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The weighted stochastic simulation algorithm �wSSA� recently introduced by Kuwahara and Mura
�J. Chem. Phys. 129, 165101 �2008�� is an innovative variation on the stochastic simulation
algorithm �SSA�. It enables one to estimate, with much less computational effort than was
previously thought possible using a Monte Carlo simulation procedure, the probability that a
specified event will occur in a chemically reacting system within a specified time when that
probability is very small. This paper presents some procedural extensions to the wSSA that enhance
its effectiveness in practical applications. The paper also attempts to clarify some theoretical issues
connected with the wSSA, including its connection to first passage time theory and its relation to the
SSA. © 2009 American Institute of Physics. �DOI: 10.1063/1.3116791�

I. INTRODUCTION

The weighted stochastic simulation algorithm �wSSA�
recently introduced by Kuwahara and Mura1 is an innovative
variation on the standard stochastic simulation algorithm
�SSA� which enables one to efficiently estimate the probabil-
ity that a specified event will occur in a chemically reacting
system within a specified time when that probability is very
small, and the event is therefore “rare.” The difficulty of
doing this with the standard SSA has long been recognized
as a limitation of the Monte Carlo simulation approach, so
the wSSA is a welcomed development.

The implementation of the wSSA described in Ref. 1
does not, however, offer a convenient way to assess the ac-
curacy of its probability estimate. In this paper we show how
a simple refinement of the original wSSA procedure allows
estimating a confidence interval for its estimate of the prob-
ability. This in turn, as we will also show, makes it possible
to improve the efficiency of the wSSA by adjusting its pa-
rameters so as to reduce the estimated confidence interval. As
yet, though, a fully automated procedure for optimizing the
wSSA is not in hand.

We begin in Sec. II by giving a derivation and discussion
of the wSSA that we think will help clarify why the proce-
dure is correct. In Sec. III we present our proposed modifi-
cations to the original wSSA recipe of Ref. 1, and in Sec. IV
we show how these modifications allow easy estimation of
the gain in computational efficiency over the SSA. In Sec. V
we give some numerical examples that illustrate the benefits
of our proposed procedural refinements. In Sec. VI we dis-
cuss the relationship between the wSSA and the problem of
estimating mean first passage times using as an example the
problem of spontaneous transitions between the stable states
of a bistable system. In Sec. VII we summarize our findings
and make an observation on the relationship between the
wSSA and the SSA.

II. THEORETICAL UNDERPINNINGS OF THE wSSA

We consider a well-stirred chemical system whose mo-
lecular population state at the current time t is x. The next
firing of one of the system’s M reaction channels R1 , . . . ,RM

will carry the system from state x to one of the M states
x+� j �j=1, . . . ,M�, where � j is �by definition� the state
change caused by the firing of one Rj reaction. The funda-
mental premise of stochastic chemical kinetics, which under-
lies both the chemical master equation and the SSA, is that
the probability that an Rj event will occur in the next infini-
tesimal time interval dt is aj�x�dt, where aj is called the
propensity function of reaction Rj. It follows from this
premise that �a� the probability that the system will jump
away from state x between times t+� and t+�+d� is
a0�x�e−a0�x��d�, where a0�x���i=1

M ai�x�, and �b� the probabil-
ity that the system, upon jumping away from state x, will
jump to state x+� j, is aj�x� /a0�x�. Applying the multiplica-
tion law of probability theory, we conclude that the probabil-
ity that the next reaction will carry the system’s state to
x+� j between times t+� and t+�+d� is

Prob�x → x + � j in �t + �,t + � + d���

= a0�x�e−a0�x��d� �
aj�x�
a0�x�

. �1�

In the usual “direct method” implementation of the SSA,
the time � to the next reaction event is chosen by sampling
the exponential random variable with mean 1 /a0�x�, in con-
sonance with the first factor in Eq. �1�, and the index j of the
next reaction is chosen with probability aj�x� /a0�x�, in con-
sonance with the second factor in Eq. �1�. But now let us
suppose, with Kuwahara and Mura,1 that we modify the di-
rect method SSA procedure so that, while it continues to
choose the time � to the next jump in the same way, it
chooses the index j, which determines the destination x+� j

of that jump, with probability bj�x� /b0�x�, where
�b1 , . . . ,bM� is a possibly different set of functions from
�a1 , . . . ,aM�, and b0�x���i=1

M bi�x�. If we made that modifi-a�Electronic mail: gillespiedt@mailaps.org.

THE JOURNAL OF CHEMICAL PHYSICS 130, 174103 �2009�

0021-9606/2009/130�17�/174103/10/$25.00 © 2009 American Institute of Physics130, 174103-1

http://dx.doi.org/10.1063/1.3116791
http://dx.doi.org/10.1063/1.3116791


cation, then the probability on the left hand side of Eq. �1�
would be a0�x�e−a0�x��d�� �bj�x� /b0�x��. But we observe that
this “incorrect” value can be converted to the “correct”
value, on the right hand side of Eq. �1�, simply by multiply-
ing by the factor

wj�x� =
aj�x�/a0�x�
bj�x�/b0�x�

. �2�

So in some sense, we can say that an x→x+� j jump gener-
ated using this modified procedure, and accorded a statistical
weight of wj�x� in Eq. �2�, is “equivalent” to an x→x+� j

jump generated using the standard SSA.
This statistical weighting of a single-reaction jump can

be extended to an entire trajectory of the system’s state by
reasoning as follows: A state trajectory is composed of a
succession of single-reaction jumps. Each jump has a prob-
ability �1� that depends on the jump’s starting state but not on
the history of the trajectory that leads up to that starting state.
Therefore, the probability of the trajectory as a whole is just
the product of the probabilities of all the individual jumps �1�
that make up the trajectory. Since in the modified SSA
scheme the probability of each individual jump requires a
correction factor of the form �2�, then the correction factor
for the entire trajectory—i.e., the statistical weight w of the
trajectory–will be the product w=wj1

wj2
wj3

¯, where wjk
is

the statistical weight �2� for the kth jump in that trajectory.
One situation where this statistical weighting logic can

be applied is in the Monte Carlo averaging method of esti-
mating the value of

p�x0,E;t� � the probability that the system starting

at time 0 in state x0 will first reach

any state in the set E at some time � t .

