the phase space volume contributions of a dangling
OH bond and one that donates a hydrogen bond, we can
obtain an estimate from simple geometric considerations. We
assume that an OH bond of a water molecule within a seg-
ment that donates a hydrogen bond is restricted to a spherical
cap with an opening angle �. For a hydrogen bond of a water
molecule at the chain end that accepts a single bond, this cap
is about half a sphere. The ratio of these areas gives us an
estimate for the difference of the contributions to the entropy
of these two water molecules. The surface area of a spherical
cap with opening angle � of a sphere with radius r is given
by A=2�r2�1−cos ��. The difference in the entropies be-
tween a dangling OH bond and a hydrogen-bonded OH bond
is given by

	S/kB = ln	4�r2

A

 = ln	 2

1 − cos �

 . �45�

The entropic contribution is an energy in our effective
Hamiltonian and is related to the entropy difference by �Sc

=−	S /kB. Table I shows results for different opening angles
� which are indeed of the order of the entropic contribution,
�Sc=−3.96.

V. RESULTS

The charge picture of the dipole lattice model gives di-
rect physical insight into the microscopic properties of water
in nanopores. The Coulomb-like interactions lead to an at-
traction between L- and D-defects and also to an attraction
between a chain end and the defect next to it. So, the
Coulomb interaction has clearly an important influence on
these microscopic properties of water in nanopores. The
question arises, what is the influence of the Coulomb-like
interactions on the overall phase behavior? Or, in other
words, which aspects of the system behavior are captured by
the approximations that neglect Coulomb-like interactions
�NCA and SCA�?

A. Drying/filling transition

To clarify the role of the Coulomb-like interactions, we
compare the results derived in the SCA with the results of the
full Hamiltonian for the filling transition. We characterize the
system by the particle density, �= �n� /N �Fig. 7�, the particle
fluctuations �relative variance, Fig. 8�, the chain density �c

= �nc� /N, i.e., the number of chains per site �Fig. 9�, and the
defect density �d= �nd� /N, i.e., the number of defects per site
�Fig. 10�, as a function of the relative fugacity. The results
for system sizes N=102, 103, 104, and 105 sites are obtained
by reweighting of biased sampling simulation data. Addition-
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dipole model.

TABLE I. Estimates for the entropic contribution.
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ally, we show the results for the SCA for N=1010 from
Monte Carlo simulations at the corresponding fugacity val-
ues using the effective Hamiltonian of Eq. �42�.

The adsorption isotherms �i.e., the average particle den-
sity� in Fig. 7 and the relative fluctuations of the particle
number in Fig. 8 show that the results for the SCA are in
excellent agreement with the results for the full Hamiltonian
for the system sizes studied here. We find that both the ad-
sorption isotherms and the relative variance are nearly con-
verged to their thermodynamic limits for a system size of 104

sites which is supported by the results for the SCA for
N=1010.

The adsorption isotherms become steeper with increas-
ing system size but the slope remains finite even in the ther-
modynamic limit. The relative variance is peaked at the fill-
ing transition, as shown in Fig. 8. Even though the peak
height initially grows with increasing system size, it eventu-
ally converges to a finite value. This is in agreement with the
impossibility of a true first-order phase transition in one di-
mension for 1 /r3 interactions.18

Figures 7 and 8 also show the results for the NCA for a
system size N=100. The adsorption isotherms are in good
agreement, but the relative variance decays too slowly for
fugacities below the filling transition compared to the results
of the full Hamiltonian. The SCA reproduces the results of
the full Hamiltonian well, as the system at low fugacities
consists mainly of chains of length 1 which are correctly
described in the SCA.

Since the adsorption isotherms for the NCA and the full
Hamiltonian are in good agreement, we use this approxima-
tion to obtain an estimate for the chemical potential �1/2,
where the system is half full. Assuming that no defects exist,
and that the number of particles is much larger than the num-
ber of chains, we obtain a Hamiltonian that only depends on
the particle number,

H� = nc − �n , �46�

where we treat the chemical potential like a magnetic field in
the Ising model and include it in the Hamiltonian. The n
particles do not interact with each other but couple to the

field c−�. The canonical partition function of this ideal lat-
tice gas in an external field is given by Z= �1+e−��c−���N. The
density is obtained by �n�=−1 /Z�Z /����� which gives �
= �n� /N=e−��c−�� / �1+e−��c−���. If we demand that the system
is half full, i.e., the density is �=1 /2, then the energy of
putting a particle into the system is equaled by the chemical
potential, �=c, which leads to

�1/2 = 1 + Ec − �3� . �47�

The corresponding relative fugacity z1/2 /z0�0.0841 is in
good agreement with the simulation result z1/2 /z0�0.084,
corresponding to an 8.4% relative humidity. This result can
also be derived for a lattice gas with dipole-dipole interac-
tions by exploiting the isomorphism to the Ising model �see
Appendix D�.

