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Abstract
This study represents a first attempt to assess the detection capability of a fluorescence-enhanced
optical imaging system as quantified by the Hotelling observer. The imaging system is simulated by
the diffusion approximation of the time-dependent radiative transfer equation, which describes near
infra-red (NIR) light propagation through a breast phantom of clinically relevant volume. Random
structures in the background are introduced using a lumpy-object model as a representation of
anatomical structure as well as non-uniform distribution of disease markers. The systematic errors
and noise associated with the actual experimental conditions are incorporated into the simulated
boundary measurements to acquire imaging data sets. A large number of imaging data sets is
considered in order to perform Hotelling observer studies. We find that the signal-to-noise ratio
(SNR) of Hotelling observer (i) decreases as the strength of lumpy perturbations in the background
increases, (ii) decreases as the target depth increases, and (iii) increases as excitation light leakage
decreases, and reaches a maximum for filter optical density values of 5 or higher.

1. Introduction
Recently, numerous investigations have demonstrated the use of fluorescently labeled agents
for molecularly-targeted imaging in small animal studies. Despite the potential advantages of
non-radioactive and non-mutagenic imaging, to date, there have been no optical imaging
studies of fluorescently labeled agents for molecular imaging in the clinic. While there has
been demonstration of fluorescence-enhanced optical tomography in phantoms of clinically
relevant volumes and homogeneous optical properties [1,2], there has been no systematic study
predicting potential performance in detection tasks for the relevant case of non-uniform
distribution of fluorescent contrast agents or heterogeneity of endogenous optical properties
owing to normal anatomical tissue structure.

In this contribution, a lumpy-object model developed by Rolland and Barrett [3] is used to
simulate the anatomical structure as well as the heterogeneous background expression of
disease markers that lead to non-uniform background distribution of fluorescent imaging agent.
The lumpy-object model has been utilized by previous researchers in (i) the simulation studies
to incorporate variability present in the reconstructed images of clinical positron emission
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tomography (PET) and single photon emission computed tomography (SPECT) [4]; (ii) the
generation of synthetic mammograms [5]; as well as (iii) the observer studies involving digital
radiography [6]. Pineda et al. [7] have used lumpy-object model to explore the impact of normal
anatomical tissue structure upon absorption imaging using time-dependent measurements of
light propagation in the time-domain. We have employed lumpy-object model to demonstrate
the ability to tomographically image fluorescent targets in the breast from frequency-domain
measurements of fluorescence [8]. In fluorescence-enhanced optical imaging using frequency-
domain techniques, intensity modulated NIR light is launched onto the tissue surface, wherein
it propagates within the tissue, encounters a fluorophore, and generates emission light. Both
emission and excitation light travel throughout the medium and the amplitude attenuation and
phase delay of the emitted fluorescent light relative to the incident excitation light are detected
at the surface. In order to tomographically image fluorescent targets deep inside the tissue, the
boundary measurements are used within an optimization framework to determine interior
distributions of the optical properties [1,2].

In this study, the Hotelling observer is used to assess the detection of a fluorescent target from
boundary frequency-domain measurements. The Hotelling observer’s signal-to-noise ratio
(SNRHot) is a measure of the task performance and has been widely used to evaluate the imaging
hardware for tumor detection task in imaging modalities such as PET [9,10], SPECT [11,12],
digital mammography [13,14], and optical coherence tomography [15]. Evaluation of imaging
system for target detection tasks using the Hotelling observer requires a large number of
imaging data sets and, thus, is not easily performed using patient image or experimentally
obtained phantom data. However, the use of lumpy-objects to simulate heterogeneous
distribution of optical properties that may be typical of human tissue allows generation of
sizeable imaging data sets from computer simulation. Consequently, we simulate measurement
data and incorporate expected systematic measurement error and noise of a fluorescence
imaging system in order to use the Hotelling observer to assess performance in detection tasks.
To our knowledge, this is the first time that an observer model is used to statistically assess
the detection performance of a fluorescence-enhanced optical imaging system through
analyzing the statistics of the imaging data sets.

In the following Methods section, we present (i) the imaging equation describing the
propagation of modulated excitation and emission light in the tissue-like medium and the
generation of emission light that is collected as measurements at the tissue boundary; (ii) a
model to simulate the heterogeneous distribution of optical properties of biological tissues;
(iii) the description of systematic measurement errors and noise; and (iv) an ideal linear
observer and its figure of merit used to quantify the detection performance. The Results and
Discussion section reports how the detection capability of the imaging system, as quantified
by Hotelling observer’s SNR, is affected by: (i) perturbations in endogenous and exogenous
optical properties; (ii) target depth; and (iii) excitation light leakage through rejection filters.