�3�

�Note that p�x0 ,E ; t� is not the probability that the system
will be in the set E at time t.� An obvious Monte Carlo way
to estimate this probability would be to make a very large
number n of regular SSA runs, with each run starting at time
0 in state x0 and terminating either when some state x��E is
first reached or when the system time reaches t. If mn is the
number of those n runs that terminate for the first reason,
then the probability p�x0 ,E ; t� could be estimated as the frac-
tion mn /n, and this estimate would become exact in the limit
n→�. But mn here could also be defined as the sum of the
“weights” of the runs, where each run is given a weight of 1
if it ends because some state in the set E is reached before
time t and a weight of 0 otherwise. This way of defining mn

is useful because it allows us to score runs in the modified
SSA scheme, with each run that reaches some state x��E
before time t then being scored with its trajectory weight w
as defined above. Kuwahara and Mura1 recognized that this
tactic could be used to advantage in the case p�x0 ,E ; t��1,
where using the standard SSA will inevitably require an im-
practically large number of trajectories to obtain an accurate
estimate of p�x0 ,E ; t�. As we shall elaborate in the next two
sections, by using this wSSA method with the bj functions
carefully chosen so that they increase the likelihood of the
system reaching E, it is often possible to obtain a more ac-

curate estimate of p�x0 ,E ; t� with far fewer runs.
The wSSA procedure given in Ref. 1 for computing

p�x0 ,E ;T� in this way goes as follows:
1° mn←0.
2° for k=1 to n, do
3° s←0, x←x0, w←1.
4° evaluate all ai�x� and bi�x�; calculate a0�x� and

b0�x�.
5° while s� t, do
6° if x�E, then
7° mn←mn+w.
8° break out of the while loop.
9° end if
10° generate two unit-interval uniform random

numbers r1 and r2.
11° �←a0

−1�x�ln�1 /r1�.
12° j←smallest integer satisfying

�i=1
j bi�x��r2b0�x�.

13° w←w� �aj�x� /bj�x��� �b0�x� /a0�x��.
14° s←s+�, x←x+� j.
15° update ai�x� and bi�x�; recalculate a0�x� and

b0�x�.
16° end while
17° end for
18° report p�x0 ,E ; t�=mn /n.

Assumed given for the above procedure are the reaction
propensity functions aj and the associated state-change vec-
tors � j, the target set of states E and the time t by which the
system should reach that set, the total number of runs n that
will be made to obtain the estimate, and the step-biasing
functions bj �which Kuwahara and Mura called predilection
functions�. The variable mn in the above procedure is the sum
of the statistical weights w of the n run trajectories. The
value of w for each trajectory is constructed in step 13°, as
the product of the weights wj in Eq. �2� of all the reaction
jumps making up that trajectory; however, if a trajectory
ends because in the given time t the set E has not been
reached, the weight of that trajectory is summarily set to
zero. Note that the use of a0 instead of b0 to compute the
jump time � in step 11° follows from the analysis leading
from Eqs. �1� and �2�: the wSSA introduces an artificial bias
in choosing j, but it always chooses � “properly” according
to the true propensity functions. This strategy of using the
correct � is vital for allotting to each trajectory the proper
amount of time t to reach the target set of states E.

If the bj functions are chosen to be the same as the aj

functions, then the above procedure evidently reduces to the
standard SSA. Thus, the key to making the wSSA more ef-
ficient than the SSA is to choose the bj functions “appropri-
ately.” It is seen from step 13°, though, that bj must not have
a harder zero at any accessible state point than aj, for other-
wise the weight at that state point would be infinite. To keep
that from happening, Kuwahara and Mura proposed the
simple procedure of setting

bj�x� = � jaj�x� �j = 1, . . . ,M� , �4�

where each proportionality constant � j �0, which we shall
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call the importance sampling factor for reaction Rj, is chosen
to be �1 if the occurrence of reaction Rj increases the
chances of the system reaching the set E and �1 otherwise.
This way of choosing the b functions seems quite reasonable,
although a minor subtlety not mentioned in Ref. 1 is that,
since the wSSA works by altering the relative sizes of the
propensity functions for state selection, only M −1 of the � j

matter; in particular, in a system with only one reaction,
weighting that reaction by any factor � will produce a single
step weight �2� that is always unity, and the wSSA therefore
reduces to the SSA. But of course, single-reaction systems
are not very interesting in this context. A more important
question in connection with Eq. �4� is: Are there optimal
values for the � j? And if so, how might we identify them?

III. THE VARIANCE AND ITS BENEFITS

The statistical weighting strategy described in connec-
tion with Eq. �4� evidently has the effect of increasing the
firing rates of those “important reactions” that move the sys-
tem toward the target states E, thus producing more “impor-
tant trajectories” that reach that target. Equation �2� shows
that boosting the likelihoods of those successful trajectories
in this way will cause them to have statistical weights w
	1. As was noted and discussed at some length in Ref. 1,
this procedure is an example of a general Monte Carlo tech-
nique called importance sampling. However, the description
of the importance sampling strategy given in Ref. 1 is incom-
plete because it makes no mention of something called the
“sample variance.”