Observables depending on the particle number are well
reproduced in the SCA. We obtain insight into the structure
of the system by looking at the chain and defect density with
changing chemical potential. We find that at the filling tran-
sition both the chain density in Fig. 9 and the defect density
in Fig. 10 are peaked. The peak in the chain density is also
reproduced by the SCA although the curves are below the
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results of the full Hamiltonian. Thus, the peak in the frag-
ment density reflects the entropic gain through fragmentation
for low particle densities.

Figures 9 and 10 also show that for the full Hamiltonian
the defect density roughly mirrors the fragment density. The
reason is that, on the one hand, a chain with a defect can
lower its free energy by splitting the chain into two at the
defect site. On the other hand, the generation of defects costs
less energy at the ends of water chains and the number of
ends is proportional to the number of fragments. The latter is
a consequence of the Coulomb-like attraction between the
charge at the chain end and charges forming a defect next to
this end. Thus, the results of the SCA only show a small peak
in the defect density as the interaction of the two charges on
the end points of segments of length 1 is included. These
data do not reproduce the results of the full Hamiltonian at
the filling transition quantitatively.

For fugacities z below the filling transition, the average
fragment number decays approximately linearly with z to-
ward zero. At low fugacity, the system behaves ideally. The
grand-canonical partition function of ideal particles is given
by Z=�n� N

n
��2ze−�Sc�n which leads for small fugacities to a

density ��2z exp�−�Sc�, where Sc is the entropic correc-
tion. The fragment number is then approximately equal to the
number of particles, explaining the observed linear decay for
small z. Moreover, with fragments too short to carry a defect,
the average defect number decays even faster.

The increasing fragmentation while approaching the fill-
ing transition from high fugacities leads to a stronger decay
of the orientational order. As a measure for the order, we use
the average of the squared total dipole moment divided by
the squared system size, �D2� /N2, as shown in Fig. 11 for
different system sizes as a function of the relative fugacity.
This order parameter is close to unity if the system is orien-
tationally and translationally ordered and approaches zero for
increasing disorder. Although the adsorption isotherm is
steepest for N=105 �see Fig. 7, where for z /z0=0.1 the den-
sity is 1 for N�104�, the order parameter starts to decrease at
fugacities where the tube is still almost completely filled.
This is a direct consequence of the peak in the chain density
and the larger gaps for this system size which leads to a

weaker coupling of the chains. Such weakly correlated
chains can easily reorient and decrease the total dipole
moment.

This conclusion is supported by the results for the SCA
�also shown in Fig. 11� which agree nicely with the results
for the full Hamiltonian for small system sizes of N=100 and
N=1000 where fragmentation plays a minor role. For larger
system sizes, we observe that the square of the total dipole
moment is lower for the SCA than for the full Hamiltonian.
This indicates that for the full Hamiltonian, chains are
coupled to their next neighbors via Coulomb-like interaction.
Since the SCA is lacking these interactions, chains are un-
correlated, leading to a lower expectation value for the total
dipole moment squared.

B. Bistability

It has already been observed for small systems at ambi-
ent conditions that the particle-number distribution function
is bimodal,14,20 showing one peak for the empty and one for
the full tube. In the following, we investigate how this
bistable behavior changes with system size and chemical po-
tential and discuss the influence of the Coulomb-like
interactions.

As did Maibaum and Chandler in Ref. 20, we start the
discussion with the Hamiltonian of a 1D lattice gas in an
external field h,

H = − J�
i=1

N−1

sisi+1 − h�
i=1

N

si, �48�

where the occupation number of site i is given by si=0,1 and
the coupling constant of occupied sites by J�0. This Hamil-
tonian can be written as

H = − �J + h�n + Jnc, �49�

where n is the total occupation number and nc is the number
of domains �or chains� of particles. The above Hamiltonian is
of the form

H = Kn + Inc, �50�

where K is the coupling constant and I is the interface en-
ergy. The latter is the energy needed to break a chain into
two and form two new interfaces between occupied and
empty sites. In the case of the NCA of the dipole model, the
coupling constant is given by K=�c−ln z and the interface
energy by I=�cc−ln 2.