2. Methods
In the objective quality assessment of imaging systems, an imaging model is specified, an
evaluation criterion is defined, and the observer evaluating the system is described. These basic
components of the image quality assessment are described in this section for fluorescence-
enhanced optical imaging. The various parameters used in this section are defined in the text
as well as in Appendix II.

2.1 The imaging equation
The time-dependent generation and propagation of photon density waves diffusely transiting
a highly scattering medium are described by the coupled diffusion equations, which are
presented for the frequency-domain measurements as [16]:
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(1)

(2)

Equation (1) describes the propagation of excitation light (subscript ‘x’) inside the tissue
medium, whereas Eq. (2) describes the generation as well as the propagation of the emission
light (subscript ‘m’). Here ω is the modulation frequency of the NIR source (rad/s); Dx,m is
the photon diffusion coefficient (cm) at excitation/emission wavelengths at position r; c is the
speed of light in the medium; Φx, m (r, ω) is the complex excitation/emission fluence rate
(photons/(cm2s)) at position r ; S(r,ω ) is the photon source strength (photons/(cm3s)) at
position r; φis fluorescence quantum; and τis fluorescence lifetime (s). Symbol μax, mi denotes
the absorption due to endogenous chromophores in the tissue; and μax, mf denotes the absorption
due to the exogenous fluorophores, which represent the only source of emission light from
tissue. The diffusion coefficient is given by:

(3)

where μsx, m denotes the scattering coefficients at excitation/emission wavelength; and g is the
coefficient of anisotropy of the medium. Collectively, the terms μaxi, μami, μsx, and μsm are
referred to as endogenous optical properties; and, μaxf and μamf as exogenous optical properties.
The coupled diffusion equations are solved with the Robin type boundary conditions [17]: x, m

(4)

where ⊥ denotes the normal direction outward to the surface, and γis a constant depending
upon the optical refractive index mismatch at the boundary. Equation (1), (2), and (4) can be
solved numerically to yield,

(5)

where θx, m is the measured phase lag and IAC is the measured amplitude of the photon density
wave at the excitation/emission wavelengths. The background tissue optical properties
andx, m values of the other parameters involved in Eq. (1) through (4) are listed in Table I.
Herein, we chose the excitation and emission wavelengths to correspond to Cardio-Green as
a typical fluorophore used in imaging agent development.

For notational convenience, the process of imaging is often represented by the imaging
equation
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(6)

where f is the object being imaged; H is the imaging operator that describes how the imaging
system maps the object into a vector of discrete measurements g; and n is the vector of noise
in the measurement system. A Galerkin-type finite element method (FEM) is employed to solve
Eq. (1), (2), and (4) over a breast-shaped geometry described in Fig. 1 and used in the prior
experimental work in our laboratory [2]. The formulations in Eq. (1) through (5) are discretized
for FEM representation and can be represented by Eq. (6). Accordingly, the nonlinear operator
H is provided by the finite element representation of coupled diffusion equations described in
Eq. (1) and (2); f is a vector containing the spatial values of the optical parameters to be imaged
(in our case, the absorption coefficient owing to exogenous fluorophore, μax, mf) at each discrete
point within the domain of breast geometry; and g is a vector containing the measurements of
light intensity (IAC ) and phase lag (θ) at the specified boundary locations (denoted as detector
points in Fig. 2). The only source of fluorescence is due to the exogenous fluorophore. From
Eq. (6), one can see that vector g is the “noisy” image data returned by the imaging system. In
this simulation study, the vector g is obtained by adding the FEM solution of the coupled
diffusion equations to the noise modeled from experimental errors and considerations. The
various noise considered in the imaging system is described in Section 2.3.2.

2.2 Simulated background heterogeneity
The lumpy-object model [3] is employed to simulate the non-specific distribution of the
fluorescent agent as well as the heterogeneity of the endogenous tissue optical properties due
to the natural anatomical structure. Lumpy backgrounds consist of single structures or “blobs”
located randomly within the domain. Mathematically, these structures are represented by:

(7)

where b(r) is the lumpy background; b0 is the spatial mean of the lumpy background; Np is the
number of lumps; and rn is the uniformly distributed location of nth lump. The function
lump has the following form:

(8)

In this expression, l0 is the lump strength; w is the lump width; Ω is the domain; and V( Ω ) is
the volume of the domain. The volume integral term in Eq. (8) is designed such that the mean
of function lump is zero; making the mean of the lumpy background equal to b0 [18]. This
makes lumpy-object model useful for fluorescence imaging, because it enables user to specify
an average value of any optical property and then introduce perturbations in that optical
property using lumpy-objects to simulate the behavior of the natural biological tissue. This is
also relevant because the average optical properties of human breast tissues are widely reported
in the literature (see for review Table 1 in Ref. [8]).

