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The reactive flux between folded and unfolded states of a two-state protein, whose coarse-grained
dynamics is described by a master equation, is expressed in terms of the commitment or splitting
probabilities of the microstates in the bottleneck region. This allows one to determine how much
each transition through a dividing surface contributes to the reactive flux. By repeating the analysis
for a series of dividing surfaces or, alternatively, by partitioning the reactive flux into contributions
of unidirectional pathways that connect reactants and products, insight can be gained into the
mechanism of protein folding. Our results for the flux in a network with complex connectivity,
obtained using the discrete counterpart of Kramers’ theory of activated rate processes, show that the
number of reactive transitions is typically much smaller than the total number of transitions that
cross a dividing surface at equilibrium. �DOI: 10.1063/1.3139063�

I. INTRODUCTION

Discrete coarse-graining of the dynamics is a powerful
approach to studying protein folding and other molecular
processes that occur on time scales inaccessible to current
atomistic simulations.1–17 Configuration space is first divided
into appropriately defined discrete microstates, and then the
dynamics is modeled using a master equation that describes
stochastic transitions among these microstates. The required
rate coefficients can be extracted using a variety of strategies,
for instance by monitoring transitions between coarse-
grained states in molecular simulations.7–17

Here we establish the relation between the macroscopic
kinetics and the underlying microscopic dynamics on a net-
work with complex connectivity �Fig. 1�. The focus is on
providing a theoretical framework to unravel mechanisms of
protein folding when the dynamics is described by a master
equation. However, our results are applicable to any discrete
kinetic system, such as those that arise in systems biology or
the modeling of enzyme catalysis.

One of the main results of this paper is a remarkably
simple expression for the reactive flux in terms of the com-
mitment or splitting probabilities, pfold, of microstates in the
bottleneck region that separates reactants from products. The
pfold of a microstate is defined as the probability that a pro-
tein starting from this microstate folds before it unfolds.
While this result simplifies the calculation of the rate, its
primary importance is that it gives the contribution to the
reactive flux of each transition through a dividing surface
located in the bottleneck region. By repeating such an analy-
sis for a series of dividing surfaces or from the decomposi-

tion of the reactive flux into a sum of contributions of uni-
directional pathways, one can gain insight into the
mechanism of protein folding.

Our expression for the reactive flux is applicable to dis-
crete dynamics with complex connectivity of the microstates
�Fig. 1� and is not based on even an implicit assumption that
low-dimensional reaction coordinates exist. We shall show
that in general the reactive flux is much smaller than the
upper bound given by transition state theory �TST�. In TST,
which ignores recrossings, the reactive flux is approximated
by the number of transitions per unit time that cross a divid-
ing surface in one direction. Our expression for the reactive
flux shows that the TST contribution of every transition i
→ j that crosses the dividing surface is reduced by the dif-
ference in pfold’s of microstates j and i. When transitions
occur between microstates with similar values of pfold, this
difference is much smaller that unity.

The commitment or splitting probability, pfold, plays a
key role in our analysis. pfold�i� can be found from trajecto-
ries obtained in simulations or in state-resolved single-
molecule experiments by counting the fraction of trajectory
fragments starting in microstate i that reach the fully folded
state before the unfolded state. The importance of this quan-
tity appears to have been first recognized by Ryter18 who
suggested using the stochastic separatrix �the locus of the
phase space points for which the splitting probability is equal
to 1

2 � as the boundary separating reactants from products.
This idea has been exploited in the theory of chemical
reactions19 and was introduced into the protein-folding litera-
ture by Du et al.20 who defined the transition state ensemble
�TSE� as the set of microstates with pfold close to 1

2 . In this
paper we shall derive the expression for the reactive flux in
terms of pfold using the discrete analogs of the Kramers21 and
Chandler22 approaches.a�Electronic mail: berezh@helix.nih.gov.
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II. THEORY

Our analysis is based on the master equation that de-
scribes the evolution of the probability pi�t� of finding the
protein in microstate i at time t, i=1,2 , . . . ,N,

dp�t�
dt

= Kp�t� . �1�

The ij-th element of the N�N rate matrix K, Kij, is the rate
constant for transition j→ i �i� j� and Kjj =−�i�jKij. The
equilibrium probability of finding the protein in microstate i,
peq�i�, is the solution to Kpeq=0 with the normalization
�i=1

N peq�i�=1. The elements of the rate matrix satisfy the con-
dition of detailed balance, Kijpeq�j�=Kjipeq�i�, which follows
from the requirement that there is no net flux between mi-
crostates at equilibrium.

