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Systemic acquired resistance is a widespread phenomenon in the plant kingdom that confers heightened and often enduring
immunity to a range of diverse pathogens. Systemic immunity develops through activation of plant disease resistance protein
signaling networks following local infection with an incompatible pathogen. The accumulation of the phytohormone salicylic
acid in systemically responding tissues occurs within days after a local immunizing infection and is essential for systemic
resistance. However, our knowledge of the signaling components underpinning signal perception and the establishment of
systemic immunity are rudimentary. Previously, we showed that an early and transient increase in jasmonic acid in distal
responding tissues was central to effective establishment of systemic immunity. Based upon predicted transcriptional networks
induced in naive Arabidopsis (Arabidopsis thaliana) leaves following avirulent Pseudomonas syringae challenge, we show that a
variety of auxin mutants compromise the establishment of systemic immunity. Linking together transcriptional and targeted
metabolite studies, our data provide compelling evidence for a role of indole-derived compounds, but not auxin itself, in the
establishment and maintenance of systemic immunity.

Plants growing under natural conditions are contin-
uously subjected to a wide variety of abiotic and biotic
stresses. Many of the defense mechanisms employed to
mitigate the effects of these stresses have been found to
involve signal transduction pathways controlled by
phytohormones. The first hormones to be marked as
central players in defense against plant pathogens were
salicylic acid (SA), jasmonic acid (JA), and ethylene (ET;
Glazebrook, 2005), with roles more recently attributed
to abscisic acid (ABA), gibberellins, and auxin (Navarro
et al., 2006, 2008a; de Torres-Zabala et al., 2007; Wang
et al., 2007; Grant and Jones, 2009; Kazan and Manners,
2009). JA/ET- and SA-mediated defense pathways an-
tagonize each other, with JA/ET largely defining de-
fense against necrotrophic pathogens and insects, while
SA is central in defense against biotrophic pathogens
(Glazebrook, 2005). Despite this well-established antag-
onism between SA and JA/ET signaling pathways,
examples of synergism also exist depending on the
relative phytohormone concentrations (Mur et al.,
2006). Temporal separation of the two responses and

their direct effects in distal tissues have also been
shown to alter the interaction between these hormones
(Thaler et al., 2002; Spoel et al., 2007). The contribution
of auxin to defense appears to fit within the biotroph-
necrotroph, SA-JA/ET antagonism model, with several
recent reports linking auxin with susceptibility to the
hemibiotroph Pseudomonas syringae (Navarro et al.,
2006; Chen et al., 2007; Wang et al., 2007; Zhang et al.,
2007) and negative cross talk between SA and auxin sig-
naling networks. Conversely, mutations in key auxin
signaling components or chemical inhibition of auxin
transport lead to an increased susceptibility to the
necrotrophic fungi Plectosphaerella cucumerina and Bo-
trytis cinerea (Llorente et al., 2008).

Perception of evolutionarily conserved microbe-
associated molecular markers (MAMPs) by the host
plant initiates basal defense mechanisms. Navarro
et al. (2006) showed that this detection of nonself led
to suppression of the F-box auxin receptor, TRANS-
PORT INHIBITOR RESPONSE1 (TIR1), and its AUXIN
SIGNALING F-BOX (AFB) paralogs through posttrans-
criptional silencing by microRNAs. The importance of
these SCFTIR1/AFB receptor/ubiquitination complexes
was confirmed by the increased growth of virulent
P. syringae pv tomato (Pst) in transgenic lines over-
expressing AFB1. Virulent pathogens are capable of
surmounting MAMP-triggered immunity through the
deployment of a constellation of protein effectors and
phytotoxins. One such protein effector, AvrRpt2,
which promotes virulence in Arabidopsis (Arabidopsis
thaliana) lacking the disease resistance gene RPS2, was
found to increase levels of the auxin indole acetic acid
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(IAA). Transgenic plants expressing AvrRpt2 in an
rps2 null background exhibited a variety of pheno-
types associated with altered auxin physiology (Chen
et al., 2007). Both Chen et al. (2007) and Wang et al.
(2007) reported that treatment of plants with the
synthetic auxin 1-naphthalacetic acid promoted the
development of disease following infection with vir-
ulent Pst. Full genome microarray experiments of
plants treated with the SA analog benzothiadiazole
S-methylester revealed inhibition of auxin sig-
naling pathways (Wang et al., 2007). This inhibition
was predicted to result from the stabilization of auxin
repressor proteins in a mechanism apparently inde-
pendent from the posttranscriptional pathway
induced by MAMPs. The antagonism of auxin tran-
scriptional responses to SAwas found to be reciprocal,
at least in the case of the SA-associated defense marker
PR1. SA-induced expression of PR1 was diminished
with 1-naphthalacetic acid cotreatment. Inoculation of
Arabidopsis with P. cucumerina induces the expression
of both PR1 and the JA/ET-dependent marker, defen-
sin PDF1; susceptible auxin signaling mutants were
not significantly affected in this response, but pre-
treatment of plants with the auxin transport inhibitor
triiodobenzoic acid, which yielded similar susceptibil-
ity, did act to reduce PDF1 expression while enhancing
PR1 expression (Llorente et al., 2008). Interestingly,
infection of the stabilized repressor of auxin signaling,
axr2-1, produced a significantly greater induction of
the JA biosynthesis gene LOX3 than in wild-type
plants, indicating that auxin may act differentially in
affecting separate branches of pathogen-responsive,
JA-mediated responses.
Additional evidence for the relationship between

SA and auxin has come from studying members of
the GH3 family of early auxin-responsive genes.
GH3 genes encode acyl-adenylate/thioester-forming
enzymes, capable of conjugating amino acid residues
to a number of substrates. In Arabidopsis, GH3.5 has
been shown to adenylate both SA and IAA (Zhang
et al., 2007). An activation-tagged mutant of GH3.5
resulted in both elevated levels of SA and increased
PR1 expression as well as higher levels of free IAA
following infection. A model has been proposed
whereby GH3.5 plays dual roles, positively modulat-
ing auxin responses and increasing susceptibility in a
compatible interaction, while during an incompatible
interaction, GH3.5 positively modulates SA responses,
increasing resistance. By contrast, GH3.12/AvrPphB
Susceptible3 (PBS3) acts on 4-substituted benzoates,
perhaps by priming or inducing SA biosynthesis
(Okrent et al., 2009). In rice (Oryza sativa), GH3.8
decreases free IAA levels when overexpressed, most
probably by increasing the amount of IAA conjugated
to Asp (Ding et al., 2008). Increased IAA conjugation
was associated with increased resistance to Xanthomo-
nas oryzae pv oryzae and was accompanied by sig-
nificantly decreased free SA levels. In addition,
transcripts of genes associated with both SA-mediated
disease resistance and JA biosynthesis decreased.