In order to implement lumpy backgrounds and to solve the coupled diffusion equations using
FEM, the breast geometry is discretized into 34413 regular tetrahedral elements comprising a
total of 6956 nodes. The lump strength, l0, is set to be a prescribed percentage of the mean
background value b0. The lump spread, w, and the number of lumps, Np, are set to be 5 mm
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and 100 respectively. While other works have used a Poisson distribution of lumps to represent
non-uniform distribution of nuclear imaging agents [19,20], we chose a fixed number of lumps
owing to our rationale to mimic heterogeneous tissue structure. The domain Ω in Eq. (8) is
taken to be the hemispherical portion of the breast geometry shown in Fig. 1. For instance, 5%
lumpy background of the scattering coefficient, μsx, indicates that 100 lumps are placed at
locations uniformly distributed within the hemispherical portion of the breast geometry each
having a strength 0.05 times the spatial average of μsx and a spatial spread of 5 mm. The process
of generating lumpy background in an optical property at one wavelength and how it relates
to the values at another wavelength is detailed elsewhere [8] and has been followed in this
study. It is noteworthy that lump strengths that are less than or equal to 100% were assigned,
thereby removing the possibility of negative optical property values. While there are other
models, like clustered lumpy-object model which can describe anatomical heterogeneity [19],
in this first work, we examine the simplest, which is the lumpy-object model. Anatomical tissue
structure representation using the clustered lumpy-object model is one of the motivations of
our future research work.

The generation of the optical property heterogeneity map and the solution of the coupled
diffusion equations were performed on a LINUX workstation with AMD Opteron 250 (2.4
GHz) and 4.0 GB RAM. Twenty five points for illumination and 128 points for collection are
employed on the breast geometry to generate the complex solution of the coupled diffusion
equations. Figure 2 illustrates one view of the illumination and collection points on the breast
geometry.

2.3.1 Excitation light leakage—Figure 3 describes a typical experimental setup used in
our laboratory for imaging studies on phantoms mimicking the shape and average optical
properties of the human breast [2,21]. It includes: (1) a gain-modulated image intensifier; (2)
a 16-bit cooled CCD camera; and (3) a modulated laser diode. The phantom is illuminated by
the modulated excitation light delivered at discrete points on the surface by fiber optics and
the emission light is collected from fiber optics and delivered to the intensified CCD camera
for measurement. The collected light at the phantom surface is a mixture of both emission as
well as excitation light. Since only the emission light is desired, a scheme to reject the excitation
light is often employed. For this purpose in our laboratory, an 830-nm band-pass filter and a
holographic filter are used to reject 785-nm excitation light and to selectively pass 830-nm
emission light. The performance of a filter is quantified by the optical density (OD),

(9)

Subscript λ denotes the dependence of OD on the wavelength of the light; T is the transmittance;
I0 is the intensity of the incident light; and I is the intensity of the transmitted light. Equation
(9) shows that the higher the OD, the lower the transmittance. The performance of the filters
decreases when the angle of incidence of light deviates from zero. The filter specifications and
OD values as a function of incident angle for emission and excitation light are given elsewhere
[21].

It is noteworthy that the complete elimination of the excitation light from measurement of
emission at the tissue boundary is not possible. The presence of a small amount of excitation
light in the detected light is termed as excitation light leakage, and is a source of error in the
imaging data set. Therefore the detected light is a mixture of the emission light and the
excitation light which “leaks” through the filters. The overall intensity and phase of the detected
light is thus affected by the excitation light leakage, and is obtained by adding the transmitted
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emission and excitation photon density waves, i.e. Φx and Φm. Accordingly, if the emission
and excitation photon density waves at the collection points are given by ym = Im sin(ωt +
θm), and yx = Ix sin(ωt + θx), respectively, then the overall photon density wave transmitted
through filters is given by

(10)

where

(11)

(12)

Here ODλm and ODλx are the OD values of the filters for emission and excitation wavelengths,
respectively.

The OD values of 0.3009 for emission light and 5.8470 for excitation light are taken for 830-
nm band pass filter; whereas an OD value of 6 for the excitation light is taken for holographic
filter [21]. The angle of incidence is assumed to be 0o while determining the above OD values.
Zero degree incident angles can be achieved by allowing the fiber delivered light to pass
through a GRIN lens before it arrives at the filters [22], or collimating the imaged plane before
passing through the image quality filters [21].