We shall assume that the structure of the rate matrix, K,
is such that folding can be accurately described by a phe-
nomenological kinetic scheme

U�
kU

kF

F , �2�

where kF and kU are the folding and unfolding rate constants
for transitions between unfolded �U� and folded �F� states of
the protein. According to this scheme, the reactive flux in the
U→F direction at time t is kFfU�t�, where fU�t� is the popu-
lation of the unfolded state at time t. At equilibrium this flux,
which is the number of U→F transitions per unit time, is
equal to the reactive flux in the opposite �F→U� direction.
Both fluxes, denoted by J, are given by

J = kFfU
eq = kUfF

eq, �3�

where fU
eq and fF

eq=1− fU
eq are fractional populations of the

folded and unfolded states of the protein at equilibrium.
For the kinetics to be described by the scheme in Eq. �2�,

the majority of the protein population must be localized in
two basins separated by a narrow bottleneck, so that the in-
trabasin relaxation occurs much faster than the interbasin ex-
change, and thus kinetics of equilibration is essentially single
exponential. In such a system all microstates can be sepa-
rated into three groups: definitely unfolded �UU�, definitely
folded �FF�, and intermediate �I� or bottleneck microstates
�Fig. 1�. There is some freedom in the choice of the bottle-
neck boundaries �two dashed lines in Fig. 1� since the reac-
tive flux is rather insensitive to their precise location. Al-
though the equilibrium population of the I-microstates is
small, �i�Ipeq�i���i�Lpeq�i�, L=FF ,UU, these microstates
play an important role since all transitions between the UU-
and FF-basins occur only through the bottleneck,
UU⇔ I⇔FF �i.e., we assume that there are no direct tran-
sitions between FF- and UU-basins, Kij =Kji=0, i�UU,
j�FF�.

To establish the relationship between the reactive flux at
equilibrium and the discrete protein dynamics, we follow
Kramers and consider a steady state in which all trajectories
entering the FF-basin from the bottleneck are instantly re-
turned to the UU-basin to maintain local equilibrium in this
basin. The resulting steady-state distribution, pss�i�, satisfies

�
j

Kijpss�j� = 0 �4�

subject to the boundary conditions pss�i�= peq�i� if i�UU
and pss�i�=0 if i�FF. The reactive flux J is approximated
by the steady-state flux through an arbitrary dividing surface
� in the bottleneck region, which is necessarily crossed by
any trajectory connecting the UU- and FF-basins,

J = �
i�F�,j�U�

�Kijpss�j� − Kjipss�i�� , �5�

where F� and U� denote the sets of the microstates in the I
region located on the F- and U-sides of � that are connected
by a single transition.

The solution to Eq. �4� can be written in terms of peq�i�
and the splitting probability, pfold�i�, defined as the probabil-
ity of reaching the FF-basin before reaching the UU-basin
starting from microstate i. For i�FF pfold�i�=1, while for

FIG. 1. �Color online� Schematic representation of a network of coarse-
grained microstates of a two-state protein �circles�. �a� Connectivity net-
work. Reversible transitions among the microstates are denoted by solid
lines. Microstates are divided into three groups: Definitely unfolded �UU
with pfold�i�=0; red�, intermediate �I with 0� pfold�i��1; shaded� and defi-
nitely folded �FF with pfold�i�=1; blue�. The boundaries separating these
groups are shown by dashed lines. All transitions between the UU- and
FF-microstates occur through the I-microstates, which form the bottleneck.
Bold edges indicate the transitions across a dividing surface � �shown by
the dashed-dotted curve� contributing to the reactive flux. �b� Unidirectional
reactive flux diagram showing protein folding currents through the bottle-
neck region. The direction and thickness of the arrows are proportional to
Ji→j defined in Eq. �14�. The dominant unidirectional path is indicated by
shading. The dashed-dotted line is a dividing surface �� at pfold=�.
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i�UU pfold�i�=0. The remaining pfold’s, as indicated in Ref.
23, can be found by solving the discrete version of Onsager’s
equation24 for the splitting probability,