These data indicate that the resistance conferred
by GH3.8 is independent of either salicylate or jas-
monate signaling pathway activation, although the
suppression of SA or JA responses may be crucial. The
importance of auxin in plant defense responses is
further emphasized by the number of plant pathogens
that synthesize auxin in order to facilitate virulence
(for review, see Robert-Seilaniantz et al., 2007).

Systemic acquired resistance (SAR) is a broad-spec-
trum, lasting resistance found in naive leaves distal to
an infection event (Durrant and Dong, 2004; Grant and
Lamb, 2006). Originally associated with response to a
local necrotizing pathogen, most SAR studies focus on
incompatible interactions induced by classic gene-for-
gene interactions (Durrant and Dong, 2004). However,
induced resistance has also been reported for compat-
ible fungal (Caruso and Kuc, 1977; Cohen and Kuc,
1981) and bacterial (Attaran et al., 2009) infections. A
similar resistance has also been described for the
systemic response to localized MAMP-triggered im-
munity (Mishina and Zeier, 2007).

Recently, SAR has been reported following chal-
lenge with virulent P. syringae (Attaran et al., 2009),
while previous studies have reported systemic in-
duced susceptibility (Cui et al., 2005) in Arabidopsis
and systemic induced tolerance in tomato (Solanum
lycopersicum; Block et al., 2005). These conflicting data
may arise from the time of challenge (Griebel and
Zeier, 2008), differing growth conditions, or the age of
challenged plants.

This study focuses upon the molecular basis of the
establishment of SAR resulting from incompatible
interactions, which is ultimately associated with the
accumulation of SA in the systemic tissue. In Arabi-
dopsis challenged with avirulent Pst, the first detect-
able systemic gene expression responses to infection,
however, are associated with JA signaling (Truman
et al., 2007). The importance of this transient JA-
associated response has led to speculation that SAR
may depend on a synergistic interaction of JA and SA
signaling networks. In addition to dual defense net-
works being involved, there is now compelling, but
sometimes contradictory, evidence that multiple sig-
nals, including both methyl salicylate and a lipid-
derived molecule that may or may not be azelaic acid,
and terpenoids are exported through the phloem from
immunized leaves together with nonessential signals
such as increased JA levels (Maldonado et al., 2002;
Park et al., 2007; Truman et al., 2007; Chaturvedi et al.,
2008; Vlot et al., 2008b; Attaran et al., 2009; Jung et al.,
2009; Shah, 2009). Understanding the nature and in-
teraction of these signals represents a major challenge
in the field (Shah, 2009).

Reanalysis of our early systemic transcriptional data
(Truman et al., 2007) identified a subset of genes up-
regulated in systemic leaves following avirulent chal-
lenge that are also regulated by auxin. Therefore, we
tested a selection of auxin signaling mutants for their
capacity to establish SAR. The auxin influx transporter
AUX1 and AXR4, which controls the localization of
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AUX1 (Bennett et al., 1996; Kepinski and Leyser, 2005;
Dharmasiri et al., 2006), were both required for SAR to
moderately or strongly virulent P. syringae, along with
the auxin receptor TIR1 (Bennett et al., 1996; Kepinski
and Leyser, 2005; Dharmasiri et al., 2006). Here, we
present our findings that disruption of auxin transport
results in significant changes in the abundance of
several indolic compounds that may be central to the
development of SAR. Furthermore, the dynamics of
JA-SA cross talk in aux1 and axr4 mutants appears to
be shifted, indicating that a complex interplay of
phytohormones is at work during the establishment
of SAR.

RESULTS

Auxin and Indole Glucosinolate Biosynthetic Pathways

Are Up-Regulated during the Systemic Response to
Avirulent Infection

Previous global profiling of systemic transcrip-
tional responses in Arabidopsis following an RPM1-
mediated incompatible interaction with Pst DC3000
carrying the avirulence gene avrRpm1 led to the iden-
tification of 394 significantly differentially expressed
genes (Truman et al., 2007) compared with either the
DC3000hrp mutant, which cannot deliver bacterial
effector proteins into the plant cell, or virulent
DC3000. There were no significant differences in
gene expression between DC3000hrp and DC3000,
indicating that only the presence of avrRpm1 was
responsible for reconfiguring gene expression and
that type III effectors at 4 h post inoculation (hpi) did
not impact transcription in systemic tissue. The ma-
jority of these genes (369) were up-regulated, and they
contained a significant overrepresentation of genes
encoding components of aromatic amino acid biosyn-
thesis pathways and pathways incorporating aromatic
amino acids into secondary metabolites. Of particular
interest is the induction of two genes encoding the
cytochrome P450s CYP79B2 and CYP79B3; both these
enzymes catalyze the conversion of Trp to indole-3-
acetaldoxime, a key branching point that may be
converted into IAA, the antimicrobial phytoalexin
camalexin, or indole glucosinolate (IG) defense com-
pounds (Mikkelsen et al., 2000; Zhao et al., 2002;
Glawischnig et al., 2004; Bednarek et al., 2009; Clay
et al., 2009). In addition to these enzymes, the MYB
transcription factor ATR1, which has been shown to
positively regulate components of both Trp and IG
biosynthesis, is also strongly induced (Celenza et al.,
2005). Overexpression of each of these three genes has
been shown to result in increased IAA and IG levels.
The synthesis of camalexin is also enhanced if elicited
by chemical treatment, infection (Zhao et al., 2002;
Celenza et al., 2005; Malitsky et al., 2008), or via
expression of a constitutively active form of MKK9
(Xu et al., 2008). In addition to these elements, critical
to controlling auxin homeostasis, two probe sets