In this study, the effect of using different filter efficiencies on the detection performance of the
imaging system is studied. For this purpose, we simulated excitation light rejection with OD
values varying from 3 to 7, simulating the range of ODs used in studies found in the literature
and the potential deterioration of filter performance owing to the non-normal incidence of
collected light.

2.3.2 Noise—In optical imaging systems, two main types of fundamental noise [23] are
thermal and quantum noise. The thermal noise is a result of the random fluctuations in the
current due to the thermal (Brownian) motion of charge carriers in any conductor. This is also
known as dark current. An example of dark current in the charged-coupled device (CCD)
system occurs when the thermal fluctuations in the CCD material releases electrons, which
contribute to the overall number of photoelectrons. Similarly, the randomness incurring in the
optical image measurements due to the counting of random arrival of photons is responsible
for quantum noise. Both types of noise follow Poisson distribution and are often non-additive
[24,25].

Amplification and quantization noise are the specific types of non-fundamental noise [26] in
an optical imaging system. In any intensified CCD detector system, the random conversion of
electrons to light gives rise to amplification noise. Quantization noise, however, is an inherent
noise in the amplitude quantization process and occurs due to the finite resolution of the analog-
to-digital converters (ADC). Both types of noise are additive and, in particular, amplification
noise has a Gaussian distribution [25].
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Imaging systems typically consist of many components which individually give rise to the
noise in the measurement. Thus the resulting noise becomes too complex to be described by a
single form of distribution. In most cases, researchers are forced to choose between one of
these assumptions: (1) the noise from one particular component is dominant over that of other
sources, and thus can be neglected; or (2) the noise associated with different components of
the imaging system are additive, in which case the overall noise becomes Gaussian due to the
central limit theorem. Therefore, the actual experimental setup (see Fig. 3) and the noise
associated with its various components are analyzed to make proper assumption about the
distribution of the overall noise. The CCD camera used in our laboratory has a regulated
temperature control that keeps the chip temperature to as low as −41oC. At such low
temperature, the typical dark current of the CCD is in the order of 0.1 electrons per pixel per
second (e/p/s) of the exposure time. An exposure time of 400 ms further ensures that the dark
current noise in the measurements is negligible. Hence the noise of the detector system is
mainly governed by the image intensifier [27,28]. The image intensifier contains a wavelength
specific photocathode, a micro channel plate (MCP), and a phosphor screen. The random
striking of photons to the photocathode is the source of quantum noise. As this occurs before
the amplification process, the noise becomes amplified in the MCP. In addition, the
multiplication (gain) of electrons in the MCP introduces amplification error. These two noises
are assumed to be additive, so that the cumulative noise of the image intensifier is Gaussian
due to the central limit theorem. Since the quantum noise is dependent upon signal [29], the
overall noise is also assumed to be signal-dependent. Thus the standard Gaussian noise with
variance dependent upon the intensity of the light is used. Specifically, we add 5% Gaussian
noise to the detected light (coming through the filters), so that final measured intensity is given
by:

(13)

where  is the intensity of the light before it enters the image intensifier; and ℕ(0,1)denotes
a Gaussian distribution with zero mean and unit variance.

In contrast, a model to describe the noise in the phase measurements is not as simple. Therefore
a typical experiment in our laboratory has been compared with the simulation, which shows
that the noise in phase measurements follows approximately a uniform random distribution.
Consequently, a random value in the interval (−2o, +2o) has been considered as the conservative
noise estimate in the phase measurements. Mathematically, this noise can be described by

(14)

where ζ is a uniformly distributed random number in [0, 1]. The noise, nθ, is added to the phase
of detected light, which is a mixture of both emission and excitation photon density waves, to
obtain the noisy estimate of phase measurements.

2.4 Detection tasks
For detection tasks, there are two mutually exclusive hypotheses possible: (i) the signal-present
hypothesis (H1) where the measurements are made from a patient/phantom with a target (t);
and (ii) the signal-absent hypothesis (H0) where patient/phantom contains no target.

(15)
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(16)

Here g = IAC exp(−iθ ) as described in Eq. (5); f represents the normal, non-target portion of
the anatomy, while t represents the target (signal) portion. Both f and t are stochastic in real
situations and vary from patient to patient. In the case of fluorescence imaging, the stochastic
nature in f arises from both the non-specific fluorophore deposition as well as the heterogeneity
of the endogenous tissue optical properties due to the natural anatomical structure. The
stochastic nature of f is modeled using lumpy-objects as described in the previous section. This
study involves “signal-known exactly” (SKE) cases wherein the size and location of target is
known, and so the stochastic nature of t is not considered.

