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This paper investigates the performance of a new multivariate method for tensor-based
morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full
information in deformation tensor fields. In TBM, multiple brain images are warped to a common
neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are
analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian
determinant (volume expansion factor) of these deformations, as is common, we retain the full
deformation tensors and apply a manifold version of Hotelling’s T 2 test to them, in a Log-
Euclidean domain. In 2-D and 3-D magnetic resonance imaging (MRI) data from 26 HIV/AIDS
patients and 14 matched healthy subjects, we compared multivariate tensor analysis versus
univariate tests of simpler tensor-derived indices: the Jacobian determinant, the trace, geodesic
anisotropy, and eigenvalues of the deformation tensor, and the angle of rotation of its
eigenvectors. We detected consistent, but more extensive patterns of structural abnormalities, with
multivariate tests on the full tensor manifold. Their improved power was established by analyzing
cumulative p-value plots using false discovery rate (FDR) methods, appropriately controlling for
false positives. This increased detection sensitivity may empower drug trials and large-scale
studies of disease that use tensor-based morphometry.

Index Terms
Brain; image analysis; Lie groups; magnetic resonance imaging (MRI); statistics

I. INTRODUCTION
Accurate measurement of differences in brain anatomy is key to understanding the effects of
brain disorders, as well as changes associated with normal growth or variation within a
population. Statistical methods that make a more complete use of the available data can
greatly improve the analysis of temporal changes within a single subject, as well as
intersubject variations. Given the subtle and distributed brain changes that occur with
development and disease, improved statistical analyses are needed that detect group
differences or time-dependent changes in brain structure with optimal power.

As computational anatomy studies expand into ever larger populations, voxel-based image
analysis methods have become increasingly popular for detecting and analyzing group
differences in magnetic resonance imaging (MRI) scans of brain structure [10]. These
statistical mapping methods aim to identify brain regions where some imaging parameter
differs between clinical groups, or covaries with age, gender, medication, or genetic
variation [66], [95].

Some methods to map structural differences in the brain, such as voxel-based morphometry
(VBM) [7] assess the distribution of specific tissue types, e.g., gray and white matter and
cerebrospinal fluid (CSF). They can also be applied to generate voxelwise imaging statistics
for relaxometric measures (such as parametric T1 or T2 images) or diffusion-weighted
imaging parameters (such as fractional anisotropy or mean diffusivity [27], [55]). By
contrast, deformation-based methods for analyzing brain structure compute information on
regional volumetric differences between groups by warping brain images to a canonical
template. The applied deformation is then used as an index of the volume differences
between each subject and the template, and, subsequently, between groups.

Although these two approaches for structural image analysis are conceptually distinct, they
can be combined, as in the “optimized VBM” [51], and RAVENS approaches (regional
analysis of volumes examined in normalized space [38]). These hybrid approaches combine
information on tissue distribution (based on image segmentation) and anatomical shape
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differences (from deformable image matching) in a unified setting. Other hybrid
morphometric approaches have been developed, and some groups have combined statistical
mapping methods with surface based models of the cortex [32], [43], [96], [100] or
subcortical structures [37], [50], [92], [97] to detect changes in signals defined on
anatomical surfaces, often adapting voxel-based methods to the parametric surface domain.

Among the many deformation-based approaches for analyzing anatomy, tensor-based
morphometry (TBM) computes the spatial derivatives of the deformation fields that match a
set of brain images to a common template. TBM may also be used in a longitudinal design
where image warping algorithms are used to align sequentially acquired images and to
recover information on brain growth or atrophy over time. TBM has yielded significant, new
neuroscientific information on brain development and disease. It has been used to map the
profile of volumetric differences throughout the brain in studies of Alzheimer’s disease [47],
semantic dementia [64], [65], [85], HIV/AIDS [26], [86], Fragile X syndrome [62],
neuropsychiatric disorders such as schizophrenia [48], twins [66], and normally developing
children [94]. TBM has also been applied to large numbers of images collected over short
intervals (e.g., two weeks) to measure the stability of different MRI acquisition protocols,
thereby optimizing the ability to detect brain change [64]. Over intervals as short as one
month, TBM approaches have identified the effects of medications, such as lithium, on
human brain structure, suggesting the potential of the approach for gauging subtle changes
in medication trials [65].