targeted to three genes predicted to encode auxin
conjugate hydrolases were strongly induced. ILL5,
ILL6, and IAR3 encode proteins that most likely func-
tion in releasing conjugated auxin into the pool of free
IAA. This function contrasts to the GH3 family of
proteins, some of whose members have been shown to
conjugate IAA and impact disease resistance re-
sponses (Davies et al., 1999; Zhang et al., 2007; Ding
et al., 2008). Recently, Trp conjugates of IAA have been
shown to be potent inhibitors of auxin signaling; thus,
some auxin conjugate hydrolases will have the dual
effect of releasing active IAA and removing a negative
regulator (Staswick, 2009). Since these highlighted
expression profiles could confer a change in auxin
homeostasis during the earliest stages of the develop-
ment of SAR, we interrogated our data set with a list of
genes predicted or known to be involved in the bio-
synthesis of indolic compounds. We identified signif-
icant changes in response to DC3000(avrRpm1) relative
to a wild-type DC3000 challenge as rapidly as 4 hpi
in genes known to be involved in the biosynthesis of
Trp, auxin, and other derivatives of Trp (Fig. 1).

Most striking, the induction of CYP79B2 and
CYP79B3 is accompanied by increases in other tran-
scripts that would act to commit indole-3-acetaldox-
ime to IG biosynthesis: CYP83B1, UGT74B1, and the
sulfotransferase encoded by SOT16 (Bak et al., 2001;
Grubb et al., 2004; Piotrowski et al., 2004). However,
IAA may also be synthesized through degradation of
IGs to indole-3-acetonitrile and conversion to IAA by
nitrilases such as NIT3 (Grubb et al., 2004), whose
transcripts are moderately increased during SAR.
Indole-3-acetaldoxime precursor may also be directed
toward camalexin biosynthesis, because CYP71A13
and PAD3, which catalyze the initial and final steps
in this pathway, respectively, are both up-regulated
(Schuhegger et al., 2006; Nafisi et al., 2007). No GH3
family genes known to conjugate IAA were seen to
increase significantly. The GH3 family member JAR1,
whose product conjugates Ile to JA (Staswick et al.,
2002), and PBS3 (Okrent et al., 2009), which may be
involved in conjugating SA precursors, both exhibited
marginally increased expression.

Auxin Biosynthesis and Transport Mutants Are
Compromised in SAR

The impact of transcripts associated with the bio-
synthesis of indolic compounds, including auxin, was
unexpected, because we cannot detect increases in
auxin during the early phase of the establishment of
SAR (Supplemental Table S1). A number of plants with
altered auxin homeostasis due to mutation or ectopic
overexpression of components in auxin biosynthesis
exhibit gross morphological abnormalities and are
unsuitable for undertaking SAR experiments. To ad-
dress a role of auxin signaling in SAR, we tested
Arabidopsis auxin signaling or auxin biosynthesis
mutants that exhibit no gross morphological abnor-
malities. The immunizing effect resulting from RPM1-
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mediated recognition of DC3000(avrRpm1) was tested
in the auxin F-box receptor mutant tir1 (Kepinski and
Leyser, 2005). In three independent experiments, no
SAR effect was observed in tir1 plants challenged with
virulent P. syringae pv maculicola in secondary leaves
following an initial inoculation with DC3000(avrRpm1)
(Fig. 2A) or more virulent DC3000 (data not shown).
Strikingly, SAR response was also completely abol-
ished in the auxin polar transport mutants aux1 (aux1-
22) in five independent experiments, axr4 (axr4-2) in
three independent experiments, and the cyp79b2/
cyp79b3 double mutant in two independent experi-
ments (Fig. 2B). This cyp79b double mutant is blocked
in the synthesis of indole-3-acetaldoxime, has reduced
IAA, and is the only route to the production of IG and
camalexin (Zhao et al., 2002). axr4 acts in the same
pathway as aux1, actively disrupting trafficking of
AUX1 to the plasma membranes of epidermal cells
(Dharmasiri et al., 2006). Like cyp79b2/cyp79b3, both

aux1 and axr4 mutants resembled tir1 in its compro-
mised SAR.

Auxin Transport Mechanisms Are Critical to JA and SA
Signaling Dynamics

The transcriptional responses of axr4, aux1, tir1, and
cyp79b2/cyp79b3 were examined using quantitative re-
verse transcription (qRT)-PCR. A subset of genes was
selected from available microarray data, together with
classical markers of SAR and SA-associated defense
responses that are expected to define the establishment
of SAR. At 4 hpi, all four mutants showed a significant
increase in the systemic expression of At5g56980, orig-
inally used as a marker of early systemic responses
(Truman et al., 2007) following avirulent challenge (Fig.
3A). By contrast, inoculation with the DC3000hrp mu-
tant, which is unable to deliver bacterial effectors, or
virulent DC3000 (data not shown) does not induce
At5g56980 systemically. Therefore, it seems likely that
auxin signaling plays no role in the generation or
perception of the mobile signal(s) responsible for this

Figure 2. Auxin signaling, transport, and biosynthesis mutants fail to
develop effective systemic immunity. Multiplication of virulent P.
syringae at 3 or 4 d after inoculation in SAR-induced plants. Leaves
were either mock (10 mM MgCl2) inoculated or challenged with
DC3000(avrRpm1) at 1 3 108 cfu mL21. Two days later, secondary
leaves were challenged with P. syringae pv maculicola. A, SAR is
abolished in the auxin receptor mutant tir1. Bacterial growth was
measured at 4 dpi. B, Attenuation or abolition of SAR in the auxin
transport mutants aux1 and axr4 and the indole-3-acetaldoxime bio-
synthesis double mutant cyp79b2/cyp79b3. Bacterial growth was
measured at 3 dpi. These experiments were repeated two or three
times with similar results, using either DC3000 or P. syringae pv
maculicola. Error bars indicate the SE of four or five replicates.

