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The discovery of microRNAs as a novel class of gene
expression regulators has led to a new strategy for
disease diagnostics and therapeutics. Cell cycle, cell
proliferation, and tumorigenesis are all regulated
by microRNAs. Several general principles linking
microRNAs and cancer have been recently reviewed;
therefore, the current review focuses specifically on
the perspective of microRNAs in control of cell cycle,
stem cells, and heterotypic signaling, as well as the
role of these processes in breast cancer. Altered abun-
dance of cell cycle regulation proteins and aberrant
expression of microRNAs frequently coexist in hu-
man breast cancers. Altered microRNA expression in
breast cancer cell lines is associated with altered cell
cycle progression and cell proliferation. Indeed, re-
cent studies have demonstrated a causal role for
microRNA in governing breast tumor suppression or
collaborative oncogenesis. This review summarizes
the current understanding of the role for microRNA
in regulating the cell cycle and summarizes the evi-
dence for aberrant microRNA expression in breast
cancer. The new evidence for microRNA regulation by
annotated genes and the involvement of microRNA in
breast cancer metastasis are discussed, as is the po-
tential for microRNA to improve breast cancer diag-
nosis and therapy. (Am J Pathol 2010, 176:1058–1064;
DOI: 10.2353/ajpath.2010.090664)

microRNA (miR) are a new class of multifunctional small
molecules that regulate the stability or translational effi-
ciency of targeted messenger RNAs. According to the
miRBase Sequence Database (Release 13.0 in March
2009), 706 miRs have been identified in humans and 547
in mice to date. Mature miRs are assembled into a ribo-
nucleoprotein complex known as RNA-induced silencing

complex (RISC) that includes Argonaute protein Ago2.1

The miR-RISC complex may lead to base-pairing inter-
actions between miRs and the 3� untranslated region
(3�UTR) of their target mRNAs, often repressing the gene
translation or cleaving the target mRNA, depending on
the base-pairing features between the miR and the target
mRNA.2,3 Because each vertebrate miR may bind to as
many as 200 gene targets, and each gene may contain
multiple binding sites for different miRs, miRs potentially
could regulate the expression of about one-third of hu-
man mRNAs.4 miRs often target various components of
cellular networks or signaling pathways.5,6 As such, miRs
have been predicted to play a prominent role in regulat-
ing a broad range of biological processes including de-
velopment, apoptosis, cell cycle progression, cellular
proliferation, cancer initiation, and cancer metastasis.7–14

Altered expression of miRs has been demonstrated in
different types of human cancer. Thus, the potential of
miRs to be robust biomarkers for cancer diagnosis, prog-
nosis, and pathogenesis has been predicted.14,15 miR-
encoding genes are frequently located at fragile sites
and in minimal regions of loss of heterozygosity, minimal
regions of amplification, and in common breakpoint re-
gions involved in cancers.11

Altered miR expression in human breast cancer was
first demonstrated in 2005.16 In breast cancer, abnormal-
ities of the cell cycle are frequently observed, including
loss of retinoblastoma (Rb) function, reduced cyclin-de-
pendent kinase (CDK) inhibitor p21 (Waf1/Cip1) and p27
(Kip1) abundances, as well as increased abundance of D
and E type cyclins. Cyclin D1 encodes a key regulator of
the cell cycle transition from G1 to the DNA synthetic
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phase and is overexpressed in more than 50% of breast
cancers, functioning as a rate-limiting factor for human
breast cancer cell proliferation in vivo and in vitro.17,18

Cyclin E, another important cell cycle regulator, is over-
expressed in more than 10% of breast cancers and is a
powerful prognostic predictor in early stage breast can-
cer as well as a significant determinant of tumor aggres-
siveness.19 miRs interact with E2F, Rb, cyclins, CDKs,
and CDK inhibitors, providing the potential to regulate
cellular division and cell cycle progression.20–23

miR Regulation of Cell Cycle Progression
Genes

The mechanisms governing cell cycle control by miRs
are increasingly well understood. Five groups of miRs,
including the miR-15a/16 cluster, the miR-17/20 cluster,
the miR-221/222 cluster, and the let-7 and miR-34 fami-
lies, can regulate cell cycle progression by directly tar-
geting cell cycle regulators (Figure 1).