�
i

pfold�i�Kij = �
i�I

pfold�i�Kij + �
i�FF

Kij = 0, j � I . �6�

This equation can be derived by considering the relation be-
tween the pfold of microstate j and those of microstates that
are connected to it by a single transition �i.e., microstates i
for which Kij�0�. After one transition from microstate j, the
protein ends up in microstate i with probability Kij /�l�jKlj.
From the probability conservation it then follows that

pfold�j� = �
i�j

pfold�i�
Kij

�l�jKlj
. �7�

Since �l�jKlj =−Kjj, Eq. �7� is equivalent to Eq. �6�.
Comparing Eqs. �4� and �6� and using the condition of

detailed balance, Kijpeq�j�=Kjipeq�i�, it can be shown that

pss�i� = �1 − pfold�i��peq�i� . �8�

Substituting this solution for pss�i� into Eq. �5� and again
using the condition of detailed balance, we obtain one of the
main results of this paper,

J = �
i�F�,j�U�

Kijpeq�j��pfold�i� − pfold�j�� , �9�

which is the expression for the reactive flux when the under-
lying dynamics involves stochastic transitions on a network
of microstates with complex connectivity �Fig. 1�. One can
use this expression to find the folding and unfolding rate
constants by means of the flux-over-population formula,
kF,U=J / fU,F

eq , �see Eq. �3��. In the special case when the mi-
crostates correspond to lattice points in a multidimensional
space and the transitions occur only between the nearest
neighbors, the continuum limit of Eq. �9� has been obtained
by E and Vanden-Eijnden.25 We now rederive the result in
Eq. �9� by another method.

To obtain this expression using Chandler’s approach,22

consider the “number” correlation function CF�t�
= �IF�t�IF�0��, where IF is unity when the protein is in one of
the microstates on the F side of � and zero otherwise. In the
two-state phenomenological description, Eq. �2�, this corre-
lation function is CF�t�= fF

eq�fF
eq+ fU

eq exp�−�kF+kU�t��, so that
its time derivative at t=0 is equal to the reactive flux,
dCF�t� /dt �t=o= fF

eqfU
eq�kF+kU�=J. In the framework of the

more detailed coarse-grained description, Eq. �1�, this corre-
lation function is given by CF�t�=�i,j�FGij�t�peq�j�, where
Gij�t� is the probability of finding the protein in microstate i
at time t, given that it starts from microstate j at t=0. Using
the evolution equation, dGij�t� /dt=�nKinGnj�t� with the ini-
tial condition Gij�0�=�ij, the time derivative of the correla-
tion function can be written as,

dCF�t�
dt

= �
i,j�F,n�U

KinGnj�t�peq�j�

+ �
i,j,n�F

KinGnj�t�peq�j� . �10�

Using the relations Gij�t�peq�j�=Gji�t�peq�i� and Kijpeq�j�

=Kjipeq�i�, which follow from the condition of detailed bal-
ance, and the fact that �i�FKij =−�i�UKij, one can recast Eq.
�10� as

dCF�t�
dt

= �
i�F�,n�U�

Kinpeq�n��
j�F

�Gjn�t� − Gji�t�� , �11�

where i and n are “connected” microstates located on oppo-
site sides of the dividing surface. As t→0, −dCF�t� /dt re-
duces to the TST estimate for the reactive flux through the
dividing surface �,

	−
dCF�t�

dt
	

t=0
= JTST��� = �

i�F�,j�U�

Kijpeq�j� . �12�

To get a better estimate of the reactive flux, consider
−dCF�t� /dt on a timescale that is much smaller than the
mean interbasin equilibration time, �kF+kU�−1, but much
larger than the time spent in the bottleneck region by a pro-
tein starting in a microstate near the dividing surface. On
such a time scale, once the protein reaches the FF- or
UU-basin, it does not return to the bottleneck region, so
these basins are effectively absorbing. This allows us to ap-
proximate the sums in Eq. �11� as: � j�FGji�t�
� j�FFGji�t�

 pfold�i�, i�U� or F�. As a result, −dCF�t� /dt in Eq. �11�
reduces to the reactive flux in Eq. �9�.

