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Abstract
ThioTEPA is a chemotherapeutic agent used in the treatment of cancers, and more recently has been
proposed as a component of high-dose therapy for young patients with recurrent malignant brain
tumors. We previously demonstrated a significant dose-dependent reduction of cell proliferation in
the dentate gyrus of the hippocampus in mice immediately following a 3-day regiment of thioTEPA.
The aim of this study was to evaluate the long-term effects of thioTEPA treatment on hippocampal
cell proliferation and potential effects on memory deficit or depression-related behavior in C57BL/
6J mice.

A 3-day regimen of thioTEPA (10 mg/kg/d, i.p.) yielded a significant reduction in cell proliferation
immediately after treatment as assessed by BrdU incorporation, and none of the labeled progeny that
initially survived the treatment were detectable one week later. Following a 3-week rebound in
proliferation following treatment, a significant deficit in proliferation reappeared and persisted for
at least 21 weeks following treatment.

ThioTEPA-treated mice subjected to an object recognition test 1,2,3,4,8,12, 20 or 30 weeks following
treatment demonstrated significant memory deficits at 12 and 20 weeks. Mice demonstrated a similar
deficit in an object placement test when tested 20 weeks following thioTEPA treatment. However,
no observable effects on performance in the Porsolt forced swim test or the tail suspension test were
observed in thioTEPA-treated mice.

Together, these studies suggest that cumulative long-term negative effects of thioTEPA treatment
on proliferation of new cells in the dentate gyrus may contribute to cognitive impairments associated
with its use in the treatment of cancer.
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Introduction
The chemotherapeutic agent thioTEPA is an agent that reduces cell proliferation through
alkylation of DNA, thereby reducing cell proliferation. It has been used clinically since the
1950s in the treatment of ovarian, breast and bladder cancers, and more recently is being
investigated as high-dose treatment for aggressive cancers in both adult and pediatric patients
[12,31,35]. Recent literature has addressed the possibility that cognitive and neurological
deficits (i.e., memory function, processing speed, executive function, depression) may result
from treatment with chemotherapeutic drugs (for reviews, see [1,37,53]), a condition referred
to commonly as “chemo brain,” and it has been suggested that chemotherapeutic drugs may
induce these negative cognitive or affective consequences in part by altering neurogenesis in
the brain.

Neurogenesis in the adult mammalian central nervous system occurs in a restricted number of
sites, including the dentate gyrus of the hippocampus. In rodents, the generation of cells in the
dentate gyrus is prolific, yielding thousands of cells per day. This proliferation is accompanied
by varied degrees of subsequent cell degeneration over the following several weeks, such that
only a subset survive and integrate into the existing neuronal network [16,24,26,52].

While an exact contribution of hippocampal neurogenesis to cognition or behavior has not
conclusively been determined, a putative role in associative learning processes has been
proposed. Chronic exposure to factors that inhibit cell proliferation such as stress,
corticosteroids, or aging [4,13,29], or targeted inhibition of hippocampal cytogenesis by X-
irradiation [40], genetic ablation of progenitors [23] or with antimitotic drug treatment [6,44,
45,49,50] also impair acquisition of hippocampal-dependent learning tasks. Some types of
learning stimuli enhance survival of new neurons [51], and environmental enrichment, which
enhances hippocampal neurogenesis, actually recruits new neurons to spatial circuits in the
dentate gyrus [27]. It has recently been proposed that the dentate gyrus contributes fine spatial
discrimination or metric aspects of spatial memory formation [14,20], which may corroborate
the impairment of contextual but not cued fear conditioning observed in rodents with impaired
neurogenesis [19,21,43,45] or lesions of the dentate gyrus [17,18].

There is also correlative evidence suggesting a link between neurogenesis and depression.
Hippocampal size is decreased in human patients with major depression [5], and this reduction
is correlated with the length of depressive illness [32,47,48]. In animal studies, neurogenesis
appears to be required for the behavioral effects of antidepressants [41], and the timecourse
for behavioral effects of antidepressants corresponds to the timecourse of restored levels of
neurogenesis by these agents [34]. Antidepressants are also thought to influence cell survival
in the dentate gyrus [30,55], and have also been shown to reverse the inhibitory effects of stress
on hippocampal cell proliferation in rodents [33]. Stress and glucocorticoids play a major role
in depression [10,22,28,42], and their effects on neurogenesis are also well-documented.