miR-15a/16 Cluster

The miR-15a/16 cluster is deleted and/or down-regulated
in �70% of chronic lymphocytic leukemia patients,24 as
well as in pituitary adenomas25 and in a gastric cancer
cell line,26 suggesting an important role in cell prolifera-
tion and tumor growth. The miR-15a/16 cluster induces
cell cycle arrest at the G1 phase by targeting cyclin D1,
cyclin E1, cyclin D3, and CDK6.27 In addition, through a
high-throughput profiling analysis Calin et al identified a
gene signature regulated by miR-15a/16 in a leukemic
cell line that included cell cycle and apoptosis signaling
genes.28

miR-17/20 Cluster

The miR-17/20 cluster, which encodes six mature miRs
within a 1-kb genomic region, inhibits tumor growth in a

human B cell line20 and breast cancer cell lines.22 miR-
17/20 coordinates the timing of cell cycle by targeting
multiple cell cycle regulators (E2F, c-myc, Rb, and cyclin
D1) as shown in Figure 1. In the G1 phase of a cell cycle,
c-myc and cyclin D1 are induced while E2F1 is inactivated
by binding to Rb. The miR-17/20 cluster is involved in the
G1 to S transition of the cell cycle. Previous publications
have indicated that miR-17/20 dampens the reciprocal
activation of E2F by c-myc through inhibiting E2F trans-
lation.20 A Rb family member, Rbl2, is also a target of
miR-17-5p.21 The first studies demonstrating that miRs
directly inhibit cyclin D1 showed that miR-17/20 targeted
the cyclin D1 3�UTR in the MCF-7 breast cancer cell line,
resulting in cell cycle arrest and suppression of cell pro-
liferation.22 miR-17-5p also inhibits the estrogen receptor
� (ER-�) coactivator AIB1 in breast cancer cells.29 Col-
lectively, these studies suggested the miR-17/20 cluster
may function as a breast tumor suppressor through the
regulation of cell cycle progression genes.

It has been hypothesized that the miR-17/20 cluster
regulates cell cycle progression via E2F, c-Myc, and
cyclin D1, as these proteins can both regulate and be
regulated by miR-17/20 (Figure 2, A–D). These regulatory
loops provide mechanisms to tightly control cell cycle
progression and cell proliferative signals. In contrast with
the mammary gland,22 the expression of this miR cluster
was increased and cell growth was enhanced in both
lung cancer and lymphomas,30,31 indicating that miR-
17/20 function is cell type–dependent.

miR-221/222

miR-221/222 regulates the cell cycle by targeting CDK
inhibitors. Ectopic expression of the miR-221/222 cluster

Figure 1. miRNA–cell cycle regulation network. The miR-34 family is in-
volved in cell cycle regulation by repressing E2F, cyclin D1, and cyclin E
expression. miR-34 itself is a direct transcriptional target of p53. The miR-
17/20 cluster is transcriptionally regulated by myc, E2Fs, and cyclin D1, and
it in turn regulates E2F, pRb, and cyclin D1 expression at the translation level.
miR-15/16 regulates cell cycle control by inhibiting cyclin D1, cyclin E, and
CDK4/6. Figure 2. miR-target regulatory loop. A: The miR-17/20 cluster, which is

transcriptionally induced by E2F, in turn translationally represses E2F expres-
sion. B: AML1 transcriptionally inhibits miR-17/20 expression, and miR-17/20
inhibits AML1 translation. C: Myc induces the miR-17/20 cluster, and miR-
17/20 inhibits myc expression. D: Cyclin D1 induces miR-17/20 expression,
and miR-17/20 translationally inhibits cyclin D1 expression. E: OCT4 inhibits
miR-145 expression, and miR-145 in turn inhibits OCT4 by 3�UTR binding.
F: p53 transcriptionally induce the expression of the miR-34 family, and
miR-34 negatively targets the downstream genes of p53.
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activates CDK2, facilitates G1/S phase transition, and
enhances tumor growth by negatively regulating p27kip1

and p57kip2.32 This has been demonstrated in both the
MCF-7 cell line and HER2/neu-positive primary human
breast cancer tissues.23 Furthermore, increased miR-
221/222 cluster expression is associated with tamoxifen
resistance in breast cancer.23,33

let-7

let-7 controls the timing of cell cycle exit and terminal
differentiation in C. elegans.34 The abundance of let-7
family members is reduced in several types of cancer
including lung and breast cancer.35,36 let-7 overexpres-
sion in lung cancer cell lines suppressed cell cycle pro-
gression and reduced cell division.37 The mechanism by
which let-7 regulates tumor growth is via targeting the
Ras, HMGA2, and caspase-3 genes.36,38–40 Multiple im-
portant cell cycle control genes are repressed by let-7
including cyclin D1, cyclin D3, cyclin A, CDK441 and
CCNA2, CDC25A, CDK6, and CDK8.37