The target is taken to be a spherical volume of 1 cm3 centered in z-axis of the geometry shown
in Fig. 1. The fluorescent uptake of the target is considered to be 10 times higher than the
average background uptake, which means that its μaxf and μamf values are 10 times greater than
the corresponding average background values. Five locations of the target are considered at
depths varying from 1 cm to 5 cm. The depth of the target is measured as the distance between
the tip of the hemispherical portion of the breast geometry (coordinates: 0, 0, 5) and the center
of the spherical target volume.

2.4.1 Hotelling observer—The Hotelling observer is a linear discriminant that computes
the confidence level using only the linear manipulations on the measurement data [25]. Its test
statistic is given by the equation:

(17)

where Δḡe vector difference in the means of the vectors of discrete measurements under the
H1 and H0 hypotheses; Kg is the average covariance of the vector g (assumed to be the same
under each hypothesis); and superscript T denotes the transpose of the matrix. Mathematically,
Kg = 〈(g – 〈g〉n, f)(g–〈g〉n, f )T 〉 n, f, where 〈...〉n, f denotes average over all noise, n, and object
variations, f. While the covariance matrix maybe different under H1 and H0 hypotheses, we
assume that for a weak fluorescent signal, it is the same [25].

The Hotelling observer is called an optimal linear observer because it maximizes a measure of
separability between the two hypotheses, namely the target-present (H1) and target-absent
(H0). The degree of overlap of the density functions of the Hotelling test statistic, χHot (g),
determines the separability of the two hypotheses. As the degree of the overlap increases, the
detectability of the target decreases. The SNR associated with the Hotelling test statistic is a
measure of this overlap, and is given by the following expression:

(18)

Thus, the higher the value of the SNRHot, the higher the separability between the two
hypotheses, and the lower the overlap of the density functions of χHot (g) under the two
hypotheses. A higher value of the SNRHot corresponds to improved detectability of the target.

In both Eq. (17) and (18), the calculation of the average covariance matrix, Kg, is dependent
upon the size of the measurement data sample. Sample size should be large enough to ensure
a well conditioned covariance matrix, so that the inverse of the matrix, Kg

−1, is stable [30].
Decomposition of Kg into two terms, one representing the stochastic nature of f and the other
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the noise in the system [31], improves its conditioning even when large numbers of g are not
available. The decomposition approach is used to estimate the overall covariance matrix, Kg,
as

(19)

The first term, Kḡ, is average-data covariance matrix, and the second term, K̄n, is average
noise-covariance matrix. The two matrices are respectively given by Kḡ = 〈(〈g〉 n| f – 〈g〉 n, f)
(〈g〉 n| f –〈g〉 n, f)T〉f, and K̄n = 〈nnT〉n, f, where nnT denotes the tensor product of n with itself.
The advantage of this decomposition is that K̄n is usually diagonal and thus improves the
conditioning of the overall covariance matrix, Kg.

2.5 Simulated measurements
As shown in Fig. 2, twenty five illumination and 128 collection points are used to obtain the
boundary measurements of excitation/emission photon density wave amplitude (IACx, m) and
phase delay (θx, m) by solving the coupled diffusion equations. The vector g has a dimension
of 3200×1 for both intensity and phase measurements. The overall covariance matrix, Kg, has
a dimension of 3200×3200. In order to obtain a reasonable estimate of Kg, 7000 measurement
data sets (see Appendix I) were generated under both hypotheses (target-present and target-
absent) using the lumpy backgrounds as described in Section 2.2. Noise computed by Eq. (13)
and (14) were then added to g to evaluate the influence of noise. A Gaussian elimination method
was used to compute the inverse of matrix Kg. It should be noted that Kḡ for a homogeneous
background case becomes a null matrix, so we only considered K̄n when calculating Kg for
such cases.

The calculations of SNRHot values were performed on a LINUX workstation with AMD
Opteron 285 (2.6 GHz) and 8.0 GB RAM. The SNRHot was then used to quantify the detection
capability of the imaging system and to assess how target detection task is affected by (i)
strength of lumpy backgrounds, (ii) target depth, and (iii) filter performance in rejecting
excitation light.

3. Results
The 7000 imaging data vectors, g, required ~94 hrs of CPU time to simulate target-present and
target-absent cases. Additionally, the algorithm to compute the SNRHot value required ~2 hrs
of CPU time.

An example distribution of μaxi, μaxf, and μsx for the hundred percent exogenous and
endogenous lumps in the background is illustrated in Fig. 4(a) through 4(c). The lumpy
backgrounds for other lump strengths are not shown here for brevity.