Previously, we demonstrated potent inhibition of proliferation of new cells in the dentate gyrus
of the hippocampus following treatment with thioTEPA [36], which has proven to be both a
useful tool for manipulating cell proliferation in order to elucidate its role in brain function and
a useful animal model for studying potential cognitive and behavioral deficits associated with
clinical use of chemotherapy in humans. Given that histopathology [9,15] and cognitive deficits
[44,45] associated with chemotherapy can be delayed or long-lasting, we examined the effect
of thioTEPA on cell proliferation in the dentate gyrus of mice for 2-30 weeks following
administration. We tested separate groups of similarly treated mice over the same timecourse
for depression-related behavior using two measures of behavioral despair, the tail suspension
test and the forced swim test, for which our automated scoring procedures were validated using
positive control groups treated with the tricyclic antidepressant, desipramine. In addition, we

Mondie et al. Page 2

Behav Brain Res. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tested yet other thioTEPA treated mice for learning and memory deficits using the object
recognition test and the object placement test.

2. Materials and Methods
2.1. General

Subjects were male C57BL/6J mice obtained from Jackson Laboratories (Bar Harbor, ME) at
5 weeks of age. Mice were housed 2-4 per cage under 12:12 light-dark cycle, with food and
water provided ad libitum. At 8-9 weeks of age (the peak of postnatal hippocampal cell
proliferation), groups of mice (n=4) received three daily injections of either thioTEPA (10 mg/
kg, i.p.) or phosphate buffered saline (PBS) vehicle.

2.2. Long-term effects of thioTEPA on hippocampal cell proliferation
Proliferative capacity in the dentate gyrus was measured in groups of mice (n=4/group)
immediately and at 1, 2, 3, 4, 8, 12, and 30 weeks following the 3-day thioTEPA regimen. In
order to detect newborn cells, mice were administered a single injection of BrdU (50 mg/kg
i.p., dissolved in PBS), 30 minutes prior to perfusion with heparinized saline followed by 4%
paraformaldehyde. Brains were post-fixed in paraformaldehyde overnight at 4°C then
immersed in 30% sucrose in PBS for 1-2 days, and 30μm coronal sections were cut using a
cryostat and stored in PBS at 4°C. Immunohistochemistry was performed on every 7th section
throughout the rostrocaudal extent of the dentate gyrus in order to estimate total labeled cell
counts for the dentate gyrus [54]. Slices were subjected to 2N HCl at 37°C for 30 mins,
neutralized with 1.0M boric acid (pH 8.5) for 10 mins, rinsed, and incubated for 48 hours in
PBS containing rat anti-BrdU antiserum (1:250, Abcam, Cambridge, MA), 3% donkey serum,
0.1% Triton X-100 and 0.1% TWEEN-20. Sections were then rinsed and incubated for 4 hours
at room temperature in rhodamine-conjugated donkey anti-rat IgG (1:250; Jackson
Immunoresearch, West Grove, PA). Following final rinse, sections were mounted on coated
slides and coverslipped, and fluorescently labeled cells counted by an investigator unaware of
treatments of the donor mice.

In order to measure progenitor survival, mice received 3 daily thioTEPA or vehicle injections
followed immediately by a single BrdU injection (50 mg/kg, i.p.), as above. Mice (n=4/group)
were then sacrificed weekly for 4 weeks, and processed for BrdU staining as above.

2.3. Effects of thioTEPA on depression-related behavior
In order to evaluate the effects of thioTEPA treatment on depression-related behavior, different
groups of control and thioTEPA-treated mice (n=10-12/group) were subjected to the tail
suspension test or the Porsolt forced swim test. Activity for both tests was measured using the
Biobserve FST video tracking System (Biobserve, Bonn, Germany) running on a Dell Inspiron
laptop computer using a CCD camera connected through a USB analog-digital converter and
mounted to obtain a side view of the subject, using settings for mobility and immobility
established empirically for each of the two tests.

