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Abstract

Avrteries exhibit a remarkable ability to adapt in response to sustained alterations in hemodynamic
loading as well as in response to disease, injury, and clinical treatment. A better understanding of
such adaptations will be aided greatly by formulating, testing, and refining appropriate theoretical
frameworks for modeling the biomechanics and associated mechanobiology. The goal of this brief
review is to highlight some recent developments in the use of a constrained mixture theory of arterial
growth and remodeling, with particular attention to the requisite constitutive relations, and to
highlight future directions of needed research.
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1. Introduction

Vascular disease continues to be a leading cause of morbidity and mortality in the U.S.A. and
its prevalence is expanding worldwide. The past four decades have revealed that many vascular
diseases cause, or are caused by, marked changes in the associated mechanics. Similarly, many
methods of treatment, as, for example, intravascular stents and coils, implanted grafts, and even
many surgical interventions, rely largely on mechanical effects. There is, therefore, a pressing
need to understand better both the mechanics of the arterial wall and the hemodynamics, with
particular attention to the underlying mechanobiology. The goal of this brief review is to outline
some recent developments in arterial biomechanics and modeling in mechanobiology in order
to highlight future directions of needed research. Toward this end, recall that 40+ years ago
Fung (1967) astutely observed that,

“the greatest need lies in the direction of collecting data in multiaxial loading
conditions and formulating a theory for the general rheological behavior of living
tissues...”

Based upon and motivated by the early work of Y.C. Fung as well as R.N. Vaishnav, B.R.
Simon, R.P. Vito, H. Demiray, R.H. Cox, P.B. Dobrin, K. Hayashi, and many others, there
have been tremendous advances in our understanding of arterial wall mechanics since the
mid-1960s (cf. Fung, 1990; Humphrey, 2002). Nevertheless, two conspicuous shortcomings
have remained: the need to account explicitly for separate contributions by the diverse
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structurally significant constituents within the arterial wall and the need to describe
mathematically the remarkable ability of arteries to adapt to changing hemodynamic conditions
as well as in response to disease, injury, and clinical treatment. These shortcomings are the
focus of this review.

It has long been accepted that the five fundamental postulates of continuum mechanics hold
for living tissues just as they do for traditional engineering materials. Hence, any theory of
arterial growth and remodeling (G&R) should find its foundations in equations for balances of
mass, linear momentum, energy, and angular momentum as well as the entropy inequality. In
other words, our primary focus should be on constitutive formulations, as noted early on by
Y.C. Fung. There are, in general, five basic steps in any constitutive formulation: Delineate
general characteristic behaviors, Establish an appropriate theoretical framework, Identify
specific functional forms of the requisite relations, Calculate values of the associated material
parameters, and Evaluate the predictive capability of the final relations. A former student noted
that one can easily remember these five steps via the acrostic DEICE. Notwithstanding the
general applicability of these fundamental postulates and basic steps to formulating constitutive
relations for biological growth and remodeling, as noted by Y.C. Fung we must remember to
focus our attention on living tissue. Hence, we should not expect merely to apply classical
engineering approaches directly to arteries; rather, we should seek to develop and extend
classical approaches to account for the distinguishing characteristics of living tissues,
particularly their ability to adapt in response to changing mechanical loads. For this reason,
continuum biomechanics is probably better defined as the development, extension, and
application of the principles of mechanics for purposes of answering questions of importance
in biology and medicine. Let us now consider, within the context of the acrostic DEICE, new
approaches for understanding arterial G&R.

2. Delineate General Characteristic Behaviors

Constitutive relations describe the response of a material to applied loads under conditions of
interest, which depend of course on the internal constitution (make-up) of the material. That
is, constitutive relations do not describe materials per se; they describe the behavior of materials
under particular conditions and we should thus expect multiple relations to hold equally well
for the same material subjected to different conditions. A simple example is water, for which
we have different constitutive relations depending on the temperature — for ice (solid-like
behavior), liquid water (fluid-like behavior), and steam (gas-like behavior). Arteries exhibit
primarily a solid-like behavior under conditions of interest in vivo and in vitro.