The particle-number distribution of an ideal lattice gas
�i.e., I=0� is given by the binomial distribution and therefore
shows only a single peak. Only with a positive interface
energy bistability of a partly or completely filled system and
the empty system is observed. Then the particle-number dis-
tribution function is given by

P�n� � e−�Kn�
nc

��n,nc�e−�ncI, �51�

where ��n ,nc� is the number of states depending on the par-
ticle number and the number chains, and a functional form
that depends on the boundary conditions.
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For periodic boundary conditions, the number of states is
given by28

��n,nc� = 	 n − 1

nc − 1

	N − n

nc

 + 	N − n − 1

nc − 1

	 n

nc

 . �52�

For a constant number of chains, this function is unimodal
and symmetric with respect to the location of its maximum at
n=N /2. Thus the particle-number distribution function is
unimodal if one excludes the empty state. Free rather than
periodic boundary conditions introduce a small asymmetry in
the number of states, i.e.,

��n,nc� = 	 n − 1

nc − 1

	N − n + 1

nc

 , �53�

which is not sufficient to change this behavior.
For a positive interface energy, all nonempty states are

energetically penalized according to their number of chains
compared to the ideal lattice gas. Thus, the weight of the
empty state in the partition function increases relative to the
nonempty states and a second peak for n=0 appears �see
Fig. 12�.

In contrast to this, water in nanopores shows a low-
density peak at densities larger than zero. The reason is that
the Coulomb-like interaction of charges of opposite sign at
the ends of short ordered chains lowers the internal energy of
such chains compared to the energy they would have with
only nearest-neighbor interactions. This is already the case
for the SCA, where chains of length 1, i.e., single dipoles for
defect free systems, are treated separately.

In the following, we quantify this bistable behavior for
the SCA as a function of the system size and the fugacity. We
calculated the particle-number distribution function for sys-
tem sizes up to N=1000 for a certain value of the fugacity z.
The particle-number distribution function for the SCA is
given by

P�n� � znZN
�1��n� , �54�

with the canonical partition function ZN
�1��n� given by Eq.

�41�. We generated particle-number distribution functions for
fugacities in the range z /z0� �0,1� by reweighting.

Bimodal particle-number distribution functions show a
low-density peak that is given by the binomial distribution of
non-interacting particles

PL�n� =
1

�1 + z2e−�Sc�N	N

n

�2ze−�Sc�n. �55�

Thus, we identify the low-density peak as

HL�n� = PL�n�
P�0�
PL�0�

, �56�

where the factor P�0� / PL�0� guarantees that the distribution
function P�n� and the low-density peak HL�n� coincide for
the empty tube, i.e., for n=0. The second peak is a high-
density peak defined by HH�n�= P�n�−HL�n�.

Next, we define a measure M that quantifies the extent of
bistability. It should be large if the areas below the two
peaks, given by NH=�nHH�n� and NL=�nHL�n�=1−NH, are
of comparable size. Thus, we form the product of the two
areas:

A = 4NHNL. �57�

The factor of 4 ensures that A=1 if the two peaks have equal
weight. If one peak dominates the particle-number distribu-
tion function, then A�0.

If the two peaks were due to coexistence at a first order
phase transition, changing the fugacity would only change
the relative weight of the two peaks. Here, the location of the
peaks changes with the fugacity. Thus, our measure should
also include the distance between the two peaks. The posi-
tions of the peaks are given by the mean values of the low-
density and the high-density peak and their distance R can be
written as

R =
1

N
�

n

n�HH�n�
NH

−
HL�n�

NL
� . �58�

Thus, we define our measure for bistability M as the product
of A and the distance R,

M = RA = 4RNHNL. �59�

Figure 13 shows a density plot of this measure as a func-
tion of the inverse system size and the chemical potential.
For small systems, the bimodal structure of the particle-
number distribution function can be seen for ambient condi-
tions corresponding to �=�0, as has been observed in com-
puter simulations.14 For larger system sizes, the range of the
chemical potential where bimodality is observed becomes
narrower and the bimodality itself weaker. For N�1000 bi-
modality vanishes completely. Also shown are the lines
where the system is empty �average density �=0.01�, full
��=0.99�, and half filled ��=0.5�. For 1 /N→0 the density is
determined by the corresponding value of the chemical po-
tential in the thermodynamic limit. In this case, the lines of
constant density intersect the �-axis vertically. For the larg-
est system sizes investigated here �N=1000�, the densities
�=0.01 and �=0.5 and the corresponding chemical poten-
tials are close to their values in the thermodynamic limit.
This is, however, not the case for �=0.99 �see Fig. 7� such
that the corresponding line of constant density does not seem
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n

0

0.02

0.04

0.06

0.08

0.1

P(
n)

Ι=0
Ι=4
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Ι=7

FIG. 12. �Color online� Particle-number distributions for different values of
the interface energy for a system with free boundary conditions of size N
=100 close to the filling transition �K=0�. For an interface energy I�6, we
see a second peak for the empty system �n=0�.
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to intersect the �-axis at a right angle on the scale of Fig. 13.
The maximum of the bistability measure is always to the left,
i.e., at lower chemical potential, of the line of half filling.
The bistability map for NCA �not shown� is nearly identical
to the map for SCA.