miR-34

The miR-34 family (miR-34a, miR-34b, and miR-34c) is an
important component of the p53 tumor suppressor net-
work.42 DNA damage and oncogenic stress activate p53.
p53 binds to the promoter of miR-34a and miR-34b/c,
inducing their expression at the transcriptional level (Fig-
ure 2F). Ectopic expression of the miR-34 family induces
cell cycle arrest and apoptosis by down-regulating cyclin
D1, cyclin E2, E2Fs, and CDK4/6.42,43,44 miR-34b/c over-
expression inhibits cell proliferation and colony formation
in soft agar.45 Two additional miRs, miR-192 and miR-
215, are also involved in the p53 network, and upregula-
tion of these two miRs suppresses carcinogenesis via
p21CIP1 accumulation.46

miRs in Breast Cancer

Liu et al16 first reported the aberrant expression of miRs
in human breast cancers compared with normal tissue.
They identified 29 miRs with aberrant expression in hu-
man breast cancer by microarray and Northern blot anal-
yses on 76 breast tumor samples and 14 human breast
cell lines. Of the altered miRs in breast cancers, a sub-
stantial proportion has been aligned to genomic fragile
sites or regions associated with cancers.11,47 Zhang and
colleagues performed an analysis on 283 known human
miR genes by array-based comparative genomic hybrid-
ization in 73 breast cancer specimens (55 primary tumors
and 18 cell lines), demonstrating the high-frequency
gene copy number abnormality of miR-containing re-
gions throughout the genome in human breast cancers.47

Approximately 73% (206 of 283) of miR genes were lo-
cated in regions that exhibited DNA copy number abnor-
malities.47 The location of miRs in a genomic region ame-
nable to alterations is not a random event, suggesting
that the loss or the gain of genomic regions including

miRs in a specific type of cancer participates in the cause
of the malignancy.48

The miR distribution in breast tumor tissues from more
than 100 patients using in situ hybridization49 shows a
different distribution and expression of many miRs in the
breast cancer tissues compared with normal tissues.
miR-145 and miR-205 were restricted to the myoepithe-
lial/basal cell compartment of normal mammary ducts
and lobules. However, their accumulation was reduced in
matched tumor specimens. Compared with luminal epi-
thelial cells in normal tissue, expression of miR-21 was
frequently increased, whereas let-7a was decreased in
malignant cells. Careful comparison of normal tissue
and tumorous tissue in the same patient demonstrated
altered expression of miR-17/20 in breast cancer. In
normal tissue, the relative abundance of miR-17/20 is
higher compared with matched tumor tissue from the
same patient.22

Suppressor miRs in Breast Cancer

Tumor suppressor miRs can inhibit tumorigenesis by re-
pressing oncogenes (Table 1). The ErbB family plays an
important role in organismal development, cellular prolif-
eration, and survival in human epithelial malignancies.50

ErbB2 is amplified and/or overexpressed in about 20% to
30% of human breast cancers. miR-125 targets the ErbB2
gene in breast cancer cells.51 miR-125a and mir-125b
overexpression in SKBR3 cells decreased ErbB2 protein
level �40% to 65% and decreased ErbB3 level �60% to
80%. SKBR3 cells overexpressing miR-125a or miR-125b
were impaired in their anchorage-dependent growth, mi-
gration, and invasion capacities.51

The human miR-17/20 cluster’s genomic location,
chromosome 13q31, correlates with loss of heterozygos-
ity in a number of different cancers including breast
cancer.52,53 miR-17/20 decreased cyclin D1 abundance,
suppressed MCF-7 cell proliferation, and inhibited G1/S
phase transition of cell cycle.22 In human breast cancer
cell lines, reduced miR-17/20 expression was inversely
correlated with high cyclin D1 abundance. In human
breast cancer specimens, decreased miR-17/20 expres-
sion correlated with high cyclin D1 abundance compared
with matched normal breast tissues. Targeted gene de-
letion revealed that mice deficient for the miR-17/20 clus-
ter die shortly after birth,54 therefore conditional gene

Table 1. miRs in Breast Cancer

Target(s) Reference(s)

Tumor suppressor
miRs

Let-7 Ras, Hmga2 36,38,39
miR-125a/b ErBb2, ErBb3 51
miR-206 ER� 55,56
miR-17/20 AIB1, Cyclin D1, E2F 20,22,29
miR-145 RTNK 57
miR-205 HER3 receptor 58

Onco-miRs
miR-21 Tpm1, PDCD4 59,60
miR-27 ZBTB10, Myt1 61,62
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deletion or tissue-specific transgenic techniques will be
required to determine the function of miR-17/20 in mam-
mary tumorigenesis.