Many of the general characteristic material behaviors of arteries were reported in the
remarkable work of Roy (1880). Consistent with his findings, it is now well accepted that,
under physiologic conditions, arteries exhibit a highly nonlinear, nearly elastic (or, as called
by Fung (1990), pseudoelastic), anisotropic, incompressible behavior under finite
deformations; moreover, the arterial wall is heterogeneous due primarily to its medial and
adventitial layers even though physiologic responses may be dominated by the former. The
underlying polymeric structure of the tensile bearing constituents of the wall endows arteries
with a primarily entropic, not energetic, elasticity similar to that of elastomers. Like all soft
tissues and cells, arteries also consist of abundant water. Under some conditions, therefore, the
mechanical behavior of the arterial wall should be considered as either nonlinearly viscoelastic
or poroelastic, or in some cases poroviscoelastic, but our focus will be on the nearly elastic
behavior.

Whereas these general characteristic mechanical behaviors dominated the search for arterial
constitutive relations for nearly 30 years (mid-1960s to mid-1990s), and gave rise to nonlinear
stress-strain relations that remain useful for stress analyses (cf. Fung, 1990; Humphrey,
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2002), there was actually little attention to the “living” characteristic. Consider, therefore, a
simple definition of life (The American Heritage Dictionary of the English Language, 1976):
“The property or quality manifested in functions such as metabolism, growth, response to
stimulation, and reproduction, by which living organisms are distinguished from dead
organisms or from inanimate matter.” It has long been known, for example, that arteries enlarge
in response to sustained increases in blood flow (e.g., in development) and they thicken in
response to sustained increases in blood pressure (e.g., in hypertension). In addition to such
physiologic responses, the advent of balloon angioplasty in the 1960s and 1970s revealed an
aberrant response by the arterial wall (restenosis) to the balloon-induced mechanical injury.
Yet, such “growth” responses to altered mechanical “stimulation” were not considered within
the context of continuum mechanics until the mid-1990s (Taber, 1995) as discussed more
below.

The first clues into the mechanobiology underlying arterial responses to altered loading came
from in vitro experiments using cell culture. Rosen et al. (1974) showed that altered fluid flow
on endothelial cells resulted in the production of an enzyme (histidine decarboxylase) essential
for the production of histamine, an effector of vascular permeability and smooth muscle tone.
Leung et al. (1976) showed that altered cyclic stretch of vascular smooth muscle cells resulted
in the production of extracellular matrix proteins and proteoglycans, which are essential to the
structural integrity of the arterial wall. In other words, altered mechanical stimuli can result in
altered gene expression, which in turn can cause important biological, biochemical, and
biomechanical changes. Since then, myriad experiments and observations have confirmed that
all vascular cells (endothelial, smooth muscle, fibroblasts, and even macrophages) are
mechano-sensitive (e.g., Davies, 1995; Chien et al., 1998; Grinnell, 2003; Lehoux et al.,
2006; Liand Xu, 2007), thus revealing that constitutive relations for arterial G&R must account
for characteristic cell-mediated responses.

One of the most important discoveries in arterial wall mechanics was the existence of residual
stresses, that is, stresses that exist independent of external loading. Observed independently in
1983 by Y.C. Fung and R.N. Vaishnav and their colleagues, residual stresses were thereafter
shown to reduce significantly the previously predicted large transmural gradients in wall stress
(Fung, 1990). That is, due to both kinematic and material nonlinearities, residual stresses on
the order of 3 kPa appear to reduce the otherwise large intimal circumferential wall stresses
by hundreds of kPa. An important implication of this observation is that it appears that arteries
grow and remodel during development so as to achieve a nearly uniform and equibiaxial
distribution of wall stress in maturity, which in turn suggests a homeostatic target value of
stress. Indeed, observations at multiple length and time scales, from sub-cellular to tissue,
similarly suggest the existence of a ubiquitous mechanical homeostasis in vascular biology and
pathobiology (Humphrey, 2008). This simple example of effects of residual stress on the
computed distribution of stresses across the arterial wall reveals well how detailed
biomechanical analyses can lead to important mechanobiological hypotheses.