The situation for the full Hamiltonian is slightly different
from that in the SCA, as exemplified in Fig. 14. The low-
density peak is not perfectly reproduced by a binomial dis-
tribution of noninteracting, single dipoles. Instead, we have
to take into account the contributions of longer chains that do
not interact with each other but whose energy is lowered
�compared to the SCA� due to the effective charges at their
ends. The peak is well reproduced if we include chains with
lengths up to ten sites. Thus, the form of the low-density
peak can be explained by the lower energies of chains in the
full Hamiltonian compared to the SCA.

VI. SUMMARY AND CONCLUSIONS

We have studied a 1D dipole model in various equivalent
representations and also in approximate formulations. The
dipole model is a simple and powerful description of water
in nanopores. It allows us to characterize the phase-like prop-
erties of confined water up to macroscopic dimensions.17

Here we have explored the filling thermodynamics by calcu-
lating adsorption isotherms and particle-number fluctuations
as a function of relative humidity. We have also character-
ized the regime of bistability, with distinct gas-like and
liquid-like states, as a function of tube length and fugacity.

The model can be represented in terms of individual di-
poles, ordered segments, or effective charges with Coulomb-
like interactions. The segment picture is not only an essential
step in the derivation of the charge representation from the
dipole picture but it also results in a simple characterization
of the configuration space and thus an efficient formulation
of nonlocal trial moves for Monte Carlo simulations. The
charge picture is the physically most appealing representa-
tion as the long-range interactions are due to charges at the
ends of chain segments. It also reduces the computational
cost of calculating the Hamiltonian.

In the charge picture, the Coulomb-like effective inter-
actions of defects and chain ends result from effective
charges, whose magnitude depends on the dipole moment of
water molecules and their distance in the water wire. L- and
D-defects carry effective charges of opposite sign with a
magnitude that is twice that of the charges at the chain end
points. An excess proton in the chain, corresponding to an
L-defect with an extra proton, carries an effective charge that
is reduced considerably with respect to the charge of the bare
proton. This polarization effect is important for the free en-
ergetics of proton transfer through water-filled narrow
pores.4

We introduced two approximate representations of the
dipole model. By neglecting the long-range interaction in the
charge representation, one arrives at a Hamiltonian that only
depends on the particle number, the chain number, and the
defect number. This approximation can be improved by treat-
ing charge interactions within segments of length 1 explic-
itly. The resulting approximation produces accurate descrip-
tions for observables depending on the numbers of particles
and fragments. For this so-called SCA, we can count the
number of states as a function of the independent variables.
This model can thus be formulated in terms of an effective
Hamiltonian with a phase space of only four dimensions.

FIG. 13. �Color online� Bistability map. Density plot of the bistability mea-
sure M of Eq. �59�, which is close to 1 for a bistable system, for all inves-
tigated system sizes �top� and an enlarged view for large systems �bottom�.
The black solid lines are the lines of constant density �=0.01, 0.5, and 0.99
from left to right.
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FIG. 14. �Color online� Particle distribution functions for N=500 and z /z0

=0.085 for the full Hamiltonian and in the SCA. The dashed lines show the
fits of the low-density peaks with binomial distributions of noninteracting
single dipoles. The dashed-dotted line is a fit of a binomial distribution of
noninteracting chains �with charges at their ends� up to a length of 10 par-
ticles. The inset shows the distribution functions for the full range of the
particle number.
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We used these approximations to study the bistability of
the particle-number distribution function, which gets weaker
with increasing system size. The biggest effect of the long-
range Coulomb-like interactions, as compared to the short-
range interactions in an Ising-like lattice gas, is to lower the
energies of short chains. This energy lowering accounts for
the low-density peaks in the particle-number distributions,
with small but nonzero particle numbers. Nevertheless, for
system sizes that are not too small, the bistable behavior of
water in nanopores is captured by the SCA model without
long-range interactions.