In the Appendix, we give a brief review of the general
theory underlying Monte Carlo averaging and the allied tech-
nique of importance sampling which explains the vital con-
necting role played by the sample variance. The bottom line
for the wSSA procedure described in Sec. II is this: The
computation of the sample mean mn /n of the weights of the
n wSSA trajectories should be accompanied by a computa-
tion of the sample variance of those trajectory weights. Do-
ing that not only provides us with a quantitative estimate of
the uncertainty in the approximation p�x0 ,E ; t�	mn /n but
also helps us find the values of the parameters � j in Eq. �4�
that minimize that uncertainty. More specifically �see the Ap-
pendix for details�, in addition to computing the sample first
moment �or sample mean� of the weights of the wSSA-
generated trajectories,

mn

n
�

mn
�1�

n
�

1

n
�
k=1

n

wk, �5�

where wk is the statistical weight of run k �equal to the prod-
uct of the weights �2� of each reaction that occurs in run k if
that run reaches E before t and zero otherwise�, we should
also compute the sample second moment of those weights,

mn
�2�

n
�

1

n
�
k=1

n

wk
2. �6�

The sample variance of the weights is then given by the
difference between the sample second moment and the
square of the sample first moment:2


2 = �mn
�2�/n� − �mn

�1�/n�2. �7�

The final estimate p�x0 ,E ; t�	mn
�1� /n can then be assigned a

“one-standard-deviation normal confidence interval” of

uncertainty = �




n
. �8�

This means that the probability that the true value of
p�x0 ,E ; t� will lie within 
 /
n of the estimate mn

�1� /n is 68%.
Doubling the uncertainty interval �8� raises the confidence
level to 95%, and tripling it gives us a confidence level of
99.7%. Furthermore, by performing multiple runs that vary
the bj functions, which in practice means systematically
varying the parameters � j in Eq. �4�, we can, at least in
principle, find the values of � j that give the smallest 
2, and
hence according to Eq. �8� the most accurate estimate of
p�x0 ,E ; t� for a given value of n.

All of the foregoing is premised on the assumption that n
has been taken “sufficiently large.” That is because there is
some “bootstrapping logic” used in the classical Monte Carlo
averaging method �independently of importance sampling�:
The values for mn

�1� and mn
�2� computed in Eqs. �5� and �6�

will vary from one set of n runs to the next, so the computed
value of 
2 in Eqs. �7� and �8� will also vary. Therefore, as
discussed more fully in the Appendix at Eqs. �A9� and
�A10�, the computed uncertainty in the estimate of the mean
is itself only an estimate. And, like the estimate of the mean,
the estimate of the uncertainty will be reasonably accurate
only if a sufficiently large number n of runs have been used.
In practice, this means that only when several repetitions of
an n-run calculation are found to produce approximately the
same estimates for mn

�1� and mn
�2� can we be sure that n has

been taken large enough to draw reliable conclusions.
When the original wSSA recipe in Sec. II is modified to

include the changes described above, we obtain the recipe
given below:

1° mn
�1�←0, mn

�2�←0
2° for k=1 to n, do
3° s←0, x←x0, w←1
4° evaluate all ai�x� and bi�x�; calculate a0�x� and

b0�x�.
5° while s� t, do
6° if x�E, then
7° mn

�1�←mn
�1�+w, mn

�2�←mn
�2�+w2.

8° break out of the while loop.
9° end if
10° generate two unit-interval uniform random

numbers r1 and r2.
11° �←a0

−1�x�ln�1 /r1�
12° j←smallest integer satisfying

�i=1
j bi�x��r2b0�x�.

13° w←w� �aj�x� /bj�x��� �b0�x� /a0�x��.
14° s←s+�, x←x+� j.
15° update ai�x� and bi�x�; recalculate a0�x� and

b0�x�.
16° end while
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17° end for
18° 
2= �mn

�2� /n�− �mn
�1� /n�2

19° repeat from 1° using different b functions to mini-
mize 
2.

20° estimate p�x0 ,E ; t�=mn
�1� /n, with a 68% uncertainty

of �
 /
n.

Steps 1°–17° are identical to those in the earlier proce-
dure in Sec. II, except for the additional computations in-
volving the new variable mn

�2� in steps 1° and 7°. The new
step 18° computes the variance. Step 19° tunes the impor-
tance sampling parameters � j in Eq. �4� to minimize that
variance. And step 20° uses the optimal set of � j values thus
found to compute the best estimate of p�x0 ,E ; t�, along with
its associated confidence interval. In practice, step 19° usu-
ally has to be done manually, external to the computer pro-
gram, since the search over � j space requires some intuitive
guessing; this is typical in most applications of importance
sampling.3 An overall check on the validity of the computa-
tion can be made by repeating it a few times with different
random number seeds to verify that the estimates obtained
for p�x0 ,E ; t� and its confidence interval are reproducible and
consistent. If they are not, then n has probably not been
chosen large enough.

IV. GAIN IN COMPUTATIONAL EFFICIENCY

The problem with using unweighted SSA trajectories to
estimate p�x0 ,E ; t� when that probability is �1 is that we are
then trying to estimate the average of a set of numbers �the
trajectory weights� which are all either 0 or 1 when that
average is much closer to 0 than to 1. The sporadic occur-
rence of a few 1’s among a multitude of 0’s makes this esti-
mate subject to very large statistical fluctuations for any rea-
sonable number of trajectories n. How does importance
sampling overcome this problem? If the reaction biasing is
done properly, most of the “successful” trajectories that
reach the target set E within the allotted time t will have
weights that are much less than 1, and hence closer to the
average. Most of the “unsuccessful” trajectories will rack up
weights in step 13° that are much greater than 1, but when
the simulated time reaches the limit t without the set E hav-
ing been reached, those large weights are summarily reset to
zero �they never get accumulated in mn

�1� and mn
�2� in step 7°�.