One can also obtain the expression for the reactive flux,
Eq. �9�, using the following simple argument. Consider an
equilibrium ensemble of identical proteins. Each protein in
the ensemble can be in one of the two basins or in the bottle-
neck. We denote the fraction of proteins in microstate i,
i� I, that entered the bottleneck from the UU-basin by �U�i�.
The reactive flux is the average number of trajectories that
go from the UU-basin to the FF-basin per unit time.
The forward �i.e., in the U→F direction� flux through
�, Jf���, due to such trajectories is given by Jf���
=�i�F�,j�U�pfold�i�Kijpeq�j��U�j�. Since a reactive trajectory
can cross � several times, the reactive flux is Jf��� minus the
flux due to backward transitions of these trajectories through
�, Jb���=�i�F�,j�U�pfold�j�Kjipeq�i��U�i�. Thus, the reactive
flux is

J = Jf��� − Jb��� = �
i�F�,j�U�

�pfold�i�Kijpeq�j��U�j�

− pfold�j�Kjipeq�i��U�i�� . �13�

From the time-reversal symmetry of the underlying micro-
scopic dynamics it follows that, at equilibrium, for any tra-
jectory fragment that goes from microstate j to microstate i
in time t, there is a counterpart going in the opposite direc-
tion. As a consequence, the fraction of proteins in microstate
i, i� I, that entered the bottleneck from the UU-basin, �U�i�,
is the same as the fraction of proteins that start from this
microstate and reach the UU-basin before reaching the
FF-basin, so that

�U�i� = 1 − pfold�i� . �14�

Using this relation and the condition of detailed balance,
Kijpeq�j�=Kjipeq�i�, in Eq. �13�, we recover our result for the
reactive flux in Eq. �9�.
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III. DISCUSSION

As the simplest example, consider the three-state scheme
U⇔ I⇔F, where kXY is the rate constant for the transition
Y →X with X ,Y =U , I ,F. When the population of I is small,
the rates kF and kU can be obtained from the three rate equa-
tions by setting dI /dt=0. For the folding rate this procedure
yields kF=kFIkIU / �kUI+kFI�. If one chooses the dividing
surface to be between the U and I states, our formalism
�Eq. �9�� predicts that the reactive flux is J= �pfold�I�
− pfold�U��kIUpeq�U�. Since pfold�U�=0 and pfold�I�=kFI / �kUI

+kFI�, kF=J / peq�U� agrees with the above result obtained by
making the steady-state assumption for the population of I. It
can be readily verified that if one chooses the dividing sur-
face to be between I and F, our formalism yields the identi-
cal expression for kF. In fact, it can be shown in general that
the reactive flux in Eq. �9� is the same for any dividing
surface chosen so that any reactive trajectory unavoidably
crosses this surface.

Whereas J is independent of the choice of �, individual
contributions to the reactive flux may be both positive and
negative. However, if we specify � using pfold�i�, then all
contributions have the same sign. Let us chose the dividing
surface �� so that all microstates with pfold�i��� are on the
U-side of ��, while all microstates with pfold�i��� are on
the F-side of this dividing surface, 0���1. We denote the
local reactive flux flowing in the U→F direction from mi-
crostate i to microstates j that has a greater pfold by Ji→j,

Ji→j = Kjipeq�i��pfold�j� − pfold�i��, pfold�j� � pfold�i� .

�15�

Since all fluxes Ji→j crossing �� are positive, we can deter-
mine the importance of each transition based on the magni-
tude of its contribution to the reactive flux �Fig. 1�b��. By
repeating this procedure for a series of dividing surfaces ��,
one can evaluate the importance of different folding/
unfolding pathways. Of particular interest are transitions that
cross the dividing surface with �=1 /2, since microstates in-
volved in such transitions form the TSE. Using Eq. �9� one
can ascertain the dynamically most relevant members of the
TSE, i.e., microstates i and j, for which the local reactive
flux is the largest. Interestingly, these microstates need not be
those with the highest equilibrium populations. Thus, one
can determine whether the reactive flux is localized �i.e.,
only a few pairs of microstates contribute� or delocalized
�i.e., there are similar contributions from many transitions�.
Finally we note that when transitions occur between mi-
crostates with similar values of pfold�i�, the difference of the
splitting probabilities is much smaller than unity, �pfold�j�
− pfold�i���1. The reactive flux in Eq. �9� is then well below
its TST upper bound given in Eq. �11�, in which recrossings
are ignored.