In the tail suspension test, mice were suspended by the distal 1.5cm end of the tail from the
bottom of a vertically oriented metal bar (6 mm diameter) using medical tape. Duration of
immobility was assessed over a 5-minute trial. To ensure that differences in behavior were
detectable using the software settings, performance in a positive control group of mice treated
with the tricyclic antidepressant desipramine (30 mg/kg i.p., 24 and 1 hour prior to testing,
n=4/group) was compared to vehicle-treated controls [2,7]. Separate groups of thioTEPA and
vehicle-treated controls were then tested at 8, 13 or 21 weeks after drug treatment.
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In the Porsolt forced swim test, mice were placed in transparent 17-cm diameter plastic tanks
filled to a depth of 20 cm with 23-25°C water, and time spent mobile versus immobile scored
by the FST software during the last four minutes of 6-minute trials. To ensure that differences
in behavior were detectable by the system, performance in a positive control group of mice
treated with desipramine (16 mg/kg i.p., 24 and 1 hour prior to testing, n=10/group) was
compared with vehicle treated mice [2,7]. Separate groups of thioTEPA and vehicle-treated
controls were then tested at 3, 6, 8, 13 or 21 weeks after drug treatment.

2.4. Effects of thioTEPA on learning & memory
In order to evaluate the effects of thioTEPA treatment on learning and memory, different groups
of control and thioTEPA-treated mice (n=10-12/group) were subjected to the object
recognition test or the object placement test. Groups of mice were subjected to both tests, but
only at different time points at least 4 weeks apart, and using different objects between the
tests. Investigation times in both tests were measured manually with stopwatches by
investigators unaware of subject treatment. Tests were performed in a 40 × 50 cm plastic arena
under normal room light (400-500 lux). Objects used in the tests included miniature ceramic
teapots, ceramic salt shakers, and miniature glass teacups similar in size but different in shape
and color, and for which no differential affinity or aversion was measured in preliminary
experiments (data not shown). Investigation was defined as directly contacting, sniffing,
looking at or whisking an object within 2 cm of it. Objects and arena were cleaned with 70%
ethanol between trials.

In the object recognition test, two identical objects were placed equidistant from the ends of
the arena, 25 cm apart. Mice (n=8-10/group) were placed into the center of the area
perpendicular to the objects, and investigation time for each object was measured during a 5-
minute trial. After a 24 hour retention interval, the subject was again placed in the arena with
one of the familiar objects and a novel object. The order of presentation of the object used in
the first trial was reversed for half the subjects in each group. Time spent investigating the
familiar object to be replaced (trial 1) or the novel object (trial 2) were then compared for
separate groups of control and thioTEPA-treated mice at 2, 4, 8, 12, 20 or 30 weeks following
treatment.

In the object placement test, mice (n=8-10/group) were introduced into an arena with two
identical objects placed in opposite corner quadrants and time spent investigating each object
during a 5-minute trial was measured by stopwatch by an investigator unaware of subject
treatment. In the second trial 24 hours later, one object was moved to a new location and
investigation measured again during a 5-minute trial. Time spent investigating the familiar
object to be relocated (trial 1) or the relocated object (trial 2) relative to total investigation time
were compared for separate groups of control and thioTEPA-treated mice at 2, 4, 13, 20 or 30
weeks following treatment.

In both object recognition and object placement tests, preference for the novel object during
Trial 2 is expressed graphically in Figs. 5 and 6 as a ratio of investigation time of the novel
object relative to total investigation time, with 0.5 representing chance (equal) investigation
of the two objects.

2.5. Statistics
Fluorescent microscope counts of BrdU-labeled cells and behavioral data on thioTEPA and
control-treated mice were subjected to two-way ANOVA, followed by Tukey post hoc analysis
when appropriate. Data from positive control (desipramine versus vehicle) experiments for the
forced swim test and tail suspension test were subjected to Student's t-test. Probability values
less than 0.05 were considered to be statistically significant.
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3. Results
3.1. Long-term effects of thioTEPA on hippocampal cell proliferation & survival

Proliferation of new cells in the dentate gyrus was inhibited by approximately 50% relative to
controls when measured immediately after a 3-day regimen of thioTEPA (Fig. 1), as previously
reported [36]. A rebound in proliferation to control levels was evident in the 1-3 weeks
following thioTEPA treatment, after which thioTEPA-treated mice demonstrated significantly
lower cell proliferation than control mice at the 4, 8 and 12-week time points sampled (two-
way ANOVA, Treatment × Week interaction, (F(7,52)=4.050; p=0.002), followed by Tukey
post-hoc tests). Reductions of cell proliferation by thioTEPA occurred in addition to an age-
related decline in cell proliferation observed in vehicle-treated control mice over the 30 weeks
of the study described previously in C57BL/6J mice [3]. Proliferation was lower in thioTEPA-
treated mice even at 30 weeks following treatment, although by this age, baseline levels of
proliferation are diminished, and the difference did not reach statistical significance.