The broad application and increasing popularity of TBM methods makes it advantageous to
optimize the statistical methods used in conjunction with it. The optimization of these
methods is the focus of this paper. In tensor-based morphometry (TBM), a template T is
matched to a study S using nonlinear registration, and the displacement vector u⃗(r⃗) is found
such that T(r ⃗ − u⃗) corresponds with S(r ⃗). Here, r⃗ denotes the voxel location. To help estimate
anatomical correspondences, features such as point, curve, and surface landmarks present in
both datasets can be used, [58] or, more commonly, intensity-based cost functions are used
based on normalized cross-correlation [34], mean squared intensity difference [8], [105], or
divergence measures based on information theory [26], [33], [39], [87], [104].

The Jacobian matrix of the deformation field is defined (in 3-D) by

Its determinant, the Jacobian, is most commonly used to analyze the distortion necessary to
deform the images into agreement. A value detJ(r⃗) > 1 implies that the neighborhood
adjacent to r⃗ in the study was stretched to match the template (i.e., local volumetric
expansion), while detJ(r⃗) < 1 is associated with local shrinkage. When many subjects’
images are aligned to the same standard template or atlas, maps of the Jacobians can be
computed in the atlas coordinate system and group statistics can be computed at each voxel
to identify localized group differences in anatomical shape or size. However, much of the
information about the shape change is lost using this measure. As a toy example of this
problem, let us consider an image voxel for which the eigenvalues of the Jacobian matrix are
λ1,2,3 = {1,2,0.5}. In such a case, the value of the Jacobian determinant would be 1. Thus,
though the eigenvalues clearly indicate directional shrinkage and growth, these changes
would be left undetected, if only the Jacobian was analyzed.
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In this work, we resolve this issue by making use of the deformation tensors for the analysis,
which are defined as

(1)

The directional values of shape change are thus kept as variables in the analysis. More
specifically, the eigenvalues of the deformation tensor are determined by the size of the
deformation in the direction of the associated eigenvectors.

In particular, we apply Hotelling’s T2 test to obtain statistics for the deformation. However,
the problem is complicated by the fact that for invertible transformations, the deformation
tensors are constrained to the space of positive definite matrices. The latter form a cone in
the space of matrices, which is itself a vector space. Thus, the deformation tensors do not
form a vector space, and a manifold version of the statistics is needed. Several research
groups have worked on the statistics of positive definite symmetric matrices.

The first person to investigate this problem was Fréchet [46], who defined the mean S̄ on a
manifold as the point that leads to a minimum value for the sum of squared geodesic
distances between S̄ and all the other points. S̄ yields the usual value for the mean in
Euclidean space, but is not necessarily unique on other manifolds. Thus, the local value of
the mean is generally used instead [59], [60].

To facilitate computations, Pennec et al. [72]–[74] and Fletcher and Joshi [44]
independently proposed the use of the affine-invariant metric on the space of symmetric,
positive-definite tensors. Pennec then proceeded to use the latter to define normal
distributions on these matrices, as well as the Mahalanobis distance and χ2 law. Fletcher and
Joshi [44], [45] used the metric to develop the notion of principal geodesic analysis, which
extends principal component analysis to manifolds.

Several groups have used these techniques to assist with the computations involved in DTI
smoothing [24], anisotropic filtering [31], segmentation [63], [103], fiber tracking [42],
statistics on tensor fields [36], [77], [78], as well as to develop probabilistic matrices that
describe fiber connectivity in the brain [20]. In a more recent development in DTI statistical
analysis, Khurd et al. [61] used isometric mapping and manifold learning techniques
(eigendecomposition of the geodesic distance matrix) to directly fit a manifold to the
tensors, compute its dimensionality and distinguish groups using Hotelling’s T 2 statistics.