Figure 1. Indole biosynthetic components are induced systemically
following avirulent bacterial challenge. Affymetrix ATH1 arrays were
used to profile systemic responses to bacterial infection in three
independent experiments. Copy RNAwas derived from mRNA isolated
from distal systemically responding Col-0 leaves at 4 h after challenge
with either Pst DC3000 or DC3000(avrRpm1) as described by Truman
et al. (2007). The genes plotted represent all the significant changes
observed in the biosynthesis of Trp, auxin, and other indolic com-
pounds together with regulatory components known to control these
pathways. Fold change values represent ratios of expression changes in
DC3000(avrRpm1)-responding leaves relative to DC3000 challenge.

Auxin Mutants Compromise SAR

Plant Physiol. Vol. 152, 2010 1565



phase of the elaboration of SAR, although redun-
dancy in auxin signaling and biosynthesis mean we
cannot exclude this possibility. Many of the genes
up-regulated systemically by DC3000(avrRpm1) at 4
hpi are induced only transiently, correlating with the
transient increase in JA levels in systemic leaves. The
transcriptional dynamics of at least a subset of these
genes is inverted in aux1 (Fig. 3, B–D), including
JAZ10, encoding one member of a family of negative
regulators of JA signaling (Chini et al., 2007; Thines
et al., 2007; Chung and Howe, 2009). The initial
induction of JAZ10 by DC3000(avrRpm1) in relation
to DC3000 is very strong, approximately 60-fold, in
systemic leaves at 4 hpi; this relative induction
declines exponentially over the next 6 h (Fig. 3B,
note the log2 scale; Supplemental Table S2). The early
expression of JAZ10 fits neatly into a model of the
development of SAR in which the attenuation of JA
signaling would see JA-responsive genes return to
basal levels prior to the induction of SA-mediated
responses known to be essential to the establishment
of SAR. JAZ10 shares this expression pattern with
the indole-3-acetaldoxime biosynthesis component

CYP79B3, the IG biosynthesis component CYP83B1,
the camalexin biosynthesis component PAD3, and
the putative auxin conjugate hydrolases ILL5 and
ILL6. RT-PCR measurements of the systemic re-
sponses to DC3000 and DC3000(avrRpm1) across
four time points (4, 6, 8, and 10 hpi) and three
genotypes (Columbia [Col-0], aux1, and axr4) reveal
strongly coregulated expression of these genes, with
correlation coefficients between genes ranging from
0.70 to 0.96 (Supplemental Table S3). All, with the
exception of ILL5, are up-regulated in aux1 in re-
sponse to DC3000(avrRpm1), although not as strongly
as the wild type (Fig. 3C). In aux1, there is a modest
decrease in the level of induction of these genes over
time, again with the exception of ILL5, which dra-
matically increases. However, their expression in
SAR-responsive tissue relative to the wild type
steadily increases over time (Fig. 3D). Similar trends
were observed in axr4, with the exception of PAD3
(Supplemental Fig. S1), consistent with their function
in a shared pathway. Based upon these data, aux1
was chosen for further detailed analysis of compro-
mised SAR responses.

Figure 3. The kinetics of systemic transcriptional responses to avirulent inoculation is disrupted in the aux1 mutant. The
accumulation of transcripts encoding key signaling components was analyzed in systemically responding tissue by qRT-PCR. A,
RT-PCR shows the rapid accumulation of At5g56980, a marker for the perception of a systemic signal(s) in systemic tissue after
avirulent (avr) challenge compared with responses to the disarmed hrpA mutant of Pst DC3000 capable of eliciting basal
defenses (hrp). The error bar shows the SD of three replicates. A strong response was also observed in the aux1, axr4, tir1, and
cyp79b2/cyp79b3 mutants. B to D, JAZ10, CYP79B3, CYP83B1, PAD3, ILL5, and ILL6 share a common expression pattern. B,
Up-regulation in response to DC3000(avrRpm1) compared with DC3000 (DC) declines linearly over time in wild-type
Arabidopsis. C and D, Induction of these genes is not abolished in aux1 (C) but exhibits an inverted response relative to the wild
type (D). qRT-PCR analyses were repeated in two or three independent experiment with similar results.
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In contrast to the genes coexpressed with JAZ10,
transcripts associated with SA-mediated defense re-
sponses and the later stages of SAR development are
not induced by DC3000(avrRpm1) at 4 hpi. PR1 is a
classical marker for SAR, while FMO1 has recently
been identified as an important regulator of both basal
defenses and SAR (Uknes et al., 1992; Bartsch et al.,
2006; Mishina and Zeier, 2006). Both these genes were
expressed at higher levels in aux1-22 at 8 hpi, but by 48
hpi they were substantially lower in aux1 compared
with the wild type (Fig. 4). The differential impact
of aux1 on SA-responsive genes mirrors its impact on
JA-responsive genes. It is tempting to speculate that
a delayed, reduced, but extended accumulation of JA
explains this disruption.