The dipole model introduced here is general and should
be applicable to other quasi-1D systems with dipolar inter-
actions, including polar fluids other than water as well as
magnetic nanoparticles and colloids.29–32 It should also prove
useful in studies of three-dimensionally packed arrays of 1D
chains, such as those formed in membranes of parallel
nanochannels.6,17
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APPENDIX A: NUMBER OF STATES

For the NCA and the SCA, we can count the number of
states as a function of the independent variables of the re-
spective Hamiltonians. Here, we show the derivation for the
SCA, where the number of states depends on the particle
number n, chain number nc, defect number nd, and number nI

of single dipoles corresponding to segments of length 1. For
the simpler NCA, the derivation of the number of states is
similar.

To model the free boundary conditions, we add to our
fully occupied system consisting of N sites empty sections of
length 1 at each end. Thus, the fully occupied system is
given by an empty section of length 1, an occupied section of
length N, and again an empty section of length 1. These end
sections are useful for the formulation of trial moves and for
the derivation of the number of states, as we will see in the
following.

To calculate the number of states, we first take a section
of length n−nd−nI and split it into ns−nI parts, each of
which is at least of length 2, i.e., lmin=2. To split a section of
M sites into m parts, we have to choose m−1 of the M −1
points between sites where the section can be split. The num-
ber of possibilities to do so is given by the binomial coeffi-
cient � M−1

m−1
�. If we demand that each new section consists of

at least lmin sites, then the number of points where we can

split the section into parts is reduced by �lmin−1�m. Thus, the
number of possibilities, �, of splitting a section with M sites
in m subsections, where each section has a length l� lmin is
given by

� = 	M − �lmin − 1�m − 1

m − 1

 . �A1�

Inserting M =n−nd−nI, m=ns−nI, and lmin=2 in the above
equation, we obtain the first binomial coefficient of Eq. �32�.

Next we count in how many ways we can combine the
ns−nI segments with lengths larger than 1 and the nI seg-
ments of length 1 to a particular sequence of these ns seg-
ments. We do so by choosing positions for the nI identical,
single dipoles out of ns possible positions, which gives the
second binomial coefficient of Eq. �32�. Then, we put the
remaining ns−nI segments of lengths larger than 1 on the
remaining positions without changing their order, which is
uniquely determined.

Grouping these segments to chains corresponds to split-
ting this sequence of ns segments into nc parts, each consist-
ing of at least one segment. This gives the third binomial
coefficient of Eq. �32�. Each of these nc chains has two pos-
sible orientations which gives the factor 2nc.

Finally, N−n+2 empty sites have to be partitioned in
nc+1 sections that are at least of length 1, i.e., lmin=1 in Eq.
�A1�, which gives the last binomial coefficient of Eq. �32�.
By alternating empty sections and chains, a particular con-
figuration is obtained, which is again uniquely determined.

To do Monte Carlo simulation of the SCA effective
Hamiltonian given by Eq. �42�, we need not only the degen-
eracy, but we also have to know the limits of the volume
spanned by the variables n ,nd ,nc ,nI�, i.e., their minimum
and maximum values. The minimum particle number is
nmin=0 and the maximum particle number is nmax�N�=N.
The minimum number of defects is nd

min=0 and the maxi-
mum number is given by nd=0 for n
3 and otherwise

nd
max�n� = �

n

2
− 1 for n even

n − 1

2
for n odd. � �A2�

The minimum number of chains is

nc
min�n� = �0 for n = 0

1 for n � 0
� �A3�

and the maximum number is nc
max�N ,0 ,nd�=0 for the empty

system and otherwise

nc
max�N,n,nd� = minN − n + 1,n − 2nd� . �A4�

The minimum number of chains of length 1 is given by

nI
min�n,nd,nc� = �0 for n − nd � 2ns

2ns − n + nd for n − nd 
 2ns.
�
�A5�

The maximum number of chains of length 1 is given by
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nI
max�n,nd,nc� = �ns for n − nd = ns

ns − 1 for ns 
 n .
� �A6�

APPENDIX B: TRIAL MOVES

In the following we present the trial moves for the
Monte Carlo simulation of the dipole lattice model.

In the Metropolis algorithm,25 the transition probability
from an old state o to a new state n is given by the product of
the generation probability of a move, Pgen�o→n� and the
acceptance probability, Pacc�o→n�. Imposing detailed bal-
ance, the Metropolis acceptance probability in the canonical
ensemble is given by

Pacc�o → n� = min�1,
Pgen�n → o�e−�E�n�

Pgen�o → n�e−�E�o�� �B1�

and correspondingly for Pacc�n→o�. In simulations of the
grand-canonical ensemble, the energies contain additional
terms −n ln z, where n is the fluctuating particle number.
Usually the generation probabilities of the forward and the
backward move are chosen to be equal and they cancel each
other in the above equation.