Although early investigators recognized that different extracellular proteins contributed
differently to overall wall mechanics (e.g., that elastin dominates behavior at low pressures
and collagen dominates behavior at high pressures; Fung, 1990), there was little attempt until
recently to model arteries as materially nonuniform (i.e., consisting primarily of elastic fibers,
fibrillar collagens, reticular collagens, proteoglycans, and contractile smooth muscle in
addition to abundant water), that is, a mixture. In particular, there was little attempt to account
for the observation that the different structurally significant constituents not only exhibit
different stiffnesses, they also possess different natural (i.e., stress-free) configurations and
they turnover at different rates and to different extents at different times during development,
maturity, and aging. Such general characteristics should play a central role in any theory of
arterial G&R.
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3. Establish an Appropriate Theoretical Framework

Because of the aforementioned characteristic nonlinear, nearly elastic, anisotropic, nearly
incompressible mechanical behaviors, many approaches from finite strain elasticity have
played key roles in arterial wall mechanics (Fung, 1990; Humphrey, 2002). One example is
the use of stored energy functions W(F), where F is the deformation gradient tensor, to quantify
the stress response to transient loading. Again, however, we shall focus here on the growth and
remodeling. To date, there have been two primary approaches to modeling soft tissue G&R,
one based primarily on large deformation kinematics and one based primarily on mass
production and removal. Not surprisingly, these two approaches were proposed by two of the
pioneers of modern biomechanics: R. Skalak and Y.C. Fung (see pages 12-13 in Humphrey
(2002) for their pictures). Briefly, the concept of kinematic growth introduced by Skalak in
1981 was championed by Rodriguez et al. (1994) and thereafter applied to arterial mechanics
by A. Rachev and L.A. Taber (see, e.g., Taber, 1998; Rachev, 2000). The basic idea is that
growth can be modeled by imagining an original stress-free body to be divided into small stress-
free parts, each of which is allowed to grow independently based on an evolution relation for
a kinematic “growth tensor” Fg that changes as a function of differences in stresses from their
homeostatic targets. The different parts need not grow compatibly, however, hence there can
be a need to assemble the parts elastically, via a tensor F,, to form a continuous body. This
assembly process may introduce residual stresses, which were thus anticipated theoretically
by R. Skalak before they were computed by Y.C. Fung and colleagues based on empirical
observations. Nevertheless, the assembled traction-free body can be deformed further by
applied loads, thus resulting in an elastic deformation F, . The stress response is then given in
terms of a stored energy function W =W (FcF5 ) , which allows stresses to be computed as
usual: t = (2 / det F)F(6W / 6C)FT where t is the Cauchy stress tensor, F(= F¢F,) is the overall
deformation gradient tensor, and the right Cauchy-Green tensor C = FT F (Truesdell and Noll,
1965). Note that W is assumed to be independent of Fg because growth is assumed to occur in
stress-free parts even though the evolution equations depend explicitly on changing stresses.
Although Y.C. Fung suggested the need for a “mass-stress” formalism to model G&R, he did
not propose a particular framework. Here, therefore, we focus on that introduced by Humphrey
and Rajagopal (2002). They suggested that the concept of kinematic growth could predict many
consequences of growth and remodeling, but could not account for the underlying
mechanobiological mechanisms. Hereafter, growth implies a change in mass and remodeling
a change in structure; the two generally occur together in arterial adaptations and require cell
and matrix turnover.

Briefly, Humphrey and Rajagopal (2002) suggested that full continuum mixture relations be
used for mass balance (see below), but a rule-of-mixtures relation be used for the stress response
and thus linear momentum balance (i.e., solve the classical relation for Cauchy stress, namely,
divt = pa where p is the mass density and a the acceleration for the mixture as a whole, and
conceptually let W = " #*Wk where #* are mass fractions and WX are stored energy functions
for individual constituents k). This rule-of-mixtures approach allows one to account for
contributions of different structurally significant constituents while avoiding potential
difficulties associated with identifying both appropriate boundary conditions for partial
tractions and momentum exchanges between different constituents as they turn over. Later it
was recognized that the mass balance relations could be separated into two classes: i = 1,2,
...,N-n non-structurally significant constituents that can diffuse (e.g., vasoactive, mitogenic,
proteolytic, and inflammatory molecules) and k = 1,2,...,n structurally significant constituents
that cannot diffuse (e.g., elastic fibers, collagen fibers, and smooth muscle). It can be shown
that mass balance for the former can be written in the form of the standard reaction-diffusion
equation, namely
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aci . . )
—=R'+D'V?C',
ds (1)

where Ci are molar fractions (i.e., concentrations), Ri are reactions, and D! are diffusivities;
moreover, s represents a G&R time that is much longer that the time associated with transient
loading over the cardiac cycle. In contrast, for a quasi-static, 2-D, membrane framework, Baek
et al. (2006) postulated the following form for mass balance for the structurally significant
constituents