3.1 Influence of lump strength
The detectability (SNRHot) of the fluorescent target superimposed in the lumpy backgrounds
of endogenous and exogenous optical properties at a depth of 1 cm was first examined as a
function of lump strength. Figure 5 illustrates how SNRHot of intensity (IAC) and phase (θ)
measurements wanes as a function of the lump strength of (a) endogenous optical properties,
and (b) endogenous as well as exogenous optical properties. Both Figs. show that the majority
of the information is contained by intensity measurements, portrayed by the higher SNRHot
values of intensity measurements than phase measurements. In both Figs., the SNRHot of
intensity and phase measurements decrease as the lump strength increases. The decrease in
SNRHot with increasing endogenous lump strengths indicates that endogenous lumps do affect
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the detectability of the target. This partially answers our concern in a previous study [8] where
we showed single cases of tomographically reconstructed images and advocated the need to
use sufficiently large imaging data in order to better understand the effect of lumpy
backgrounds on target detection tasks. Eppstein et al. [32] have also reported difficulty in
detecting a target when background variations in endogenous optical properties exceed a
specific range. Similarly, the overall decrease in the information of both intensity and phase
measurements as endogenous-and-exogenous lump strength increases is consistent with our
previous study regarding the sensitivity of the detection performance on uneven distribution
of disease markers in the background [8]. Indeed, when lumpy backgrounds in exogenous
properties are added to an already heterogeneous background in endogenous properties, the
information content is expectedly reduced. Nonetheless, in both cases of a heterogeneous
anatomical backgrounds alone and of the addition of non-uniform background distribution of
fluorescent contrast agent in a heterogeneous anatomical background, a large sample of
reconstructed images may provide further insight into the effect of lumpy backgrounds on
detection tasks.

3.2 Influence of target depth
Figure 6 illustrates the plots of SNRHot with target depths varying from 1 cm to 5 cm in
homogeneous backgrounds of the optical properties (i.e. the background optical properties
have no spatial variations and are equal to the average values given in Table I). The plots show
that the SNRHot for both intensity and phase measurements decreases as the target depth
increases with intensity measurements providing more information as evident from higher
SNRHot. However, the SNRHot does not follow this trend in the presence of heterogeneous
backgrounds as shown in Fig. 7 which illustrates SNRHot versus target depth in the presence
of lumpy backgrounds of endogenous as well as exogenous optical properties with hundred
percent lump strengths. Figure 7 shows that the phase measurements contain more information
(i.e. higher values of SNRHot) than the intensity measurements when depth is greater than ~1.5
cm. This indicates the importance of phase measurements in the fluorescence-enhanced
imaging when the target is embedded deep within the tissue. However, it is not our intention
to establish a general statement based exclusively on this result, and further investigations,
including experimental validation, are needed. We have verified that the increase in SNRHot
illustrated in Fig. 7 as the target depth increases from 4 to 5 cm is not due to mesh discretization
levels, but more likely due to the increased signal from more detectors as the target is probed
by more detectors in the hemispherical geometry. The increase in SNRHot of amplitude and
phase measurements with target depth is consistent in our studies (see below in Fig. 8).

3.3 Influence of excitation light rejection efficiency
Figure 8 illustrates the changes in the SNRHot of (a) intensity and (b) phase measurements with
varying target depths for increasing OD values. The target is present in lumpy backgrounds of
both endogenous and exogenous optical properties with one hundred percent lump strengths.
As anticipated, the SNRHot improves for all target depths as the OD value increases, a result
of more efficient excitation light rejection. Surprisingly, the SNRHot becomes insensitive to
OD when OD≥5 at all target depths. This result maybe reasonable when the emission fluence
is greater than the excitation fluence so that the ‘leakage’ is not the dominant noise factor in
heterogeneous backgrounds. However, as the background heterogeneity decreases, we might
expect higher SNRHot with increased filter performance. Overall, the Hotelling analysis
provides an important tool to optimize quality of the filters used in the imaging system under
realistic situations.
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4. Discussion
Most imaging modalities typically involve phantom studies as the first step before the clinical
trials [33–35]. Phantom studies are used as a verification for the validity of the imaging method.
In fluorescence-enhanced optical imaging, phantom studies that incorporate optical properties
variations representative of heterogeneous tissue structure is a difficult task given that the
anatomical structure of one patient is randomly different from another. Specifically, the optical
properties of a tissue medium are characterized by the absorption and scattering coefficients.
The absorption coefficient is a measure of the amount of light absorbed by: (i) oxy- and deoxy-
hemoglobin in the blood flowing through blood capillaries, (ii) water retained in the tissue, and
(iii) lipids present in the cell membrane [36]. The scattering coefficient is a measure of the
amount of light scattered due to the refractive index mismatch between the extracellular and
intracellular compartments in a tissue. These tissue properties affect the absorption and
scattering of light in a tissue and vary spatially. The same may be said about the distribution
of molecularly targeting, NIR fluorescent contrast agents. Heterogeneous distribution of
imaging agent will depend upon the level of expression of the marker not only in the diseased
target tissue, but also in the surrounding normal tissue.