In our simulation, a configuration is given in the segment
picture, i.e., by the lengths of all sections and their orienta-
tions. This is a simple way to include the configurational
constraints mentioned above but has the disadvantage that
for some trial moves the generation probability for the for-
ward and the backward move is asymmetric. These asym-
metric generation probabilities have to be explicitly included
in Eq. �B1�. This is the case for defect generation and recom-
bination, chain splitting and joining, and the insertion and
removal of a single dipole, as is explained below.

For simplicity, we use in the remaining part of this sec-
tion the word “choose” when we mean “choose with equal
probability,” i.e., when we draw some quantity from a uni-
form distribution.

For the displacement of a defect we choose a chain c
� 1, . . . ,nc� that consists of m segments from which we
choose segment i� 1, . . . ,m−1�. We change the length of
segment i by d	l and the length of segment i+1 by −d	l
where we have chosen a length 	l� 1,	max� and a direction
d= �1. The generation probability is given by

Pgen
dis =

1

2nc�m − 1�	max
. �B2�

For the generation of a defect, we choose a chain
c� 1, . . . ,nc� that consists of m segments from which we
choose segment i� 1, . . . ,m�. If the length of this segment,
l, is long enough to carry a defect, i.e., l�3, then we choose
a length l�� 1, . . . , l−2� and a direction d= �1. The seg-
ment i is split into two segments of length l1= l� and l2= l
− l�−1 and all segments of chain c on the side given by d are
reoriented. The generation probability is given by

Pgen
gen =

1

2ncm�l − 2�
. �B3�

This move increases the number of defects nd by 1.
For defect recombination, we choose a chain

c� 1, . . . ,nc� that consists of m segments from which we
choose segment i� 1, . . . ,m−1�. Additionally we choose a
direction d= �1 and join segments i and i+1 to a new seg-
ment with length l= li+ li+1+1. All segments on the side d are
reoriented. The generation probability is given by

Pgen
rec =

1

2nc�m − 1�
. �B4�

This moves decreases the number of defects nd by 1.
For the displacement of a fragment, we choose a chain

c� 1, . . . ,nc�, a direction d= �1, and a displacement 	l
� 1, . . . ,	max�. The empty section on the side d of the frag-
ment is lengthened by 	l and the empty section on the op-
posite side is shortened by 	l. The generation probability is
given by

Pgen
fra =

1

2nc	max
. �B5�

The generation probability for the reorientation of a chain,
i.e., the reorientation of all segments of chain
c� 1, . . . ,nc�, is given by

Pgen
reo =

1

nc
. �B6�

The exchange move shortens a segment i� 1, . . . ,m1�
of fragment c1 consisting of m1 segments and lengthens a
segment j� 1, . . . ,m2� of c2 consisting of m2 segments a
length 	l� 1,	max�, therefore conserving the number of oc-
cupied sites. The generation probability is given by

Pgen
exc =

1

nc
2m1m2

. �B7�

To split a chain into two chains, we choose a chain c1

� 1, . . . ,nc� and a segment i� 1, . . . ,m� of length l. Next
we have to choose where in the segment i a bond is broken
by choosing a length l�� 1, l−1�. One of the new fragments
is displaced in direction d= �1 by a length 	l� 1,	max�.
The generation probability is given by

Pgen
spl =

1

2ncm�l − 1�	max
. �B8�

This move increases the number of chains by 1 and the num-
ber of segments by 1.

The inverse move is the joining of two chains to a single
chain. We choose a chain c� 1, . . . ,nc−1�. If the last or-
dered segment of chain c and the first ordered segment of
chain c+1 have the same direction and if they are not further
apart than 	max �i.e., the length of the empty section between
them is l�	max�, then we try to join them. We choose a
direction d= �1 that decides if the left chain is moved to-
ward the right or the right chain toward the left. We get for
the generation probability

Pgen
joi =

1

2�nc − 1�
. �B9�

This move decreases the number of chains by 1 and the
number of ordered segments by 1.

Next we present moves that change the occupation num-
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ber. The transfer move adds or removes dipoles at the end of
chains. First we choose a chain c� 1, . . . ,nc�, at which end
particles are transferred �d1= �1� and then how many par-
ticles �	l� 1,	max�� are either added or removed by length-
ening or shortening of the chosen end segment �d2= �1�.
Lengthening of the end segment is only possible if the empty
section next to it is longer than the number of added par-
ticles. This also guarantees that the number of chains is not
changed. This gives a generation probability of

Pgen
tra =

1

4nc	max
. �B10�

The above move is only applicable if there are already
occupied sites. Therefore, we also insert single dipoles in
empty sections. To do so we choose an empty section i
� 1, . . . ,nc+1� and a site by choosing a length l�� 1, l
−2� for the empty section on the left of the inserted dipole,
which we assign an orientation d= �1. This results in a gen-
eration probability

Pgen
ins =

1

2�nc + 1��l − 2�
. �B11�

This move increases the occupation number, the number of
chains, and the number of ordered segments by 1.