The result is that the bulk of the contribution to the sample
average comes from weights that are much closer to the av-
erage than are the unit weights of the successful SSA trajec-
tories. This produces a smaller scatter in the weights of
wSSA trajectories about their average, as measured by their
standard deviation 
, and hence a more accurate estimate of
that average. Note, however, that if the event in question is
not rare, i.e., if p�x0 ,E ; t� is not �1, then the unit trajectory
weights of the SSA do not pose a statistical problem. In that
case there is little to be gained by importance sampling, and
the ordinary SSA should be adequate. Note also that the rar-
ity of the event is always connected to the size of t. Since
p�x0 ,E ; t�→1 as t→�, it is always possible to convert a rare
event into a likely event simply by taking t sufficiently large.

To better understand how variance reduction through im-
portance sampling helps when p�x0 ,E ; t��1, let us consider
what happens when no importance sampling is done, i.e.,
when bj =aj for all j and every successful trajectory gets
assigned a weight w=1. Letting mn denote the number of
successful runs obtained out of n total, it follows from defi-
nitions �5� and �6� that

mn
�1� = mn � 1 = mn, mn

�2� = mn � 12 = mn.

Equation �7� then gives for the sample variance


2 = �mn/n� − �mn/n�2 = �mn/n��1 − �mn/n�� .

The uncertainty �8� is therefore4

uncertainty = �
�mn/n��1 − �mn/n��
n

, �9a�

and this implies a relative uncertainty of

relative uncertainty �
uncertainty

mn/n
= �
1 − �mn/n�

mn
.

�9b�

When p�x0 ,E ; t�	mn /n�1, Eq. �9b� simplifies to

relative uncertainty 	 �
 1

mn
�if mn/n � 1� . �10�

This shows that if only one successful run is encountered in
the n SSA runs, then the relative uncertainty in the estimate
of p�x0 ,E ; t� will be 100%, and if four successful runs are
encountered, the relative uncertainty will be 50%. To reduce
the relative uncertainty to a respectably accurate 1% would,
according to Eq. �10�, require 10 000 successful SSA runs,
and that would be practically impossible for a truly rare
event.

These considerations allow us to estimate the number of
unweighted SSA runs, nSSA, that would be needed to yield an
estimate of p�x0 ,E ; t� that has the same relative accuracy as
the estimate obtained in a wSSA calculation. Thus, suppose a
wSSA calculation with nwSSA runs has produced the estimate
p̂ �=mn

�1� /nwSSA� with a one-standard-deviation uncertainty
uwSSA �=
wSSA /
nwSSA�. The relative uncertainty is uwSSA / p̂.
According to Eq. �10�, to get that same relative uncertainty
using the unweighted SSA, we would need mSSA successful
SSA runs such that


 1

mSSA =
uwSSA

p̂
.

But to get mSSA successful runs with the SSA, we would
need to make nSSA total runs, where

mSSA/nSSA = p̂ .

Solving this last equation for mSSA, substituting the result
into the preceding equation, and then solving it for nSSA, we
obtain

nSSA =
p̂

�uwSSA�2 �if p̂ � 1� . �11�

A rough measure of the gain in computational efficiency of
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the wSSA over the SSA is provided by the ratio of nSSA to
nwSSA:

g �
nSSA

nwSSA =
p̂

nwSSA�uwSSA�2 .

Since uwSSA=
wSSA /
nwSSA, this simplifies to

g =
p̂

�
wSSA�2 �if p̂ � 1� . �12�

The result �12� shows why the wSSA’s strategy of minimiz-
ing the variance when p�x0 ,E ; t��1 is the key to obtaining a
large gain in computational efficiency over the unweighted
SSA: If we can contrive to halve the variance, we will
double the efficiency.

V. NUMERICAL EXAMPLES

Reference 1 illustrated the wSSA by applying it to two
simple systems. In this section we repeat those applications
in order to illustrate the benefits of the refinements intro-
duced in Sec. III.

The first example in Ref. 1 concerns the simple system

S1→
k1

S1 + S2, S2→
k2

� , �13�

with k1=1 and k2=0.025. Since the S1 population x1 remains
constant in these reactions, Eq. �13� is mathematically the

same as the reaction set � �
k2

k1x1

S2. This reaction set has been

well studied,5 and the steady-state �equilibrium� population
of species S2 is known to be the Poisson random variable
with mean and variance k1x1 /k2. Reference 1 takes x1=1, so
at equilibrium the S2 population in Eq. �13� will be fluctuat-
ing about a mean of k1 /k2=40 with a standard deviation of

40=6.3. For this system, Ref. 1 sought to estimate, for sev-
eral values of �2 between 65 and 80, the probability
p�40,�2 ;100� that with x1=1, the S2 population, starting at
the value 40, will reach the value �2 before time t=100.
Since the S2 populations 65 and 80 are, respectively, about
four and six standard deviations above the equilibrium value
40, then the biasing strategy for the wSSA must be to en-
courage reaction R1, which increases the S2 population,
and/or discourage reaction R2, which decreases the S2 popu-
lation. Of the several ways in which that might be done, Ref.
1 adopted scheme �4�, taking �1= and �2=1 / with
=1.2.