Survival of newborn cells labeled with BrdU at the time of treatment remained constant for 2
weeks in control mice but decreased significantly 3 weeks after treatment with vehicle, whereas
in thioTEPA-treated mice, no labeled cells survived even 1 week (treatment × week interaction,
F(4,29)=6.230; p=.002)(Fig. 2).

3.2. Effects of thioTEPA on depression-related behavior
In the tail suspension test, mice injected with desipramine showed a significant decrease in
immobility compared to control-treated mice (p<.05, Student's t-test)(Fig. 3A). However, no
significant differences were observed between control and thioTEPA-treated mice at any of
the time points sampled (Fig. 3B), although the interaction of treatment by time point
approached statistical significance (F(2,68)=.055).

In the forced swim test, desipramine-treated mice showed a significant decrease in immobility
compared to control-treated mice (p<.001, Student's t-test)(Fig. 4A), thus validating that
differences in behavior were detectable by the settings used by the video tracking system. In
the comparison of performance in control and thioTEPA-treated mice at various times
following treatment, a significant effect of time (F(5,109)=5.08, p<.01), but not of treatment or
an interaction of time by treatment (p>.05), was observed.

3.3. Effects of thioTEPA on learning & memory
While vehicle treated subjects displayed intact object recognition memory at all time points,
assessed as a preference for the novel object, thioTEPA-treated mice showed significant
deficits in object recognition memory at 8 and 12 weeks after thioTEPA treatment (Fig. 5A).
A significant interaction of Object by Treatment was observed on the 2nd day trials for the 8-
week (F(1,42)=5.41, p=.025) and 12-week samples (F(1,47)=7.53, p=.009), with Tukey analysis
indicating a lack of preference for the novel object in thioTEPA-treated mice. At all other time
points sampled, a significant preference for the novel object was observed in the 2nd day trials,
independent of treatment. Total exploration time varied significantly at various weeks
following treatment (F(5,135)= 38.52, p<.001, Fig. 5B). No preference for either object was
observed during first day trials at each time point (p>.05, two-way ANOVA; data not shown).

ThioTEPA treatment also produced deficits in spatial memory 20 weeks after administration
(time point by treatment interaction, F(1,42)=3.92, p=.044) reflected by a lack of preference for
the relocated object by thioTEPA-treated mice (Fig. 6A). Total exploration time varied
significantly at various weeks following treatment (F(4,108)= 13.07, p<.001; Fig 6B). No
preference for either object location was observed during first day trials at each time point (p>.
05, two-way ANOVA; data not shown).
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4. Discussion
We have used the antimitotic chemotherapy drug thioTEPA to impair proliferation of newborn
cells in the dentate gyrus of the hippocampus in young adult C57BL/6J mice. This effect is
considerable in magnitude and relatively long-lasting, with significant reductions in
cytogenesis for up to 12 weeks following a single regimen consisting of 3 daily injections.
Moreover, we have demonstrated impairment of recognition memory at 8-12 weeks following
treatment, and spatial memory after 20 weeks, but no measureable effects on depression-related
behavior using behavioral despair models of depression. Our results are consistent with studies
of other cytostatic agents with similar (∼40-50%) degrees of inhibition of dentate cell
proliferation and associated cognitive or behavioral deficits [6,44,45,49,50].

An age-related decline in proliferation of new cells occurs in the dentate gyrus of both vehicle
and thioTEPA-treated mice, consistent with similar published observations in mice and rats
[3]. Following thioTEPA treatment, a reduction in cytogenesis to approximately 50% of control
levels is followed by a rebound in proliferation to normal levels lasting several weeks before
falling once again to 50-60% of control levels for the next 8-12 weeks. It is possible that this
post-treatment rebound represents a surge in neurogenesis [11] or in proliferation of astrocytic
cells suggested to be precursors to the neuronal population of the dentate gyrus [46] as a result
of insult to the tissue following chemotherapy administration or through specific cell signaling
mechanisms regulating levels of cell proliferation in the dentate gyrus. The rebound could also
reflect an elevated level of gliogenesis [8] or specifically of microglial proliferation shown to
precede neurogenesis following insult to the hippocampus [38]. Further examination of
phenotypic markers in cells generated during the rebound will be required to elucidate the exact
nature of this response.