The inverse move removes a single dipole by choosing a
chain c� 1, . . . ,nc� and checking if it is of length 1. If so,
we remove the single dipole by eliminating this chain con-
sisting of segment j and the empty section to its right with
index j+1. The empty section to its left gets the new length
lj−1� = lj−1+ lj+1+1. The generation probability is

Pgen
rem =

1

nc
. �B12�

This move decreases the occupation number, the number of
chains, and the number of ordered segments by 1.

APPENDIX C: BIASED SAMPLING

The particle-number distribution function P�n ,z�� at the
fugacity z� is obtained from the particle-number distribution
function Pw�n�, which stems from a biased sampling simula-
tion at the fugacity z, by unfolding the weight function w�n�
and reweighting to the new fugacity z�:

P�n,z�� =
1

N�z��
Pw�n�z−w�n�	 z�

z

n

, �C1�

with the normalization constant N�z�� given by

N�z�� = �
n=0

N

Pw�n�z−w�n�	 z�

z

n

. �C2�

If we want to calculate the average value of the observ-
able O �which can be any element of the sampled list or a
function of these elements� from a biased simulation, we
need the joint distribution function of the order parameter
and the observable in the biased ensemble given by

Pw�n,O� =
1

M
�

i

��n�i� − n���O�i� − O� �C3�

for a discrete observable O, where M is the number of
samples and ��x� is Dirac’s delta function. We obtain the
average of the observable O at a fugacity z� by evaluating

�O� =
1

N�z���n
�
O

Pw�n,O�Oz−w�n�	 z�

z

n

. �C4�

Instead of calculating the two-dimensional histogram
and performing the above average, we calculate the follow-
ing average of the observable O for each value of the order
parameter in the biased ensemble, i.e.,

�O�w�n� = �
O

Pw�n,O�O =
1

M
�

i

��n�i� − n�O�i�. �C5�

We then do the unfolding of the weight function and the
reweighting to the new fugacity z� in a single step and obtain
for the average of the observable O as a function of the order
parameter

�O��n� =
1

N�z��
�O�w�n�z−w�n�	 z�

z

n

. �C6�

The average value of the observable O at the new fugac-
ity z� is then obtained as �O�=�n�O��n�.

APPENDIX D: LATTICE GAS

We determine the chemical potential, �1/2, where the
system is half filled by exploiting the isomorphism between
the Ising model in an external field in the canonical ensemble
and a lattice gas in the grand-canonical ensemble. This al-
lows us to determine �1/2 from symmetry considerations.
The Hamiltonian of the lattice gas is given by

H =
1

2�
i,j

ninjJ��j − i�� , �D1�

where ni=0,1 is the occupation number of site i and the
interaction potential is given by

J��j − i�� = �0 for i = j

Ec for �j − i� = 1

− �j − i�−3 else.
� �D2�

The grand-canonical partition function of this lattice gas is
given by

� = �
nk=0,1

exp�− �	H − ��
i

ni
� , �D3�

which is isomorphic to the canonical partition function of the
Ising model with dipole-dipole interactions

Q = �
sn=−1,1

exp�− �	1

2�
i,j

sisjJ̃��j − i�� − h�
i

si
� , �D4�

with si=1 corresponding to ni=1, si=−1 corresponding to

ni=0, J̃��j− i��=J��j− i�� /4, and �=4J̃+2h with J̃=�k=1
� J̃�k�.

For vanishing external field h the magnetization of the Ising
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model vanishes which corresponds to a half filled state for

the lattice gas. Thus, �1/2=4J̃ which gives

�1/2 = Ec + 1 − �3� �D5�

in agreement with Eq. �47�.

1 J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P.
Grigoropoulos, A. Noy, and O. Bakajin, Science 312, 1034 �2006�.

2 F. Fornasiero, H. G. Park, J. K. Holt, M. Stadermann, C. P. Grigoropou-
los, A. Noy, and O. Bakajin, Proc. Natl. Acad. Sci. U.S.A. 105, 17250
�2008�.

3 C. Dellago, M. M. Naor, and G. Hummer, Phys. Rev. Lett. 90, 105902
�2003�.

4 C. Dellago and G. Hummer, Phys. Rev. Lett. 97, 245901 �2006�.
5 G. Hummer, Mol. Phys. 105, 201 �2007�.
6 A. Kalra, S. Garde, and G. Hummer, Proc. Natl. Acad. Sci. U.S.A. 100,
10175 �2003�.