M* (s)=M*(0) 0% (s)
+f8mk (1) qk (s—1)dr ©)

where MK (s) is an apparent mass density for constituent k defined per reference area of the
mixture (artery), QX (s)€[0,1] represents the fraction of constituent k that was produced at or
before s = 0 that survives to time s, mk (¢ ) is an apparent mass density production rate at G&R
time 7 €[0, 5], and g (s —z ) €[0,1] represents the fraction of constituent k that was produced
at 7 that survives to time s. This form for constituent mass density motivated the following
form for the stored energy function for constituent k, noting that each constituent is allowed to
turnover at different rates at different times z €[0, s ]:

o MEO)
WE(s) :TE))Q‘ () W (Chg) (9)

smb (1) 4
o p(s) 4

— Wk (Cﬁ(T) (s)) dr,

(3)

where W* (Cﬁm (S)) is the energy stored in constituent k at time s, which depends on the
deformation experienced by that constituent relative to its individual natural configuration

«% (1) . It can be shown that such a formalism recovers a standard rule-of-mixtures relation prior
to G&R (i.e., at s = 0) and in the case of tissue maintenance (i.e., balanced production and
removal of material in unchanging configurations) — see Valentin et al. (2009). More
importantly, however, equation (3) allows one to consider contributions to overall structural
integrity by both different classes of constituents (e.g., elastic versus collagen fibers) and the
same class of constituent produced at different times within different configurations.

Three assumptions fundamental to this G&R theory are: (1) that individual constituents k are
constrained to move with the mixture as a whole despite possessing individual natural
configurations (i.e., motions xX (s) = x(s) despite original postions XX (z ) # X(z ) for all z €[0,
5], whereby «* (1)); (2) constituents are incorporated within extant extracellular matrix at

preferred stretches (called homeostatic deposition stretches and denoted by the tensor Gf; ()
that relate to the homeostatic target stresses; and (3) the overall mixture mass density remains
the same (p(s) = p(0) ; Rodriguez et al., 1994) despite the apparent constituent mass densities
changing during G&R. The first two assumptions allow one to relate deformations experienced
by individual constituents, relative to individual natural configurations, to those experienced

by the mixture as a whole (Baek et al., 2006): F%,, (s) =F, () F," (1) G}, (1), where F, (s)
represents the standard deformation gradient for the artery relative to a convenient reference
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configuration at s = 0 and similarly for Fq (7 ), thereby enabling one to use the classical relation
for stress,

k(o
F,(s) MF{/) (s)

L=, ) aC, (s) @

and similarly linear momentum balance for quasi-static G&R: divt(s) = 0. For more details on
the fundamental development of this theory, see Baek et al. (2006) and Valentin et al.
(2009). The main observation is that the rule-of-mixtures relation allows one to retain, indeed
build upon, many of the advances in nonlinear arterial biomechanics by simply writing the net
stored energy function in terms of the energies stored in individual constituents as they are
produced; the survival functions ensure that energy is stored in a constituent only until it is
removed (e.g., by proteolytic degradation or apoptosis). It is the accounting for changing rates
of production (protein synthesis and cell proliferation) and associated half-lives that enables
basic mechanisms of G&R to be modeled mathematically rather merely modeling the kinematic
consequences of such turnover. Changes in geometry are computed naturally in the constrained
mixture model of G&R simply by satisfying linear momentum balance at each time s.