Addressing first the case �2=65, we show in Fig. 1�a� a
plot of 
2 versus  for a range of  values near 1.2. In this
plot, the center dot on each vertical bar is the average of the

2 results found in four runs of the wSSA procedure in Sec.
III �or more specifically, steps 1°–18° of that procedure�,
with each run containing n=106 trajectories. The span of
each vertical bar indicates the one-standard-deviation enve-
lope of the four 
2 values. It is seen from this plot that the
value of  that minimizes 
2 for �2=65 is approximately
1.20, which is just the value used in Ref. 1. But Fig. 1�a�
assures us that this value in fact gives the optimal importance
sampling, at least for this value of �2 and this way of param-
etrizing �1 and �2. Using this optimal  value in a longer run

of the wSSA, now taking n=107 as was done in Ref. 1, we
obtained

p�40,65;100� = 2.307 � 10−3 � 0.003 � 10−3

�95% confidence� . �14�

In this final result, we have been conservative and given the
two-standard-deviation uncertainty interval. To estimate the
gain in efficiency provided by the wSSA over the SSA, we
substitute p̂=2.3�10−3 and uwSSA=0.0015�10−3 into Eq.
�11�, and we get nSSA=1.025�109. Since result �14� was
obtained with nwSSA=107 wSSA runs, then the efficiency
gain here over the SSA is g=103, i.e., the computer running
time to get result �14� using the unweighted SSA would be
about a hundred times longer.

For the case �2=80, the plot of 
2 versus  is shown in
Fig. 1�b�. In this case, obtaining a reasonably accurate esti-

FIG. 1. �a� A plot of 
2 vs  obtained in wSSA runs of reactions �13� that
were designed to determine p�40,�2 ;100� for �2=65 using the biasing
scheme �1= and �2=1 /. Each vertical bar shows the estimated mean and
one standard deviation of 
2 at that  value as found in four n=106 runs of
the modified wSSA procedure in Sec. III. The optimal  value, defined as
that which produces the smallest 
2, is seen to be 1.20. �b� A similar plot for
�2=80, except that here each 
2 estimate was computed from four n=107

runs. The optimal  value here is evidently 1.30, which gives a stronger bias
than was optimal for the case in �a�.
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mate of 
2 at each  value required using four runs with n
=107. But even then, as we move farther above =1.3, it
evidently becomes very difficult to estimate 
2 accurately in
a run with only n=107 trajectories, as is indicated by the
vertical bars showing the scatter �standard deviation� ob-
served in four such runs. But each dot represents the com-
bined estimate of 
2 for n=4�107 runs, and they allow us to
see that the minimum 
2 is obtained at about =1.3. That
value, being further from 1 than the  value 1.20 which Ref.
1 used for �2=80 as well as for �2=65, represents a stronger
bias than =1.2, which is reasonable. The four runs for 
=1.3 were finally combined into one run, an operation made
easy by outputting at the end of each run the values of the
cumulative sums mn

�1� and mn
�2�: The four sums for mn

�1� were
added together to get m4n

�1�, and the four sums for mn
�2� simi-

larly gave m4n
�2�. This yielded the n=4�10−7 estimate

p�40,80;100� = 3.014 � 10−7 � 0.011 � 10−7

�95% confidence� , �15�

where again we have given a conservative two-standard-
deviation uncertainty interval. To estimate the gain in effi-
ciency provided by the wSSA over the SSA, we substitute
p̂=3�10−7 and uwSSA=0.0055�10−7 into Eq. �11�, and we
find nSSA=9.96�1011. Since result �13� was obtained with
nwSSA=4�107 wSSA runs, the efficiency gain over the SSA
is g=2.5�104, which is truly substantial.

The second system considered in Ref. 1 is the six-
reaction set

S1 + S2�
k2

k1

S3→
k3

S1 + S5,

�16�

S4 + S5�
k5

k4

S6→
k6

S4 + S2,

with the rate constants k1=k2=k4=k5=1 and k3=k6=0.1.
These reactions are essentially a forward-reverse pair of
enzyme-substrate reactions, with the first three reactions de-
scribing the S1-catalyzed conversion of S2 to S5 and the last
three reactions describing the S4-catalyzed conversion of S5

back to S2. As was noted in Ref. 1, for the initial condition
x0= �1,50,0 ,1 ,50,0�, each of the S2 and S5 populations
tends to equilibrate about its initial value 50. Reference 1
sought to estimate, for several values of �5 between 40 and
25, the probability p�x0 ,�5 ;100� that the S5 population, ini-
tially at 50 molecules, will reach the value �5 before time t
=100. Since those target S5 populations are smaller than the
x0 value 50, the wSSA biasing strategy should suppress the
creation of S5 molecules. One way to do that would be to
discourage reaction R3, which creates S5 molecules, and en-
courage reaction R6, which by creating S4 molecules encour-
ages the consumption of S5 molecules via reaction R4. The
specific procedure adopted in Ref. 1 for doing that was to
implement biasing scheme �4� with all the biasing param-
eters � j set to 1, except �3= and �6=1 / with =0.5.

For the case �5=40, we first made some preliminary
wSSA runs in order to estimate 
2 for several values of  in
the neighborhood of 0.5. The results are shown in Fig. 2�a�.
Here the center dot on each vertical bar shows the average of

the 
2 values found in four wSSA runs at that , with each
run containing n=105 trajectories. As before, the span of
each vertical bar indicates the associated one-standard-
deviation envelope. It is seen from this plot that the value of
 that minimizes 
2 for �5=40 is approximately 0.60, which
is less biased �closer to 1� than the value 0.5 used in Ref. 1.
Taking 0.60 as the optimal  value, we then made a longer
n=107 run and got

p�x0,40;100� = 0.042 21 � 0.000 02

�95% confidence� . �17�

For this value of p̂ and a one-standard uncertainty of uwSSA

=0.000 01, formula �11� yields nSSA=4.22�108. This im-
plies a gain in computational efficiency over the unweighted
SSA of g=42.