Instead of dividing the total reactive flux into contribu-
tions due to transitions crossing a dividing surface, we can
decompose it into a sum of contributions due to unidirec-
tional paths connecting the UU- and FF-basins. The local
reactive flux between microstate i and j �pfold�j�� pfold�i�� is
positive, Ji→j �0, and directed in the U→F direction. Be-
cause of the probability conservation, the sums of local re-

active fluxes entering and exiting a microstate i are equal,
�kJk→i=� jJi→j =Ji, where pfold�k�� pfold�i�� pfold�j�. One
can construct a directed graph that connects the UU- and
FF-basins by following the local reactive fluxes �Fig. 1�b��.
The contribution of each unidirectional path on this graph to
the total reactive flux can be determined as follows. A path
that starts from i0�UU and ends up at iL�FF passing
through microstates i1 , i2 , . . . , iL−1� I contributes J�i0→ i1

→ . . . → iL−1→ iL�=Ji0→i1
�k=1

L−1�Jik→ik+1
/Jik

� to the reactive
flux. The sum of all “path” fluxes is equal to the total reac-
tive flux J. The unidirectional path with the largest contribu-
tion can be found, for example, by using Dijkstra’s algorithm
for the shortest path, identifying ln�Jj /Ji→j� as the “length”
associated with the transition from i to j, and ln�J /Ji0→i1

� as
the length associated with the entrance into the bottleneck
from the UU-basin.

As an illustration consider the four-state model shown in
Fig. 2�a�. In this model the unfolded �U� and folded �F�
states of the protein are separated by two bottleneck states I1

and I2, through which all U-to-F transitions occur. Given rate
constants for which pfold�I2�	 pfold�I1�, the local reactive
fluxes obtained from Eq. �15� are shown in Fig. 2�b�. There
are four distinct dividing surfaces in the bottleneck region.
Since the total reactive flux J is independent of the choice of
the dividing surface we have

J = JU→1 + JU→2 = J1→F + J2→F

= JU→2 + J1→F + J1→2

= JU→1 + J2→F − J1→2. �16�

From this it follows that JU→1=J1→2+J1→F and J2→F

=JU→2+J1→2. These relations represent flux conservation at
the nodes. Thus, there are only three independent local reac-
tive fluxes. The total reactive flux can be partitioned among
the three unidirectional “flux” paths as follows: J�U→ I2

→F�=JU→2, J�U→ I1→F�=JU→1�J1→F / �J1→2+J1→F��
=J1→F, and J�U→ I1→ I2→F�=JU→1�J1→2 / �J1→2+J1→F��
=J1→2. The sum of these fluxes is equal to J.

IV. CONCLUDING REMARKS

To summarize, the phenomenological kinetic scheme in
Eq. �2� describes the equilibration of the populations of two
basins where the majority of the protein population is local-
ized. The equilibration occurs via a sparsely populated
bottleneck region, which connects these basins. Although the
equilibration rate is determined by dynamics in the bottle-
neck, this region does not appear in the phenomenological
description since the protein spends a small fraction of time

FIG. 2. Four-state model of coarse-grained protein dynamics. �a� Kinetic
scheme with two intermediate �or bottleneck� microstates I1 and I2. �b�
Local unidirectional reactive fluxes for pfold�I2�	 pfold�I1�.
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there. One of the main results of our analysis is the expres-
sion for the reactive flux in Eq. �9�, which relates the phe-
nomenological description of two-state protein folding and a
more detailed description of the protein dynamics that in-
volves transitions among discrete coarse-grained microstates.
This expression allows one to determine how much each
transition through a dividing surface contributes to the ob-
served rate. Alternatively, one can divide the total reactive
flux into a sum of contributions due to all directed paths
connecting the definitely unfolded and definitely folded mi-
crostates. Although our primary focus has been on problems
where the reactive flux is related to the phenomenological
rate constants describing two-state kinetics, the expression in
Eq. �9� is actually valid for an arbitrary partitioning of the
microstates into three subsets. Specifically, it gives the num-
ber of trajectory fragments per unit time that leave the UU
region and enter the FF region, irrespective of whether the
intermediate microstates are sparsely populated or even
exist.
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