4. Identify Specific Functional Forms

As noted earlier, many different phenomenological stored energy functions W have been
proposed to describe the nonlinear, nearly elastic, anisotropic, nearly incompressible behavior
exhibited by arteries independent of G&R (Fung, 1990; Humphrey, 2002); among these, the
forms proposed by Y.C. Fung and G.A. Holzapfel are used most commonly today (cf. Holzapfel
etal., 2000; Gasser et al., 2006). Such relations are useful not only for standard stress analyses,
they also provide important guidance for the identification of new forms of relations useful in
modeling the biomechanical behaviors during G&R.

Recall that the G&R framework represented by equations (2) to (4) reveals the need for three
fundamental classes of constitutive relations:
Wk (Cﬁ(r) (s))

, m()

, q"’(s—‘r) VT e[0,s], (5)

that is, stored energy functions, rates of mass density production, and survival functions for
each family of structurally significant constituents. Although it is not easy to test mechanically
the individual constituents, forms for their stored energy functions can now be prescribed with
some confidence, as, for example, neo-Hookean forms for elastin and Fung-exponentials for
fibrillar collagens and passive smooth muscle (Holzapfel et al., 2000;Gleason et al.,
2004;Valentin et al., 2009). Nevertheless, it is clear that the behavior of individual constituents
in vivo depends, in part, on their interactions with other constituents (e.g., collagen with
proteoglycans or elastin with microfibrils such a fibrillin-1), hence such relations should be
thought of as “constituent dominated” not “constituent only.”

Less obvious, but equally important, are appropriate functional forms for the rates of mass
density production and survival — it is here that the mechanobiology surfaces prominently.
Whereas the degradation of proteins is driven enzymatically (e.g., by matrix
metalloproteinases) and thus likely obeys Michaelis-Menten type Kinetics, it appears that first
order type kinetics can be used to a good first approximation. Specific functional forms for
mass density production remain less clear despite clear evidence of their mechano-control (e.g.,
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Leung et al., 1976; Li et al., 1998). To date, rates of mass density production have typically
been assumed to depend linearly on differences in stress from homeostatic targets, yet there is
a pressing need for more data and more appropriate functional forms (cf. Humphrey (2008)
wherein | call for “mechanical dose response curves”). The complexity of such relations is
revealed easily by an illustrative observation: vascular smooth muscle cell production of
fibrillar collagen depends in part on changes in cyclic circumferential stress (oy), or stretch,
but it is also influenced by vasoactive molecules that are produced by endothelial cells in
response to changes in wall shear stress (). For example, nitric oxide, a potent vasodilator,
is an inhibitor of smooth muscle production of collagen whereas endothelin-1, a potent
vasoconstrictor, is a promoter of smooth muscle cell production of collagen (Rizvi et al.,
1996; Rizvi and Myers, 1997). Moreover, cellular production of other molecules, such as
tissue-transglutaminase (tTG), can affect collagen production through its relation to the
cytokine transforming growth factor — beta, as well as collagen cross-linking, hence we can

imagine forms like m* (t) =f ((TH = O Ty =~ Ty € 5 ) where C! may be computed from
equation (1) and represent tTG or other important effectors of matrix turnover or structural
integrity.

We conclude, therefore, that just as noted by Y.C. Fung over 40 years ago, the primary need

in biomechanics remains the identification of appropriate constitutive relations, which largely
means identification of specific functional forms based on data, once an appropriate theoretical
framework is in place.

5. Calculate values of the material parameters

In many ways, this step of a constitutive formulation is the easiest provided that the specific
functional form is well known. For example, material parameters in constituent stored energy
functions can be determined using standard methods of nonlinear regression (e.g., Marquardt-
Levenberg), provided that appropriate data are available. Recalling the quote by Y.C. Fung
from Introduction, such data must be multiaxial for arteries, with combined finite inflation and
axial extension being preferred. Recall, too, that although such energy functions are often
ascribed to individual constituents, actual behaviors depend in part on inter-constituent
interactions, thus it is best to determine best-fit values of the material parameters from data on
intact vessels as well as possibly those wherein certain constituents have been removed
selectively (e.g., elastin has been removed using elastase and elastin has been isolated by
autoclaving, yet neither method is perfectly selective). Although mixture based relations
necessarily contain many more parameters than traditional phenomenological relations, the
microstructural motivation of such relations provides many important physical bounds on the
parameter values that restrict the parameter search space. A good example is the recent work
by Masson et al. (2008) wherein 14 best-fit parameters were determined for human carotid
arteries based on clinically available pressure-diameter data collected at high frequency over
the cardiac cycle. See, too, the work by Stalhand and Klarbring (2005) who further introduce
the physical constraint of constancy of axial force in vivo to aid in the parameter estimation.
These examples are good reminders of the importance of extensive in vitro studies and testing
— parameter estimation is relatively easy only if the functional forms are reliable (which can
only be determined using comprehensive multiaxial data collected under well controlled
conditions in vitro) and appropriate bounds or initial guesses are known.