The performance of an imaging system can be characterized by how an observer fares in the
task of detecting a diseased target tissue. An observer, either a human or a computer algorithm,
which performs the task of target detection, is specified; and the figures of merit to quantify
the task performance are established [31,37,38]. Human observers can be assessed using
psychophysical studies and receiver operating characteristic (ROC) curve analysis [39], but
such studies do not separate the hardware from the reconstruction algorithms [40]. Thus, to
directly assess the quality of an imaging system, mathematical observers that employ only the
raw measurements are used [41]. This technique has been successfully used in PET and SPECT
imaging and allows the imaging hardware to be optimized independently while still using task
performance as the guide. The next step in this process is to assess human performance using
reconstructed images.

5. Conclusions
In brief, we have presented and demonstrated a method of evaluating fluorescence-enhanced
optical imaging systems using task-based methods. Specifically, we have investigated the SKE
cases where the location, shape and contrast of the target are assumed to be known. We
employed the Hotelling observer to directly assess the target-detection-based information
content of the imaging measurements. This analysis has led to quantitative comparisons of the
performance of our imaging system at varying target depths, light-rejection filter properties,
and background strengths. In addition, fluorescence-enhanced optical imaging has typically
been evaluated using a target in a homogeneous background of optical properties. We have
used the lumpy-object model to simulate patient variability which is known to adversely affect
task performance in other modalities and, thus, should be accounted for in fluorescence-
enhanced optical imaging. Description of the image-reconstruction algorithms is not within
the scope of this paper. However, upon assuming the Hotelling observer is a reasonable
surrogate for the Bayesian observer, we have shown that we can assess and potentially optimize
our imaging hardware independently from the reconstruction algorithm.

Specifically, the Hotelling observer study demonstrates that the detectability of the target
decreases substantially when the lumpy backgrounds are considered to simulate the anatomical
structure and/or the heterogeneous distribution of the disease markers that may be targeted by
fluorescent contrast agents. We have demonstrated the importance of phase-information when
detecting targets that are deep within the tissue. Finally the performance of the Hotelling
observer provides an important tool to optimize the quality of the filters used in the imaging
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system. Future studies will address the reconstruction algorithms and the performance of
human observers using reconstructed images.
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Appendix I: Bias in Hotelling SNR
In Section 2.4.1, Eq. (19) describes that the overall covariance matrix, Kg, is decomposed into
two matrices, Kḡ and K̄n. The disadvantage of this decomposition is that it introduces bias in
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the estimate of the SNRHot. In other words, the estimate of SNRHot varies with the number,
N, of imaging data sets, g. The value of SNRHot decreases as N increases and reaches a constant
(true value of SNRHot) for large N. To illustrate using a smaller data set than described in the
text, Fig. 9 describes a plot of SNRHot versus N, where the imaging measurements were
conducted on the breast phantom with only one source lighted so that the length, M, of each
vector g equals 128. Figure 9 shows that the true value of SNRHot is achieved for approximately
N≥10×M. Sain et al. [30] also advocate using number of imaging data sets ten times more than
the length of g. For this reason, the theoretical value of N for our study involving 25 sources
and 128 detectors should be 10×25×128=32000. Due to the computation time limitations and
the fact that the values of SNRHot are used only relatively for comparing different case studies
(with constant M), we chose N=7000 to obtain reasonable estimates of SNRHot.

Appendix II: Nomenclature

b The lumpy background

b0 Spatial mean of the lumpy background

c Speed of light in the medium

Dx,m Photon diffusion coefficients at excitation/emission wavelengths

f A vector containing the spatial values of the optical parameter being imaged

g Coefficient of anisotropy of the medium

g A vector containing the measurements at the specified boundary locations

Δḡ Vector difference in the means of g under H1 and H0 hypotheses

H The imaging operator

H0 Signal-absent hypothesis

H1 Signal-present hypothesis

I Intensity of the transmitted light

I0 Intensity of the incident light

IACx, m Amplitudes of the photon density wave at excitation/emission wavelengths

Kg Average covariance of the vector g

Kḡ Average-data covariance matrix

K Average noise-covariance matrix

n

l0 Lump strength

Np Number of lumps

(0,1) Gaussian distribution with zero mean and unit variance

n Vector of noise in the measurement system

ODλ Optical density value at some wavelength

r Location of some point in a 3D space

rn Uniformly distributed location of the nth lump

S Photon source strength

SNRHot The Hotelling observer’s signal-to-noise ratio

T Transmittance

V (Ω) Volume of the hemispherical portion of the breast geometry

w Lump width

⊥ The normal direction outward to the surface

〈...〉 n, f Average over all noise and object variations
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∇ The del operator