Estrogen, which binds ER-�, is a risk factor for breast
cancer development. ER-� is overexpressed in approxi-
mately 75% of primary breast cancers. It was reported
that miR-206 expression is strongly inhibited by ER-�
agonists, and miR-206 levels are higher in ER-�–negative
MB-MDA-231 cells than ER-�–positive MCF-7 cells.55

miR-206 overexpression reduces ER-� level in MCF-7
cells, indicating an autoregulatory feedback loop be-
tween ER-� and miR-206. Decreased expression of miR-
206 occurs in ER-�–positive human breast cancer tissue.
miR-206 expression and ER-� protein level are inversely
correlated in human breast cancer.56 In addition, miR-
145 targets RTNK and inhibits breast tumor growth.57

miR-205 targets HER3 receptor, thereby inhibiting HER-
mediated proliferative signaling.58

Oncogenic miRs in Breast Cancer

Several groups have noticed the frequent overexpression
of miR-21 in breast tumors compared with the matched
normal breast tissues (Table 1).49,59,60 miR-21 knock
down inhibits MCF-7 cell growth in vitro and suppresses
MCF-7 cell–derived breast tumor growth in a murine
xenograft model.59 The tumor suppressor tropomyosin 1
(TPM1) was a target of miR-21 in MCF-7 cells. A genome-
wide screen for miR-21 targets identified several p53-regu-
lated mRNAs, including FAM3C, ACTA2, APAF1, BTG2,
FAS, CDKN1A (p21), PDCD4, and SESN160 in MCF-7 cells,
suggesting a functional link between miR-21 and the p53
tumor suppressor pathway.60

miR-27a was reported as a breast cancer oncomiR
that regulates the zinc finger ZBTB10 gene,61 a putative
repressor of oncogene specificity proteins (Sp). Inactiva-
tion of miR-27a in MDA-MB-231 cells induced ZBTB10
expression and reduced abundance of the Sp genes.62

miR-27a suppressed the expression of cdc2/cyclin B
inhibitor Myt-1 in MDA-MB-231 cells, thereby increasing
the cdc2/cyclin B activity and inducing breast cancer cell
proliferation. Thus miRs regulate distinct signaling cas-
cades in breast cancer cells.

miRs in Breast Cancer Metastases

Metastasis represents a complex process by which pri-
mary solid tumor cells invade adjacent tissue and grow
into secondary tumor (Figure 3, A and B).63 Breast can-
cer cells have the potential to spread to almost any region
of the body where they continue to grow and multiply.
Expression of a metastasis suppressor gene, CD44, is
reduced during progression of breast cancer to the met-
astatic phenotype.64 miR-373 and miR-520c stimulated
human breast cancer cell migration and invasion in vitro
and in vivo by suppressing the expression of CD44.65

miR-21 promotes breast cancer cell invasion and metas-
tasis by targeting multiple tumor/metastasis suppressor
genes.66 miR-10b is markedly upregulated in breast can-

cer cells compared with either primary human mammary
epithelial cells or MCF-10A cells.67 miR-10b promotes
cell migration in vitro and initiates breast tumor invasion in
vivo by targeting gene HOXD10.67 Twist promotes epithe-
lial to mesenchymal transition (EMT) and mammary tumor
metastasis,68 and miR-10b is directly regulated by Twist
through a transcriptional manner.67

In contrast, miR-335, miR-206, and miR-126 have been
identified as human breast cancer metastasis suppressor
miRs.63 miR-335 or miR-206 overexpression reduced cell
migration of lung metastatic LM2 cells and bone meta-
static BoM1 cells. The expression of miR-335 and miR-
126 in human mammary tumors is inversely associated
with metastatic relapse. Breast cancer metastasis and
migration are inhibited by miR-335 through targeting the
transcription factor SOX4, which is known to regulate
progenitor cell development and migration.63

miR-200 family and miR-205 regulate EMT, which is
thought to be an essential early step in tumor metasta-
sis.69 Expression of these miRs is reduced in invasive
breast cancer cell lines with a mesenchymal phenotype.
Enforced expression of the miRs prevents TGF-�–induced
EMT. Conversely, overexpression of these microRNAs in
mesenchymal cells initiated mesenchymal to epithelial tran-
sition. The miR-200 family repressed ZEB1 and SIP1, which
have been implicated in EMT induction and tumor metas-
tasis.70 A ZEB1-miR200 family-feed-forward loop may
stabilize EMT and hereby promote cancer cell invasion.71

Because most of the evidence for miRs in regulating
metastasis has been performed in cultured cells, in vivo
studies of miR using transgenic and knockout mice will
be important.72