In addition to bounds imposed on the parameter search space by microstructural motivations
(e.g., mass fractions must be less than 1 and deposition stretches appear to be between 1 and
2), such best-fit values of the parameters should also respect standard continuum restrictions
such as convexity, Baker-Ericksen type inequalities, and so forth (cf. Holzapfel et al., 2000;
Humphrey, 2002; Balzani et al., 2006). Moreover, standard parameter sensitivity studies can
play important roles in identifying bounds for the parameter search space that ensure physically
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realistic predictions, computing the correlation matrix for the parameters can help ensure that
the relation is not overparameterized, and nonparametric methods such as bootstrapping can
help determine statistical significance of parameter values (Humphrey, 2002). Finally, note
that Valentin and Humphrey (2009a) also showed another potential utility of performing
parameter sensitivity studies for arterial G&R relations. Such studies can guide the much
needed experimental work by suggesting those parameters the model is most sensitive to, and
thereby which data should be measured with greater precision.

6. Evaluate predictive capability

All aspects of a constitutive formulation are important, but evaluating the predictive capability
is essential for gaining confidence in the use of any relation for computational simulations and
modeling. Indeed, this step in the overall DEICE formulation is fundamental to much needed
validation and verification (cf. Anderson et al., 2007). Such evaluations can take many forms,
first of which is simply ensuring that the overall model captures salient features of the behaviors
of interest. With regard to the constrained mixture model discussed herein (equations (2) to
(4)), salient features of arterial growth and remodeling in response to sustained changes in
pressure (e.g., thickening over periods of weeks), flow (e.g., changing caliber over weeks and
a resetting of the active force-length behavior), and axial extension (e.g., a lengthening of the
vessel), the development of idealized intracranial aneurysms, and the development and
resolution of cerebral vasospasm have been captured by the same basic framework (Gleason
et al., 2004; Gleason and Humphrey, 2004, 2005; Baek et al., 2005, 2006, 2007a; Humphrey
et al., 2007; Valentin et al., 2009)L. There is a pressing need, however, for data sufficient for
a rigorous testing of these models in each case. Cardamone et al. (2009) also showed that the
basic rule-of-mixtures model for wall behavior captures two of the most fundamental aspects
of arterial mechanics, the existence of residual stresses and axial prestretches. That is, whereas
most prior computational models have sought to quantify the consequences of residual stresses
on transmural distributions of stress in arteries based on assumed kinematic (e.g., opening
angles; Fung, 1990) — which as noted above was vital in identifying the fundamental
mechanaobiological hypothesis of the existence of a target homeostatic stress — results in
Cardamone et al. (2009) suggest a possible means by which residual stresses arise. That is,
they showed that differences in constituent prestretches (resulting primarily from the deposition
of highly stable elastin primarily in the perinatal period and the continual turnover of collagen
and smooth muscle in evolving configurations) can explain the existence of residual stress and
axial prestretch (which is revealed easily upon transection of an artery and which likely
represents a balance between highly elastic and extended elastin that tries to recoil fully and
slightly extended collagen which is put into compression upon transection by the recoiling
elastin; cf. Zeller and Skalak, 1998). Moreover, the radial gradients in elastin prestretches that
one would expect based on normal developmental processes appear to play a key role in
dictating the degree of residual stress (i.e., opening angle).