For the case �5=25, the 
2 versus  plot is shown in Fig.
2�b�. As in Fig. 2�a�, each vertical bar shows the result of

FIG. 2. �a� A plot of 
2 vs  obtained in wSSA runs of reactions �16� that
were designed to determine p�x0 ,�5 ;100� for �5=40 using the biasing
scheme �3= and �6=1 /. Each vertical bar shows the estimated mean and
one standard deviation of 
2 at that  value as found in four n=105 runs of
the modified wSSA procedure in Sec. III. The optimal  value here is seen
to be 0.60. �b� A similar plot for �5=25. The optimal  value now is 0.35,
which gives a stronger bias than was optimal for the case in �a�.
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four wSSA runs with n=105. This plot shows that the opti-
mal  value is now 0.35, which is more biased �i.e., further
from 1� than the optimal  value 0.60 for the case �5=40 and
also more biased than the value 0.50 that was used in Ref. 1.
A final longer wSSA run with =0.35 and n=107 yielded

p�x0,25;100� = 1.747 � 10−7 � 0.003 � 10−7

�95% confidence� . �18�

For this value of p̂ and a one-standard uncertainty of uwSSA

=0.0015�10−7, formula �11� yields nSSA=7.76�1012,
which implies a gain in computational efficiency for the
wSSA of g=7.76�105.

All the results obtained here are consistent with the val-
ues reported in Ref. 1. The added value here is the confi-
dence intervals, which were absent in Ref. 1, and also the
assurance that these results were obtained in a computation-
ally efficient way. We should note that the results obtained
here are probably more accurate than would be required in
practice, e.g., if we were willing to give up one decimal of
accuracy in result �18�, then the value of n used to get that
result could be reduced from 107 to 105, which would trans-
late into a 100-fold reduction in the wSSA’s computing time.

VI. FIRST PASSAGE TIME THEORY: STABLE STATE
TRANSITIONS

Rare events in a stochastic context have traditionally
been studied in terms of mean first passage times. The time
T�x0 ,E� required for the system, starting in state x0, to first
reach some state in the set E is a random variable, and its
mean �T�x0 ,E�� is often of interest. Since the cumulative
distribution function F�t ;x0 ,E� of T�x0 ,E� is, by definition,
the probability that T�x0 ,E� will be less than or equal to t, it
follows from Eq. �3� that

F�t;x0,E� = p�x0,E;t� . �19�

Therefore, since the derivative of F�t ;x0 ,E� with respect to t
is the probability density function of T�x0 ,E�, the mean of
the first passage time T�x0 ,E� is given by

�T�x0,E�� = 
0

�

t �dp�x0,E;t�
dt

� dt

= 
0

�

�1 − p�x0,E;t��dt , �20�

where the last step follows from an integration by parts.
In light of this close connection between the mean first

passage time �T�x0 ,E�� and the probability p�x0 ,E ; t� that the
wSSA aims to estimate, it might be thought that the wSSA
also provides an efficient way to estimate �T�x0 ,E��. But that
turns out not to be so. The reason is that, in order to compute
�T�x0 ,E�� from Eq. �20�, we must compute p�x0 ,E ; t� for
times t that are on the order of �T�x0 ,E��. But for a truly rare
event that time will be very large, and since the wSSA does
not shorten the elapsed time t, it will not be feasible to make
runs with the wSSA for that long a time.

From a practical point of view though, it seems likely
that a knowledge of the very small value of p�x0 ,E ; t� for

reasonable values of t might be just as useful as a knowledge
of the very large value of �T�x0 ,E��. In other words, in prac-
tice it may be just as helpful to know how likely it is for the
rare event x0→E to happen within a time frame t of practical
interest as to know how long a time on average we would
have to wait in order to see the event occur. To the extent that
that is true, the inability of the wSSA to accurately estimate
�T�x0 ,E�� will not be a practical drawback.

An illustration of these points is provided by the phe-
nomenon of spontaneous transitions between the stable states
of a bistable system. A well known simple model of a
bistable system is the Schlögl reaction set

B1 + 2S�
c2

c1

3S ,

�21�

B2�
c4

c3

S ,

where species B1 and B2 are assumed to be buffered so that
their molecular populations N1 and N2 remain constant. For
the parameter values

c1 = 3 � 10−7, c2 = 10−4, c3 = 10−3, c4 = 3.5,

�22�
N1 = 105, N2 = 2 � 105,

the molecular population X of species S can be shown6 to
have two stable states, x1=82 and x2=563. Figure 3 shows
four exact SSA simulations for these parameter values with
four different initial states. In each of these simulation runs,
X has been plotted after every five reaction events. The solid
horizontal lines locate the stable states x1 and x2, and the
adjacent dotted lines show the theoretically predicted

FIG. 3. Four SSA runs of the Schlögl reaction set �21� using the parameter
values �22� and the initial states indicated. �From Ref. 6.� The S population
X�t� is plotted out here after every fifth reaction event. Starting values below
the barrier region between x=200 and x=300 tend to wind up fluctuating
about the lower stable state x1=82, while starting values above the barrier
region tend to wind up fluctuating about the upper stable state x2=563. The
dotted lines around the two stable states show their theoretically predicted
widths, which are evidently consistent with these simulations. Spontaneous
transitions between the two states will inevitably occur if the system is
allowed to run long enough.
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“widths” of those stable states. The other three horizontal
lines in the figure locate the “barrier region” that separates
the two stable states. �See Ref. 6 for details.� Using first
passage time theory, it can be shown that the mean time for
a transition from x1 to x2 is6

�T�x1,x2�� = 5.031 � 104 �23�

and further that the associated standard deviation has practi-
cally the same value. This implies that we would usually
have to run the simulations in Fig. 3 for times of order 104

before witnessing a spontaneous transition from x1 to x2, and
that is a very long time on the scale of Fig. 3. But it might
also be interesting to know the probability of seeing an
x1-to-x2 transition occur within a time span that is compa-
rable to that of Fig. 3, say, in time t=5.