The aux1 Mutant Distorts the Hormone Profile of

SAR Leaves

Plant hormone balance plays an important role in
plant-pathogen interactions (Grant and Jones, 2009).
Liquid chromatography coupled with mass spectros-
copy (LC-MS) was employed to measure SA, JA, and
ABA in the systemic leaves of Col-0 and aux1 plants at
21 hpi (Forcat et al., 2008). This time point was chosen,
based upon preliminary qRT-PCR experiments, as
being representative of a stage in the development of
SARwhen the transient accumulation of JA has passed
and pathways leading to elevated SA were being
engaged. While free SA levels were only moderately
increased following an avirulent DC3000(avrRpm1)
challenge in Col-0 (Fig. 5A), levels of free SA and
conjugated SA were significantly reduced (approxi-
mately 3-fold less; P , 0.01) in aux1 responding to
DC3000(avrRpm1) comparedwith the wild type (Fig. 5,
A and B). SA levels in aux1 were slightly, but not
significantly, higher with avirulent inoculation than
with virulent bacteria but lower than with the dis-
armed mutant. Both JA and ABA, phytohormones

known to promote increase susceptibility to Pst
(Koornneef and Pieterse, 2008), accumulated to signif-
icantly higher levels in aux1 responding to DC3000
(avrRpm1) compared with Col-0 (Fig. 5, C and D). The
antagonism between JA and SA is well established
(Koornneef et al., 2008; Koornneef and Pieterse, 2008);
more recently, it has been shown that ABA plays an
important role in bacterial virulence and that ABA
suppresses chemically induced SAR (de Torres-Zabala
et al., 2007, 2009; Yasuda et al., 2008). Auxin has been
shown to act antagonistically to ABA in the regulation
of stomatal opening, and both hormones also interact
in the regulation of root development (Rock and Sun,
2005). Enhanced ABA levels in aux1 may act to sup-
press both SA biosynthesis and responses to SA, as
appears to occur during local DC3000 infection (de
Torres Zabala et al., 2009).

aux1 Changes the Ratios of Indolic Compounds
during SAR

The same tissue extracts used for phytohormone
measurements were profiled for a range of indolic
compounds predicted to be affected by SAR based on
changes in the global profiling of transcriptional re-
sponses, and indicative ion signatures seen in NMR
and flow infusion electrospray mass spectrometry of
aux1-challenged leaves suggested changes in indolic
compounds (Fig. 6; data not shown). LC-MS was
used to measure the relative abundance of the main
aliphatic glucosinolates and IGs. Despite the tran-
scriptional up-regulation of almost the entire IG bio-
synthesis pathway from 4 hpi onward, no major
glucosinolate changes in systemically responding
leaves of wild-type plants were evident following a
DC3000(avrRpm1) immunizing challenge. Strikingly, a
reduction in the levels of 4-methoxy-3-indolyl-methyl
glucosinolate, the specific glucosinolate identified as a
precursor of callose biosynthesis (Clay et al., 2009; Fig.
6A), and six aliphatic glucosinolates was seen in aux1
(Supplemental Fig. S2). Notably, 1-methoxy-3-indolyl-
methyl glucosinolate showed an opposite behavior
and was significantly more abundant in aux1 respond-
ing to DC3000(avrRpm1) compared with only subtle
increases in Col-0 (Fig. 6B).

Camalexin levels increase in the wild type following
avirulent inoculation (Fig. 6C). In aux1, however,
camalexin levels are severely reduced under all treat-
ments. Although no role has been demonstrated for
camalexin in conferring resistance to bacteria, it is
predicted to be important in the broad-spectrum re-
sistance associated with SAR. Consistent with these
data, the pattern of camalexin accumulation in the
wild type and mutant is matched by the pattern of its
precursor, dihydrocamalexic acid (Supplemental Fig.
S2G). Both PAD3 and CYP79B3 are induced in aux1
and display the altered dynamics illustrated in Figure
3. These results are consistent with the prediction that
entry into this branch of aromatic secondary metabo-
lism is disrupted in aux1, rather than progress along

Figure 4. Gene expression associated with SA accumulation and the
establishment of SAR are perturbed in aux1 plants. The expression of
two keymarkers of SAR, PR1, a classical marker for SAR, and FMO1, an
important regulator of both basal defenses and SAR, was compared in
aux1 and wild-type plants. qRT-PCR measurements representative of
two separate experiments reflect the impact of aux1 on SA-associated
gene expression at different stages in the development of SAR relative to
wild-type expression levels.
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the camalexin biosynthetic branch being affected.
This interpretation was supported by monitoring
Trp levels. Trp increases in unchallenged leaves in
response to a DC3000(avrRpm1) immunizing challenge
in both Col-0 and aux1; however, no significant differ-
ences in Trp are evident between the DC3000 and
DC3000(avrRpm1) challenges (Fig. 6D). Therefore, it
seems unlikely that changes to primary metabolism
or the biosynthesis of Trp are responsible for the
alterations to indolic metabolites observed in aux1.
In addition, we profiled three flavonoids (Fig. 6E;
Supplemental Fig. S2) in systemic tissues. The change
exhibited by kaempferol-glucoside-rhamnoside (Fig.
6E) typifies the common pattern of accumulation for
all three compounds, with moderate increases in re-
sponse to avirulent challenge in the wild type but
significant reductions in aux1 regardless of treatment.
The extent of impact of aux1 on indolic profiles can be
seen by the behavior of an unknown ion whose mass
and daughter spectrum are consistent with an indolic
glucoside (Fig. 6F). Ion mass-to-charge ratio (m/z) 322
was detected with negative mode ionization and pre-
viously identified as MAMP responsive in elicited
leaves; m/z 322 is also SAR responsive in an AUX1-
dependent fashion (Fig. 6F). The mass and daughter
spectra of this ion are consistent with an indolic
glucoside.

DISCUSSION

Plant-pathogen interactions are rapid and dynamic,
with both host and pathogen constantly wrestling to
modify signaling networks and reconfigure metabo-
lism in favor of defense or disease. One strategy that
is currently emerging is the recruitment of phyto-
hormones to sequentially engage a range of defense
responses in defined temporal windows. Rather than

regulation by a single hormone, the balance between
multiple hormones antagonistically or synergistically
impacts defense responses dependent upon the host
genotype and pathogen lifestyle (Thaler et al., 2002;
Mur et al., 2006; Robert-Seilaniantz et al., 2007;
Navarro et al., 2008b; Grant and Jones, 2009). Re-
cently, it has been shown that jasmonates play an
important role in the establishment of SAR activated
by an incompatible challenge (Truman et al., 2007;
Chaturvedi et al., 2008) prior to foliar accumulation
of SA in distal responding tissues (Vlot et al., 2008a).
This study now provides evidence that auxin per-
ception and transport mutants are also involved in
the establishment and maintenance of SAR.