Humphrey et al. (2009) recently suggested that axial prestretch plays a much more fundamental
role in arterial adaptations than previously thought, perhaps being the least constrained
geometric change available to an artery (with local geometry defined primarily via radius,
thickness, and length and assuming that the caliber is dictated largely by changes in wall shear
stress and thickness is dictated largely by changes in transmural pressure, both of which are
controlled by distal means — the heart and resistance vessels). Evaluating predictive capability
can thus mean correspondence with prior observations or identifying new hypotheses that can
then be evaluated. VValentin and Humphrey (2009b) suggest further that computational models
based on assumed functional forms of constitutive relations can also be used to evaluate

INaetal. (2007) showed further that a similar approach may be useful from modeling cellular growth and remodeling, which could
facilitate multiscale modeling via a common framework.
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fundamental hypotheses upon which G&R theories are based. For example, by testing the null
hypotheses that cells do not incorporate new matrix material within extant matrix at a preferred
deposition stretch, that cells cannot alter their rates of production of structurally significant
constituents in response to changes in mechanical loading, and that arteries cannot vasoregulate
during G&R, it was shown that these hypotheses allow one to capture salient features of actual
behaviors.

7. Discussion and future directions

Development of this new constrained mixture model of arterial growth and remodeling over
the past six years has been based primarily on a 2-D formulation (i.e., an assumed 2-D uniform
state of stress, with the artery endowed with a 3-D geometry). There were four primary reasons
for this: (1) a 2-D formulation is much simpler than a 3-D formulation, thus it enables much
more insight initially, which is important as one develops and refines a new theory; (2) a 2-D
formulation provides information that is of most importance clinically, that is, changes in
arterial caliber and structural stiffness; (3) many of the associated experimental studies utilized
mouse carotid arteries, which consist of a 2 to 3 layers of smooth muscle cells and thus are
likely less sensitive to radial gradients in stress; and (4) the initial motivation was the need to
understand better the biomechanics and mechanobiology of intracranial aneurysms, which can
be treated mechanically as membranes and thus a 2-D formulation. Given the ability of this
simple 2-D formulation to capture salient trends in diverse cases of arterial G&R, however,
there is now a need to extend the basic ideas to 3-D. Prior implementations also examined
primarily the simple cases wherein hemodynamic loads changed once and remained constant
thereafter. There is a pressing need to couple directly computational models of hemodynamics
and arterial wall mechanics including growth and remodeling. Baek et al. (2007b) showed that
the theory of small deformations superimposed on large could be helpful in this regard. That
is, although fully nonlinear (kinematically and materially) theories are needed for G&R, cyclic
deformations over the cardiac cycle are often small in comparison to those induced by diastolic
loading or gross adaptations. The theory of small on large thus allows information from G&R
computations to be linearized appropriately for inclusion in standard fluid-solid interaction
(FSI) codes that solve unsteady, 3-D flows in complex (including patient-specific) geometries
based on small strain elastic deformations of the wall. An approach to coupling FSI and G&R
codes to form fluid-solid-growth (FSG) models was reported by Figueroa et al. (2009). The
need for such FSG models to understand disease progression, such as the development and
potential rupture of abdominal aortic and intracranial aneurysms, is discussed by Humphrey
and Taylor (2008).

Although long ignored, the biomechanics and mechanobiology of arterial responses to altered
hemodynamic loading as well as in disease progression, injury responses, device tissue
interactions, and interventional therapies is now beginning to attract significant attention. Due
to the complexity of these problems, and the continuing lack of sufficient data and well accepted
constitutive relations, much remains to be accomplished. Indeed, even the best theoretical
framework remains unclear. This review focused primarily on a constrained mixture model for
G&R that is based on constitutive relations for cell and matrix turnover and a rule-of-mixtures
description of the mechanical behavior of the wall, but emphasized the importance of a general
five step formulation of the requisite constitutive relations. Many other approaches to modeling
arterial growth and/or remodeling have been proposed, however, including Taber (1998),
Rachev (2000), Watton et al. (2004, 2009), Hariton et al. (2007), Kuhl et al. (2007), Kroon and
Holzapfel (2007, 2008), Dreissen et al. (2008), Alastrue et al. (2008), Alford et al. (2008),
Olsson and Klarbring (2008), and others. The interested reader is encouraged to consult these
important works as well. Indeed, the ultimate theory of arterial growth and remodeling will
likely synthesize different ideas from many of these different approaches.
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