A decline in survival of newborn cells in control animals was observed three weeks after
labeling, consistent with the timecourse of migration and integration of these cells into the
granule cell layer and coincident loss of a significant portion of these cells during that process
[16,24,26,52]. That all of the cells in the population born (and labeled) immediately treatment
were lost within one week after thioTEPA treatment indicates an acute loss of the pool of
candidate cells for integration in the several weeks following treatment. Further experiments
examining the survival of cohorts of cells born at later time points after thioTEPA treatment,
presumably in conjunction with phenotypic identification using type-specific markers, will be
necessary to determine the extent to which addition of neurons to the existing network is
impaired.

Age-related declines in cognitive performance have been associated not only with alterations
in cell proliferation but also in differentiation, maturation, integration and survival of newborn
cells into the functional circuitry of the dentate gyrus [39]. Altering proliferation is an appealing
manipulation with which to study the putative role of neurogenesis in cognition and behavior
as it limits the number of candidate cells available to undergo these other subsequent processes.
In our experiments, the onset of memory impairment appears four weeks or more after
thioTEPA treatment, coinciding roughly with the re-appearance of diminished cytogenesis
following the post-treatment rebound in cell proliferation. The parallel of these two time
courses is consistent with the observation that newborn cells do not achieve functional
connectivity within the granule cell layer until approximately four weeks following their
production [52] before which time their absence would presumably not be functionally
relevant. However, it is difficult to reconcile the apparent recovery of object memory by
thioTEPA-treated mice at the latest time points in our experiments given that the basal level
of cytogenesis at 30 weeks post-treatment is greatly diminished even in the aged controls. That
control mice are capable of object recognition at that age despite a severe lack of cell
proliferation suggests that either ongoing cell proliferation is not required for object recognition
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memory, at least at this later age, or alternative mechanisms compensate for this age-related
decline in cell proliferation. It must be considered that thioTEPA may be altering other
neurological processes [9,15] in addition to its effects on cytogenesis in the dentate gyrus that
are responsible for the cognitive deficits documented here and in other published reports.
Nevertheless, our results showing impaired object recognition following thioTEPA treatment
in mice corroborate other recently published observations of impaired object recognition or
contextual fear conditioning following impairment of neurogenesis by similar or alternative
means in rats or mice [6,23,44,45].

The effect of thioTEPA treatment in the object placement test mirrored the results of the object
recognition test, with a decline in performance several months following treatment, although
these differences achieved statistical significance only at 20 weeks post-treatment. The effect
may have been more robust if the experiments had been performed with shorter retention
intervals or with increased training times, or with additional spatial cues that reduce the
difficulty of the task rather than relying solely on the objects and the entry point for the mouse
as the subjects' reference for spatial location within the primarily featureless arena used in the
experiment.

Despite strong correlative evidence in the literature linking impaired neurogenesis and
depression, no effect of impaired cell proliferation on depression-related behaviors were
observed in our experiments. It is possible that cell proliferation was not diminished sufficiently
by thioTEPA treatment to produce measurable depression-related behavior in our assays.
Alternatively, diminished cell proliferation may be necessary but not sufficient in and of itself
to induce depression-related behavior. We are currently addressing these possibilities in
experiments to determine whether diminished cell proliferation in the dentate gyrus might
instead render subjects more susceptible to the effects of other factors that produce depression-
related behavior using several mouse models of depression in addition to the behavioral despair
models used in these experiments.