Regulation of miRs by Annotated Genes

miRs are also regulated by products of annotated genes,
which opens the possibility of regulating miRs expression
by external agents. For instance, a number of miRs are
induced by all-trans-retinoic acid, and the promoters of

Figure 3. miRNA regulation of breast cancer metastasis. A: Metastasis inhib-
itor miRs in breast cancer. B: Metastasis inducer miRs in breast cancer.
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several miRs have putative RAR� receptor binding
sites.73 p53 is known to induce miR-34,42 which in turn
targets several genes whose expression is decreased by
p53. The induction of miR-34 family by p53 allows p53 to
regulate a large number of genes that are downstream
targets of miR-34. The targeting of p53-regulated mRNAs
by miR-34 may contribute to the fine tuning of the p53
response.74 This finding suggests a dual model for gene
down-regulation of gene expression by p53, one by di-
rect action on the target genes transcription or stability,
and a second action via a specific miR (Figure 2F).
Increased miR-223 expression in differentiating myeloid
cells occurs via the binding of C/EBP� (an inducer of
differentiation) to the miR-223 promoter.75 Another exam-
ple of feedback regulation by annotated genes is the
finding by Yu et al,22 in which cyclin D1 is targeted to the
miR-17/20 cluster, which in turn regulates the expression
of the same cluster. Thus cyclin D1, like C/EBP� and
RAR�, binds to the promoter region of miR to regulate
their expression. The finding that cyclin D1 regulates miR
promoter is consistent with previous finding that cyclin D1
targets gene promoter elements in the context of local
chromatin.76,77 Feedback regulation of miR and anno-
tated genes may be quite frequent, and a feedback
between OCT4 and miR-145 will be discussed below.

miRs in Human Stem Cell Renewal and
Differentiation

miRs were discovered as modulators of differentiation in
embryos of lower animals. miR-145, which was reported
to act as a tumor suppressor,16,78 also plays an important
role in human stem cell growth and differentiation by
targeting the 3�UTR of OCT4, SOX2, and KLF4.79 OCT4
in turn represses miR-145 expression (Figure 2E). Shi
et al6 showed that miR-145 inhibits human cancer cell
growth in vitro via the 3�UTR of the type 1 insulin-like
growth factor receptor and its docking protein, the insulin
receptor substrate-1 (IRS-1). Rubin et al80 found IRS-1
was highly expressed in undifferentiated murine em-
bryonic stem cells (mESC), with decreased expression
when the cells differentiated. Forced expression of
IRS-1 inhibited mESC differentiation suggesting miR-
145 and IRS-1 function in stem cell differentiation.

It is believed that only a small proportion of cancer cells
display the stem/progenitor cell characteristics and retain
the ability to form new tumors. These cells are termed tu-
mor-initiating cells (T-ICs) or cancer stem cells.81 Breast
tumor-initiating cells (BT-ICs) have been identified and iso-
lated as CD44(�)CD24(�/low)Lineage(�) cells by Al-
Hajj and colleagues.82 The miR let-7, which is reduced in
BT-ICs and increased with differentiation, can regulate
self renewal and tumorigenicity of breast cancer cells.36

Let-7 overexpression in BT-ICs inhibited cell proliferation
and mammosphere formation, blocking tumor formation
and metastasis in NOD/SCID mice.36 Two targets of let-7,
RAS39 and HMGA2,38 showed high expression in BT-ICs
and were silenced during differentiation.

Concluding Remarks

The regulation of miR expression by annotated genes
indicates the importance of miR promoter regions and
new possibilities for therapeutic intervention by using
compounds to regulate miR expression. miRs have been
identified that arrest cell cycle progression and suppress
cell proliferation by negatively regulating cell cycle mod-
ulators in breast cancer cells. miRs that are overex-
pressed in breast cancers can limit the proliferation of
tumor cells by targeting oncogenic genes. Because miRs
are involved in breast cancer from the onset of the ma-
lignant state through the progression to metastasis, miR
may be ideal targets for the development of new drug
therapies for treating breast cancer patients.

Although the up- or down-regulation of a miR expres-
sion in cancers depends on the individual miR itself and
tumor type, the global decrease of miRs in cancers re-
flects the tendency in the direction of the differential
expression of miRs in human cancers.83 This finding
suggests that miRs may serve a general tumor suppres-
sor function. The regulation of miRs may therefore form
the basis for a therapeutic strategy for cancers. Syn-
thetic miR mimics, DNA expression vectors containing
artificial miR precursor sequences and/or miR inhibitors
(modified miR antisense oligonucleotides), have strong po-
tential as new therapeutic tools.83
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