χHot Hotelling observer’s test statistic

Φx, m Excitation/emission photon fluence rates

φ Fluorescence quantum

γ Constant related to the optical refractive index mismatch at the boundary

μax, mf Exogenous absorption coefficients at excitation/emission wavelengths

μax, mi Endogenous absorption coefficients at excitation/emission wavelengths

μsx, m Scattering coefficients at excitation/emission wavelengths

θx, m Phase lags at excitation/emission wavelengths

τ Fluorescence lifetime

Ω The domain representing the hemispherical portion of the breast geometry

ω Modulation frequency of the NIR source
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Fig. 1.
The breast-shaped geometry consisting of a 10 cm diameter hemispherical top to simulate a
human breast. The bottom cylindrical base has 20 cm diameter and is 2.5 cm high. Also shown
is 1 cm3 target at a depth d. All dimensions are in centimeters.
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Fig. 2.
The locations of the point sources and detectors on the breast-shaped geometry. The red points
denote the sources and the blue points denote the detectors.
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Fig. 3.
Schematic of the experimental setup. The various components are labeled to describe: (A) a
gain-modulated image intensifier, (B) a 16-bit cooled CCD camera, (C) a modulated laser diode
used as a light source, (D) an 830-nm band pass filter, (E) a holographic notch filter, (F) the
breast shaped phantom, and (G) the detector fibers leading to an interfacing plate. The Fig. is
not to scale.
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Fig. 4.
Movies depicting the lumpy backgrounds of endogenous and exogenous optical properties
using Lumpy object model. The lumps in μaxi (0.72 MB) (a), μaxf (0.78 MB) (b), and μsx (0.74
MB) (c) are shown as cutplanes to the breast geometry (Fig. 1) parallel to yz-plane. The
snapshots shown above are cutplanes passing through x=−1 cm. In each case, one hundred
lumps are uniformly generated in the hemispherical volume with spatial spreads of 5 mm and
strength values equal to hundred percent of the average background values of optical properties
as given in Table I.

Sahu et al. Page 19

Opt Express. Author manuscript; available in PMC 2010 March 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
SNRHot computed from simulated measurements of light intensity (filled circles) and phase
(open circles) as a function of strength of lumps in (a) the endogenous optical properties
(μaxi, μami, μsx, and μsm), and (b) endogenous as well as exogenous (μaxf, and μamf) optical
properties vs. the strength of lumps. The target is a 1 cm3 spherical volume at a depth of 1
cm and contrasted from its surroundings by 10:1. The centroid of the target is at (0, 0, 4) inside
the breast geometry (Fig. 1).
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Fig. 6.
SNRHot computed from simulated measurements of light intensity (filled circles) and phase
(open circles) in homogeneous background of optical properties vs. the depth of 1 cm3 spherical
target contrasted from its surroundings by 10:1. The centroid of the target lies in the z-axis of
breast geometry (Fig. 1). The target depth is measured as the distance from its centroid to the
point (0, 0, 5) in breast geometry.
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Fig. 7.
SNRHot computed from simulated measurements of light intensity (filled circles) and phase
(open circles) in hundred percent lumpy backgrounds of endogenous (μaxi, μ ami, μsx, and
μsm) as well as exogenous (μaxf, and μamf) optical properties vs. the depth of 1 cm3 spherical
target contrasted from its surroundings by 10:1. The centroid of the target lies in the z-axis of
breast geometry (Fig. 1). The target depth is measured as the distance from its centroid to the
point (0, 0, 5) in breast geometry.
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Fig. 8.
SNRHot computed from simulated measurements of (a) intensity, IAC, and (b) phase, θ, in one
hundred percent lumpy backgrounds of endogenous as well as exogenous optical properties
vs. the depth of 1 cm3 spherical target contrasted from its surroundings by 10:1. The centroid
of the target lies in the z-axis and the target depth is measured as the distance from its centroid
to the point (0, 0, 5) in breast geometry (Fig. 1). The various plots show the affect of varying
optical densities (OD) of the excitation light rejection filter.
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Fig. 9.
SNRHot computed from simulated measurements of intensity, IAC, in one hundred percent
lumpy backgrounds of endogenous as well as exogenous optical properties vs. the number of
imaging data sets, N. The centroid of the target lies in the z-axis and it is contrasted from its
surroundings by 10:1. One twenty eight point detectors (as shown in Fig. 2) are used for the
collection of light and only one source is lighted such that the measurement data set is a vector
of 128×1.
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