7 J. K. Holt, A. Noy, T. Huser, D. Eaglesham, and O. Bakajin, Nano Lett.
4, 2245 �2004�.

8 K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Chem. Rev.
�Washington, D.C.� 104, 4637 �2004�.

9 X. Liu, T. P. Bigioni, Y. Xu, A. M. Cassell, and B. A. Cruden, J. Phys.
Chem. B 110, 20102 �2006�.

10 C. Peter and G. Hummer, Biophys. J. 89, 2222 �2005�.
11 B. Corry, J. Phys. Chem. B 112, 1427 �2008�.
12 B. Hille, Ion Channels of Excitable Membranes, 3rd ed. �Sinauer Asso-

ciates, Inc., Sunderland, 2001�.
13 F. Zhu and K. Schulten, Biophys. J. 85, 236 �2003�.
14 G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature �London� 414,

188 �2001�.
15 A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P.

Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503
�2004�.

16 N. Naguib, H. Ye, Y. Gogotsi, A. G. Yazicioglu, C. M. Megaridis, and M.
Yoshimura, Nano Lett. 4, 2237 �2004�.

17 J. Köfinger, G. Hummer, and C. Dellago, Proc. Natl. Acad. Sci. U.S.A.
105, 13218 �2008�.

18 D. Ruelle, Commun. Math. Phys. 9, 267 �1968�.
19 E. Luijten and H. W. J. Blöte, Phys. Rev. B 56, 8945 �1997�.
20 L. Maibaum and D. Chandler, J. Phys. Chem. B 107, 1189 �2003�.
21 T. Chou, J. Phys. A 35, 4515 �2002�.
22 T. Chou, Biophys. J. 86, 2827 �2004�.
23 Handbook of Mathematical Functions, edited by M. Abramowitz and I.

A. Stegun �Dover, New York, 1965�.
24 F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 �2001�.
25 D. Frenkel and B. Smit, Understanding Molecular Simulation

�Academic, New York, 2002�.
26 J. C. Rasaiah, S. Garde, and G. Hummer, Annu. Rev. Phys. Chem. 59,

713 �2008�.
27 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L.

Klein, J. Chem. Phys. 79, 926 �1983�.
28 T. Antal, M. Droz, and Z. Rácz, J. Phys. A 37, 1465 �2004�.
29 E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, and C. B.

Murray, Nature �London� 439, 55 �2006�.
30 V. F. Puntes, K. M. Krishnan, and P. Alivisatos, Appl. Phys. Lett. 78,

2187 �2001�.
31 K. Butter, P. H. H. Bomans, P. M. Frederik, G. J. Vroege, and A. P.

Philipse, Nature Mater. 2, 88 �2003�.
32 B. H. Erne, M. Claesson, S. Sacanna, M. Klokkenburg, E. Bakelaar, and

B. W. Kuipers, J. Magn. Magn. Mater. 311, 145 �2007�.

154110-16 Köfinger, Hummer, and Dellago J. Chem. Phys. 130, 154110 �2009�

http://dx.doi.org/10.1126/science.1126298
http://dx.doi.org/10.1103/PhysRevLett.90.105902
http://dx.doi.org/10.1103/PhysRevLett.97.245901
http://dx.doi.org/10.1080/00268970601140784
http://dx.doi.org/10.1073/pnas.1633354100
http://dx.doi.org/10.1021/cr020715f
http://dx.doi.org/10.1021/cr020715f
http://dx.doi.org/10.1021/jp0647378
http://dx.doi.org/10.1021/jp0647378
http://dx.doi.org/10.1529/biophysj.105.065946
http://dx.doi.org/10.1021/jp709845u
http://dx.doi.org/10.1038/35102535
http://dx.doi.org/10.1103/PhysRevLett.93.035503
http://dx.doi.org/10.1021/nl0484907
http://dx.doi.org/10.1073/pnas.0801448105
http://dx.doi.org/10.1007/BF01654281
http://dx.doi.org/10.1103/PhysRevB.56.8945
http://dx.doi.org/10.1021/jp0267196
http://dx.doi.org/10.1088/0305-4470/35/21/302
http://dx.doi.org/10.1103/PhysRevE.64.056101
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093815
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1088/0305-4470/37/5/001
http://dx.doi.org/10.1038/nature04414
http://dx.doi.org/10.1063/1.1362333
http://dx.doi.org/10.1038/nmat811
http://dx.doi.org/10.1016/j.jmmm.2006.11.169