Finding an effective importance sampling strategy to
compute p�82,563;5� turned out to be more difficult than we
anticipated. We suspect the reason for this is the extreme
sensitivity of the Schlögl reactions �21� to the values of its
reaction parameters in the vicinity of the bistable configura-
tion. For example, a 5% reduction in the value of c3 from the
value given in �22� will cause the upper steady state x2 to
disappear, while a 5% increase will cause the lower steady
state x1 to disappear. This means that in the importance sam-
pling strategy of Eq. �4�, small changes in the � j values can
result in major changes in the dynamical structure of the
system. This made finding a good biasing strategy more dif-
ficult than in the two examples considered in Sec. V. Never-
theless, we found that taking �3= and �4=1 / with 
=1.05 produced the following estimate with n=4�107 runs:

p�82,563;5� = 4.56 � 10−7 � 0.25 � 10−7

�95% confidence� . �24�

For this value of p̂ and a one-standard uncertainty of uwSSA

=0.125�10−7, formula �11� yields nSSA=2.9�109. Dividing
that by nwSSA=4�107 gives a gain in computational effi-
ciency of g=73.

Results �23� and �24� refer to the same transition x1

→x2, and both results are informative but in different ways.
However, there does not appear to be a reliable procedure for
inferring either of these results from the other; in particular,
the wSSA result �24� is a new result, not withstanding the
known result �23�. We hope to explore more fully the prob-
lem of finding optimal wSSA weighting strategies for
bistable systems in a future publication.

VII. CONCLUSIONS

The numerical results reported in Secs. V and VI support
our expectation that the refinements to the original wSSA1

made possible by the variance computation significantly im-
prove the algorithm: The benefit of being able to quantify the
uncertainty in the wSSA’s estimate of p�x0 ,E ; t� is obvious.
And having an unambiguous measure of the optimality of a
given set of values of the importance sampling parameters
��1 , . . . ,�M� makes possible the task of minimizing that un-
certainty. But much work remains to be done in order to
develop a practical, systematic strategy for deciding how
best to parametrize the set ��1 , . . . ,�M� in terms of a smaller

number of parameters, and, more generally, for deciding
which reaction channels in a large network of reactions
should be encouraged and which should be discouraged
through importance sampling. More enlightenment on these
matters will clearly be needed if the wSSA is to become
easily applicable to more complicated chemical reaction net-
works.

We described in Sec. VI the relationship between the
probability p�x0 ,E ; t� computed by the wSSA and the mean
first passage time �T�x0 ,E��, which is the traditional way of
analyzing rare events. We showed that in spite of the close-
ness of this relationship, if the former is very “small” and the
latter is very “large,” then neither can easily be inferred from
the other. But in practice, knowing p�x0 ,E ; t� will often be
just as useful, if not more useful, than knowing �T�x0 ,E��.

We conclude by commenting that, in spite of the dem-
onstration in Sec. V of how much more efficiently the wSSA
computes the probability p�x0 ,E ; t� than the SSA when
p�x0 ,E ; t��1, it would be inaccurate and misleading to view
the wSSA and the SSA as “competing” procedures which
aim to do the same thing. This becomes clear when we rec-
ognize two pronounced differences between those two pro-
cedures: First, whereas the wSSA always requires the user to
exercise insight and judgment in choosing an importance
sampling strategy, the SSA never imposes such demands on
the user. Second, whereas the SSA usually plots out the state
trajectories of its runs, since those trajectories reveal how the
system typically behaves in time, the trajectories of the
wSSA are of no physical interest because they are artificially
biased. The SSA and the wSSA really have different, but
nicely complementary, goals: The SSA is concerned with
revealing the typical behavior of the system, showing how
the molecular populations of all the species usually evolve
with time. In contrast, the wSSA is concerned with the atypi-
cal behavior of the system, and more particularly with esti-
mating the value of a single scalar quantity: the probability
that a specified event will occur within a specified limited
time when that probability is very small.
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APPENDIX: MONTE CARLO AVERAGING
AND IMPORTANCE SAMPLING

If X is a random variable with probability density func-
tion P and f is any integrable function, then the “average of
f with respect to X,” or equivalently the “average of the
random variable f�X�,” can be computed as either

�f�X�� = 
−�

�

f�x�P�x�dx �A1�

or

�f�X�� = lim
n→�

1

n�
i=1

n

f�x�i�� , �A2�

where the x�i� in Eq. �A2� are statistically independent
samples of X. Monte Carlo averaging is a numerical proce-
dure for computing �f�X�� from Eq. �A2� but using a finite
value for n. But using a finite n renders the computation
inexact:

�f�X�� 	
1

n
�
i=1

n

f�x�i�� �n 	 �� . �A3�

To estimate the uncertainty associated with this approxima-
tion, we reason as follows.