Despite the up-regulation of several genes involved
in auxin biosynthesis and homeostasis during SAR, no
significant accumulation of IAA could be detected at
either 8 or 24 hpi (Supplemental Table S1). We may
have missed a transient IAA peak, as foliar IAA
homeostasis is strongly regulated (Ljung et al., 2005),
but sustained alterations to IAA and IAA conjugates
are not associated with SAR. While our data strongly
suggest a key role for auxin in the establishment of
SAR, we cannot, based upon the modified profiles
shown here (Fig. 6; Supplemental Fig. S2), rule out the
possibility that unknown but related indole-derived
compounds other than IAA may influence the SAR
response. This is entirely plausible given that (1) the
substrate specificity of the AUX1 transporter is incom-
pletely characterized and (2) the recent demonstration
that AUX1 can transport the structurally unrelated 2,4-
dichlorophenoxyacetic acid (Carrier et al., 2008). Ad-
ditionally, no significant changes in the expression
patterns of GUS driven by the synthetic auxin pro-
moter DR5 were observed in leaves systemic to avir-
ulent challenge (data not shown).

In the cyp79b2/cyp79b3 double mutant, IG and ca-
malexin biosynthesis is abolished and IAA levels are

Figure 5. AUX1 affects the balance of key
hormone levels in systemic leaves responding
to infection. LC-MS/MS was used to measure
changes in selected hormones simultaneously in
the systemic leaves of wild-type and aux1 plants
at 21 hpi with DC3000hrpA2 (hrp), DC3000
(DC), and DC3000(avrRpm1) (avr). Isotopically
labeled standards were used to quantify SA (A)
and ABA (D), while internal standards were not
used for SA glucoside (B) and JA (C). Changes in
hormone levels are expressed as the average
quantity or analyte peak area of three replicates
per gram dry weight (DW) 6 SE. Significant dif-
ferences (P # 0.05) between corresponding treat-
ments in aux1 and the wild type are marked (a).
Similar hormone profiles were determined in two
experiments.
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reduced. However, other auxin biosynthetic pathways
are able to compensate, to some extent, for the loss of
this route to IAA (Zhao et al., 2002). Perturbation of
this branch of secondary metabolism has recently been
shown to have an impact on many other pathways
both proximal and distal; therefore, the effect of this
mutation on SAR may be derived from its impact on
any one of a plethora of metabolites (Malitsky et al.,
2008). The impact of auxin signaling mutants on SAR,
therefore, may not relate to the total abundance of, or
direct response to, auxin. Rather, auxin may play a
crucial role in balancing the homeostasis of various
indolic compounds, some of which may prove critical

to systemic immunity. In the case of flavonoids (Fig.
6E; Supplemental Fig. S2), it may be that this disrup-
tion in biosynthesis feeds back into the control of auxin
signaling by impacting the transport and localization
of auxin. Another possibility is that AUX1 and AXR4
are engaged in the transport of another indole-derived
metabolite that plays an important signaling role
in SAR.

Alternatively, the importance of auxin signaling in
the establishment of SAR may arise from its modula-
tion of JA/ET-SA cross talk, possibly through antag-
onism with ABA. Both the reduction in SA levels and
the increased levels of ABA in aux1-responding tissue
would be predicted to contribute to enhanced suscep-
tibility to bacterial infection. Intriguingly, the suppres-
sion of SA-associated gene expression is only seen in
the later stages of SAR in aux1 (Fig. 4). A model
depicting the predicted impact of the aux1 mutant on
the dynamics of JA/ET-SA signaling in SAR is pre-
sented in Figure 7A. Gene expression responses earlier
in the development of SAR indicate that SA levels and
the response to SA are not attenuated but enhanced.
This may reflect a mechanism of promoting SA antag-
onism of the early JA signaling responses involved in
the establishment of SAR (Truman et al., 2007). Our
results strongly support the interpretation that under
the infection conditions used in these experiments, the
aux1 mutant is unable to appropriately marshal the
shift from one defensive position (early jasmonate-
based response) to another (later SA-mediated re-
sponse). Loss of DELLA proteins controlling responses
to GA have also been found to disrupt JA/ET-SA
cross talk, leading to enhanced resistance to bacteria
(Navarro et al., 2008b). These data underline the com-
plexity of both the establishment of systemic immunity
and the interplay of phytohormones involved in de-
fense. Both JA and ET signaling are essential for the
induced systemic resistance brought about through the
recognition of nonpathogenic rhizobacteria (van Loon
et al., 1998). The aux1 mutant confers ET insensitivity
for several root traits (Pickett et al., 1990; Swarup et al.,
2007; Negi et al., 2008). While no distinct role for ET in
SAR has yet been defined, it may be that it acts through
auxin signaling to modulate SA cross talk.

Two components of a proteasomal degradation sig-
naling complex, SGT1B and TIR1, have now been
identified as essential components in the signal trans-
duction required for SAR. We originally hypothesized
that the impact of sgt1b on SAR resulted from its JA
signaling role (Truman et al., 2007), but it may prove
that its contribution to auxin signaling (Gray et al.,
2003) is equally vital to the development of SAR.