In addition to the utility of thioTEPA as an experimental agent for studying potential links
between cell proliferation in the dentate gyrus and cognitive and behavioral consequences using
mice, our study indicates potential clinical ramifications associated with the use of thioTEPA
in the treatment of cancers in humans. Cognitive impairments have been documented in a subset
of chemotherapy patients in a variety of functions including memory, concentration and
information processing which can last for relatively long periods of time [1,25]. It is imperative,
given the rising incidence of cancers and the prevalent use of chemotherapy in their treatments,
that the neurological and behavioral effects of chemotherapy are understood. Furthermore, this
and other recent studies in rodents underscore the need to consider the time courses associated
with these impairments when evaluating and elucidating mechanisms by which these agents
affect cognitive behavior.
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Fig. 1.
Effect of thioTEPA on cell proliferation rates in the dentate gyrus. Cell proliferation rates
(assessed as BdrU incorporation following a 30-minute exposure to BrdU) decrease
immediately (week 0) following a 3-day regimen of thioTEPA (10 mg/kg/day, i.p.), rebound
to control levels for three weeks, but then fall again to significantly lower levels than those in
control mice for up to 12 weeks. The thioTEPA-induced impairment occurs on top of a
significant age-related decline in proliferation. *p<.05, two-way ANOVA followed by Tukey
analysis.
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Fig. 2.
Effect of thioTEPA on survival of labeled newborn cells in the dentate gyrus. ThioTEPA
treament (10 mg/kg/d × 3 days) immediately reduces the proliferation of newborn cells in the
dentate gyrus (week 0), as assessed by BrdU labeling. In vehicle-treated animals, a significant
reduction of the population of cells labeled immediately after treatment occurs three weeks
later. The reduced number of newborn cells labeled in thioTEPA-treated mice at the time of
treatment (week 0) have been lost within one week. *, significant treatment effect; a,b:
significant effect of time after treatment; p<.05, two-way ANOVA followed by Tukey analysis.
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Fig. 3.
Effect of thioTEPA on depression-related behavior in the tail suspension test. (A) Treatment
of mice with the tricyclic antidepressant desipramine (DES; 30 mg/kg, i.p., 24 and 1 hr prior
to the test; n=10/group) reduces immobility and increases struggling in the test compared to
vehicle-treated mice, as reported by other investigators, validating the sensitivity of the
Biobserve tracking software to changes in behavior in our experiments. (B) At none of the time
points sampled was time spent immobile altered in thioTEPA-treated mice (shaded bars)
relative to PBS-treated control mice (open bars)(p>.05, two-way ANOVA, n=10-12/group).
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Fig. 4.
Effect of thioTEPA on depression-related behavior in the forced swim test. (A) Treatment of
mice with the tricyclic antidepressant desipramine (DES, 16 mg/kg, i.p., 24 and 1 hr prior to
the test; n=10/group) reduces immobility and increases struggling in the test compared to
vehicle-treated mice (p<.001, Student's t-test), as reported by other investigators, validating
the sensitivity of the Biobserve tracking software to changes in behavior in our experiments.
(B) At none of the time points sampled was time spent immobile altered in thioTEPA-treated
mice (shaded bars) relative to vehicle-treated mice (open bars)(p>.05, two-way ANOVA,
n=10-12/group).
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Fig. 5.
Effect of thioTEPA on object preference in the object recognition test. Subjects were exposed
to a novel object and a familiar object after a 24 hour retention interval. (A) A preference for
the novel object was observed in both mice treated with vehicle and mice treated with thioTEPA
(10 mg/kg/d × 3d, i.p.) in the 2-4 weeks following treatment, but preference for the novel object
was significantly lower in thioTEPA-treated mice tested 8 to 12 weeks following thioTEPA
treatment, suggesting an impairment of memory of the original object (*p<.01, two-way
ANOVA followed by Tukey analysis). Dashed line represents equal preference for either of
the objects. (B) Total exploration times were significantly different among the time points
sampled following treatment (a-d, two-way ANOVA followed by Tukey analysis), but at no
time point were total investigation times different between control and thioTEPA-treated mice.
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Fig. 6.
Effect of thioTEPA on object preference in the object placement test. Subjects were exposed
to an object with a novel location and a familiarly placed object after a 24 hour retention
interval. (A) A preference for the novel placement was observed in both mice treated with
vehicle and mice treated with thioTEPA (10 mg/kg/d × 3d, i.p.) in the 2-8 weeks following
treatment, but preference for the novel object was significantly lower in thioTEPA-treated mice
tested 20 weeks following thioTEPA treatment, suggesting an impairment of memory of the
original object location (*p<.05, two-way ANOVA followed by Tukey analysis). Dashed line
represents equal preference for either of the objects. (B) Total exploration times were
significantly different among the timepoints sampled, but at no time point were investigation
times different for control and thioTEPA-treated mice (a-b, two-way ANOVA followed by
Tukey analysis).
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