Let Y be any random variable with a well-defined mean
and variance, and let Y1 , . . . ,Yn be n statistically independent
copies of Y. Define the random variable Zn by

Zn �
1

n
�
i=1

n

Yi. �A4�

This means, by definition, that a sample zn of Zn can be
obtained by generating n samples y�1� , . . . ,y�n� of Y and then
taking

zn =
1

n
�
i=1

n

y�i�. �A5�

Now take n large enough so that, by the central limit theo-
rem, Zn is approximately normal. In general, the normal ran-
dom variable N�m ,
2� with mean m and variance 
2 has the
property that a random sample s of N�m ,
2� will fall within
��
 of m with probability 68% if �=1, 95% if �=2, and
99.7% if �=3. �For more on normal confidence interval
theory, see the article by Welch.7� This implies that s will
“estimate the mean” of N�m ,
2� to within ��
 with those
respective probabilities, a statement that we can write more
compactly as m	s��
. In particular, since Zn is approxi-
mately normal, we may estimate its mean as

�Zn� 	 zn � �
var�Zn� . �A6�

It is not difficult to prove that the mean and variance of Zn as
defined in Eq. �A4� can be computed in terms of the mean
and variance of Y by

�Zn� = �Y� and var�Zn� =
var�Y�

n
. �A7�

With Eqs. �A7� and �A5�, we can rewrite the estimation for-
mula �A6� as

�Y� 	
1

n
�
i=1

n

y�i� � �
var�Y�
n

. �A8�

This formula is valid for any random variable Y with a well-
defined mean and variance provided n is sufficiently large
�so that normality is approximately achieved�.

Setting Y = f�X� in Eq. �A8�, we obtain

�f�X�� 	
1

n
�
i=1

n

f�x�i�� � �
var�f�X��
n

. �A9�

This formula evidently quantifies the uncertainty in the esti-
mate �A3�. Again, the values �=1,2 ,3 correspond to respec-
tive “confidence intervals” of 68%, 95%, and 99.7%. But
formula �A9� as it stands is not useful in practice because we
do not know var�f�X��. It is here that we indulge in a bit of
bootstrapping logic: We estimate

var�f�X�� 	
1

n
�
i=1

n

�f�x�i���2 − �1

n
�
i=1

n

f�x�i���2

. �A10�

This estimate evidently makes the assumption that n is al-
ready large enough that the n-sample first and second mo-
ments of f provide reasonably accurate estimates of �f� and
�f2�. In practice, we need to test this assumption by demand-
ing “reasonable closeness” among several n-run computa-
tions of the right hand side of Eq. �A10�. Only when n is
large enough for that to be so can we reliably invoke formu-
las �A9� and �A10� to infer an estimate of �f�X�� and an
estimate of the uncertainty in that estimate from the two
sums �i=1

n f�x�i�� and �i=1
n �f�x�i���2.

The most obvious way to decrease the size of the uncer-
tainty term in Eq. �A9� is to increase n; indeed, in the limit
n→�, Eq. �A9� reduces to the exact formula �A2�. But the
time available for computation usually imposes a practical
upper limit on n. However, we could also make the uncer-
tainty term in Eq. �A9� smaller if we could somehow de-
crease the variance. Several “variance-reducing” strategies
with that goal have been developed, and one that has proved
to be effective in many scientific applications is called im-
portance sampling.

Importance sampling arises from the fact that we can
write Eq. �A1� as

�f�X�� = 
−�

�

f�x�P�x��Q�x�
Q�x�

�dx

= 
−�

� � f�v�P�v�
Q�v�

�Q�v�dv , �A11�
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where Q is the probability density function of some new
random variable V. Defining still another random variable
g�V� by

g�V� �
f�V�P�V�

Q�V�
, �A12�

it follows from Eq. �A11� that

�g�V�� = �f�X�� . �A13�

But although the two random variables f�X� and g�V� have
the same mean, they will not generally have the same vari-
ance. In fact, if we choose the function Q�v� so that it varies
with v in roughly the same way that f�v�P�v� does, then the
sample values of g�V� will not show as much variation as the
sample values of f�X�. That would imply that

var�g�V�� 	 var�f�X�� . �A14�

In that case, we will get a more accurate estimate of �f�X�� if
we use, instead of Eq. �A9�,

�f�X�� = �g�V�� 	
1

n
�
i=1

n

g�v�i�� � �
var�g�V��
n

, �A15�

where

var�g�V�� 	
1

n
�
i=1

n

�g�v�i���2 − �1

n
�
i=1

n

g�v�i���2

. �A16�

Of course, if one is not careful in selecting the function Q,
the inequality in Eq. �A14� could go the other way, and Eq.
�A15� would then show a larger uncertainty than Eq. �A9�.
The key to having Eq. �A14� hold is to choose the function
Q�v� so that it tends to be large �small� where f�v�P�v� is
large �small�. When that is so, generating samples v�i� ac-
cording to Q will sample the real axis most heavily in those
“important” regions where the integrand in Eq. �A1� is large.
But at the same time, Q must be simple enough that it is not
too difficult to generate those samples.

In practice, once a functional form for Q has been cho-
sen, one or more parameters in Q are varied in a series of test
runs to find the values that minimize variance �A16�. Then a
final run is made using the minimizing parameter values and
as large a value of n as time will allow to get the most
accurate possible estimate of �f�X��.

The connection of the foregoing general theory to the
application considered in the main text can be roughly sum-
marized by the following correspondences:

X ↔ an unbiased �SSA� state trajectory,

f�X� ↔ statistical weight of an unbiased trajectory,

V ↔ a biased �wSSA� state trajectory,

g�V� ↔ statistical weight of a biased trajectory,

�f�X�� = �g�V�� ↔ p�x0,E;T� ,

P�v�
Q�v�

↔ wk = �
all reaction events

comprising trajectory k

aj/a0

bj/b0
,

�
k=1

n

g�v�k�� ↔ mn
�1�, �

k=1

n

�g�v�k���2 ↔ mn
�2�.
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