A clear link has been established between auxin, the
AUX1-related auxin influx carrier LAX3, and cell wall
enzymes in promoting lateral root emergence (Swarup
et al., 2008). Recently, Ding et al. (2008) identified one
specific mechanism for auxin in the elaboration of
plant defense responses, whereby auxin homeostasis
directly affected the expression of expansins. Over-
expression of these cell wall-loosening enzymes was

Figure 6. SAR-associated changes in the distribution of indolic com-
pounds are dependent on AUX1. LC-MS/MS analysis of metabolites in
systemic tissue at 21 hpi with DC3000hrpA (hrp), DC3000 (DC), and
DC3000avrRpm1 (avr). A and B, Small increases in the abundance of
the IG 1-methoxy-3-indolyl glucosinolate in the wild-type response are
strongly enhanced in aux1 plants challenged with DC3000(avrRpm1),
while several aliphatic glucosinolates and 4-methoxy-3-indolyl-methyl
glucosinolate are significantly less abundant in aux1. C and D, SAR-
induced accumulation of the phytoalexin camalexin is abolished and
basal levels are massively reduced with aux1, whereas Trp, the key
precursor to these indolic compounds, responds to avirulent challenge
and accumulates to wild-type levels in aux1 (Supplemental Fig. S2). E,
Several flavonoids, including kaempferol-glucoside-rhamnoside, are
significantly less abundant in aux1. F, An ion detected with negative
mode ionization previously identified as PAMP responsive in elicited
leaves is also SAR responsive in an AUX1-dependent fashion. The mass
and daughter spectra of this ion are consistent with an indolic gluco-
side. Error bars show the SE of three replicates. Significant differences
(Student’s t test; P # 0.05) between DC3000 hrpA2 and DC3000
(avrRpm1) within a genotype are marked (a), while significant differ-
ences between corresponding treatments in aux1 and wild type are
marked (b).
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associated with increased susceptibility to bacteria.
Expression of at least one expansin (EXPA1) is sup-
pressed systemically in response to avirulent chal-
lenge at 8 and 10 hpi (Supplemental Fig. S3), consistent
with a model of SAR restricting leaf expansion, thus
potentially allowing cellular resources to be deployed
toward cell wall reinforcement. Notably, expression of
EXPA1 is lower in aux1 leaves systemic to avirulent
challenge by 10 hpi. While the expression of EXPA1
does not explain the susceptibility conferred by aux1, it
reinforces the links between auxin homeostasis and
the establishment of SAR.

It seems clear that control over the homeostasis of
indolic compounds is of key importance for the nor-
mal establishment of systemic immunity and that this
breaks down in aux1 plants. Flavonoids have been
implicated in the alteration of auxin transport (Brown

et al., 2001), with quercetin treatments ameliorating
the physiological effects of auxin efflux mutants and
ectopic flavonoid accumulation inhibiting auxin trans-
port (Besseau et al., 2007; Santelia et al., 2008). Here,
we have shown that aux1 impacts the regulation of at
least three classes of aromatic secondary metabolites
(Fig. 6). It is likely that auxin transport affects several
pathways. Recent global metabolite profiling of basal
immune responses in our laboratory has identified
several metabolite peaks elicited through MAMP per-
ception (J. Ward, S. Forcat, M. Bennett, J. Mansfield, W.
Truman, and M. Grant, unpublished data). One such
compound is putatively b-D-glucopyranosyl indole-3-
carboxylic acid, previously shown to accumulate in
response to the root pathogen Pythium sylvaticum
(Bednarek et al., 2005), which is also induced during
SAR and suppressed in aux1 (Fig. 6F). This further
indicates that AUX1 is required for normal regulation
of several classes of aromatic defense compounds.

Based upon these findings, we put forth the fol-
lowing model for the activation of SAR (Fig. 7B).
Following perception of an immunizing signal in
systemically responding leaves, SAR is triggered ini-
tially through an increase in jasmonates, which leads
to the induction of components of the indole biosyn-
thetic pathway (Fig. 1). Concomitantly, JA signaling is
negatively regulated through a feedback loop medi-
ated by coinduction of JAZ transcripts. This transition
provides competency to produce defense signaling
components (e.g. IGs and camalexin; Fig. 6; Supple-
mental Fig. S2) and a biologically active indole deriv-
ative, most likely auxin, that requires the functional
auxin importer AUX1. AUX1 facilitates IAA import,
possibly fine-tuned by flavonoids (Brown et al., 2001;
Fig. 6; Supplemental Fig. S3), and interaction with the
TIR receptor to activate auxin-regulated transcription.
Establishment of SAR requires a further transition
from auxin to SA-mediated signaling. This phase may
be mediated through feedback repression of auxin
signaling through the activities of auxin-inducible
GH3 genes encoding auxin-conjugating enzymes
(Zhang et al., 2007; Ding et al., 2008). Activation of
SA defenses to prime the plant to respond more
rapidly to future pathogen challenges completes the
hormonal transitions programmed by gene-for-gene-
activated SAR.

Currently, it remains to be determined which, if any,
of the metabolites identified so far act to directly
restrict pathogen colonization of immunized tissue.
Indeed, it has recently been shown that elevated
expression of transcripts encoding components of the
Trp biosynthetic and metabolic pathways, together
with altered camalexin, IGs, and other indolic com-
pounds in Arabidopsis mlo mutants, contribute posi-
tively toward antifungal defense. Consistent with
these observations, the triple mutant mlo2/cyp79B2/
cyp79B3 exhibited wild-type infection responses to the
adapted pathogen Golovinomyces orontii (Consonni
et al., 2010). Collectively, these data highlight roles
for indolic compounds in elaborating broad-spectrum

Figure 7. Prediction of the impact of auxin transport perturbation on
the phytohormone-mediated defense responses and a proposed model
integrating hormonal signal transitions during the establishment of SAR.
A, The aux1mutant globally impacts both the magnitude and timing of
jasmonate and salicylate defense response. Mutants in auxin transport
impair the perception or transduction of the SAR signaling network to
undergo the transition from the early JA defensive phase to the later SA
phase. B, Model describing temporal phases of hormone signaling
underpinning the establishment of systemic immunity. Perception of
the immunizing signal in systemically responding leaves activates JA
signaling networks mediated through the COI1 jasmonate receptor,
which leads to the induction of components of the indole biosynthetic
pathway. Concomitantly, JA signaling is negatively regulated through a
feedback loop mediated by coinduction of JAZ transcripts. This tran-
sition provides competency to produce defense signaling components
such as IGs and camalexin and a biologically active indole derivative,
most likely auxin, that requires the functional auxin importer AUX1.
AUX1 facilitates IAA import (possibly fine-tuned by flavonoids) and
interaction with the TIR receptor to activate auxin-regulated transcrip-
tion. Establishment of SAR requires a further transition from auxin- to
SA-mediated signaling. This phase may be mediated through feedback
repression of auxin signaling through the activities of auxin-inducible
GH3 genes encoding auxin-conjugating enzymes. Activation of SA
defenses through NPR1-dependent signaling pathways primes the plant
to respond more rapidly to future pathogen challenges and completes
the hormonal transitions programmed by gene-for-gene-activated SAR.
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defense responses. It is unlikely that focusing upon
how a single metabolite contributes to resistance will
be meaningful, as broad-spectrum defense conferred
by SAR reflects the deployment of multiple defense
compounds, contributing differentially and incremen-
tally, to enhance resistance to pathogens with diverse
lifestyles. The host cannot predict the nature of the
ensuing infection and must mitigate against all even-
tualities. This would be most effectively achieved by
the deployment, or at least priming for the deploy-
ment, of a range of small molecules capable of the
initial containment of invading pathogens before full-
blown defense responses can be instigated. More and
more information is emerging to suggest that phyto-
hormones interact to mediate biotic interactions (Bari
and Jones, 2009; Grant and Jones, 2009). The temporal
organization of these interactions appears to be essen-
tial for positive outcomes; spatial organization and
distribution of signaling components may also be vital.
A mechanistic understanding of the temporal/spatial
regulation of these interacting hormones is an imme-
diate challenge.

MATERIALS AND METHODS

Microarray Data Mining

Affymetrix whole genome GeneChip data previously described by Truman

et al. (2007) and available at http://affymetrix.arabidopsis.info/narrays

(identifier NASCARRAYS-403) were interrogated using gene lists obtained

from biosynthetic pathway data available at The Arabidopsis Information

Resource (www.arabidopsis.org). The microarray scan data were processed

using the Robust Multiarray Average method as implemented in the Bio-

conductor package RMA (Irizarry et al., 2003; Gentleman et al., 2004). Mean

ratios and SE were derived from this RMA-normalized data.

Maintenance of Plants and Bacteria

All bacterial strains were grown, cultured, and maintained as described by

de Torres et al. (2003). Arabidopsis (Arabidopsis thaliana) plants were germi-

nated and grown as described (de Torres et al., 2003) using the following

growth parameters: 110 mE in short days (10 h of light) at 65% relative

humidity. Day temperature was 23�C, and night temperature was 21�C. Plants
were used between 4 to 5 weeks for pathogen assays, RNA extraction, and

metabolite analyses.

Bacterial Inoculations

For RNA and metabolite profiling, leaves were inoculated with a 1-mL

needleless syringe on their abaxial surface with a bacterial suspension

adjusted to an optical density at 600 nm of 0.2 (approximately 2 3 108

colony-forming units [cfu] mL21) in 10 mM MgCl2. Inoculations were under-

taken in the morning, at least 2 h after dawn, and completed within 2 h. For

measuring SAR bacterial growth, initial challenges were either mock (10 mM

MgCl2) inoculation or challenge with DC3000(avrRpm1) at 1 3 108 cfu mL21.

After 2 d, secondary leaves were infiltrated with either Pseudomonas syringae

pv maculicola M4 at 53 105 cfu mL21 or DC3000 at 53 104 cfu mL21. Bacterial

growth titers were determined either 3 or 4 d later as described (de Torres

et al., 2006).

RNA Extraction and qRT-PCR

Total RNA was isolated as described previously (de Torres et al., 2003).

cDNAwas generated from 1 mg of total RNAwith SuperScriptIII (Invitrogen)

following the manufacturer’s instructions. Quantitative PCR was performed

on the cDNA using the QuantiTect SYBR Green PCR kit (Qiagen) on a Rotor-

Gene 6000 (Corbett Research). Actin2 was used as an internal standard to

normalize cDNA content in the samples. Relative expression levels were

calculated using the DDCt method (Livak and Schmittgen, 2001). Expression

levels were calculated either as the relative change in gene expression using an

appropriate reference sample or as the log (base 2) ratio of two specific

conditions. The primers used for RT-PCR and amplicon size are described in

Supplemental Table S4.

Hormone and Metabolite Measurements

Quantitative hormone measurements using isotopically labeled standards

were conducted by LC-MS/MS using the protocol described by Forcat et al.

(2008). Other metabolites were quantified from the same extracts with the

same gradient using appropriate single reaction monitoring of ion pairs.

Glucosinolates were measured in negative mode but using a 2-mL injec-

tion volume. Identification was based on MS/MS and UV light, and the

compounds were quantified using transitions based on parent/sulfite ions

([M-H)]2/[SO3H]2).

Camalexin, dihydrocamalexic acid, and Trp were quantified by a separate

analysis in positive ionmode (transitions 201/142, 247/143, and 205/146), and

identification was by comparison with authenticated standards (camalexin

and dihydrocamalexic acid were a kind gift from Erich Glawischnig). The

flavonol glycosides were identified by MS/MS and UV light and were

measured simultaneously (transitions 579/187, 595/287, and 741/287) with

the other compounds in positive ionization mode. Transitions for the glyco-

side of indole carboxylic acid (322/160) were included in the hormone

analysis.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. axr4 suppresses the induction of systemic

responses to avirulent challenge and alters the kinetics of their expres-

sion.

Supplemental Figure S2. aux1 impacts the abundance of a wide range of

secondary metabolites.

Supplemental Figure S3. Expansin genes are suppressed systemically in

response to avirulent challenge.

Supplemental Table S1. Hormone profiling in systemically responding

leaves following specific immunizing challenges.

Supplemental Table S2. The kinetics of systemic transcriptional responses

to avirulent inoculation is disrupted in the aux1 mutant.

Supplemental Table S3. The systemic expression of genes controlling the

homeostasis of indolic compound correlates with the negative regulator

of JA responses, JAZ10.

Supplemental Table S4. Primers used for qRT-PCR as described in

“Materials and Methods.”
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