The relevance of techniques from Riemannian manifold theory to calculate means of
Jacobian matrices was first suggested by Woods [106]. In [35], statistics on JJT were used to
determine a weight factor for the regularizer in nonrigid registration. Furthermore, the
Mahalanobis distance between the Cauchy-Green tensors was used as an elastic energy for
the regularizer in a recent nonlinear registration technique [75]. However, to our knowledge
this is the first time that the full deformation tensors have been used in the context of tensor-
based morphometry. Once a metric is defined, the manifold-valued elements are projected
into the tangent plane at the origin using the inverse of the exponential map, and the
computations are done in this common space.

Recently, Arsigny et al. [2], [4], [5], considered a new family of metrics, the ’Log-Euclidean
metrics.” These metrics make computations easier to perform, as they are chosen such that
the transformed values form a vector space, and statistical parameters can then be computed
easily using standard formulae for Euclidean spaces (see also e.g., [40] for a good review of
the properties of exponential and log maps on manifolds). For two points S1 and S2 on the
manifold, these metrics are of the form
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where ‖.‖ denotes a norm. Following [4], in this work we will use

(2)

In this paper, we use a set of brain MRI scans from HIV/AIDS patients and matched healthy
control subjects to illustrate our method. A preliminary version of this work can be found in
[67]. We use a fluid registration algorithm [26] (see also [29]) to compute displacement
fields and thus obtain deformation tensors. The fluid registration approach is guaranteed to
generate only mappings with positive-definite deformation tensors. We refer to [11], [29],
[44], [70] for background on these fluid models and their advantages; briefly, mappings
regularized by linear elastic or Laplacian penalties are not guaranteed to be diffeomorphic
(i.e., differentiable mappings with differentiable inverses). This potential problem with
small-deformation models can be resolved by moving to fluid or other large-deformation
models (E.g., LDDMM [14]) or geodesic shooting [56], [102]. Invertible mappings also
have positive definite Jacobian matrices and deformation tensors, ensuring that the matrix
logarithm operations are well defined in the following methods.

All our statistics are computed within the Log-Euclidean framework. A voxelwise
Hotelling’s T 2 test is used as a measure of local anatomical differences between patients
and controls. To assess the difference between our results and the ones found from the
determinant of the Jacobian, these results are compared to the one-dimensional Student’s t-
test on the determinants of the Jacobian matrices. The goal of the work was to find out
whether multivariate statistics on the deformation tensors afforded additional power in
detecting anatomical differences between patients and controls, and if so, which aspects of
the tensor decomposition (rotation or magnitude of eigenvalues) were most influential in
securing added sensitivity.

The usual measure of anisotropy for tensor-valued data is the fractional anisotropy (used
widely in diffusion tensor imaging) but this measure is not valid for positive definite
symmetric manifolds, as it relies on a Euclidean measure for the distance. Thus, in [13], the
authors proposed a new measure which depends instead solely on distances computed on the
manifold. They define the geodesic anisotropy as the shortest geodesic distance between the
tensor and the closest isotropic tensor within the affine-invariant metric framework. In the
specific case where two tensors commute, affine invariant and Log-Euclidean metrics give
identical distances between them. The geodesic anisotropy GA defined above obeys this
condition, as isotropic tensors are proportional to the identity matrix I. When affine-
invariant and Log-Euclidean metrics are based on the same norm, the definition for GA is
identical for both frameworks, and gives

(3)

with

Before proceeding, we note that some groups have already made significant advances by
analyzing deformations at a voxel level using other scalar, vector or tensor measures than
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the deformation magnitude or the Jacobian determinant. In [91] and [93], we computed a set
of 3-D deformation vectors aligning parameterized brain surfaces from individual subjects to
a group average surface. These vectors were treated as observations from a Hotelling’s T2

distributed (or χ2 distributed) random field, with known mean and anisotropic covariance
estimated from the data. Abnormal anatomic deviations were then assessed using 3-D
Gaussian distributions on the deformation vectors at each anatomical point (see also [41] for
additional modeling of the covariance of deformation vector fields). Related multivariate
statistical work by Schormann et al. [79] modeled the spatial uncertainty of anatomical
landmarks in 2-D histologic images using Rayleigh-Bessel distributions. Cao and Worsley
[21], [107] extended this work by developing analytical formulae for the expected values of
statistical maxima in these multivariate random fields extending algebraic results on the
Euler characteristics of the excursion sets of Gaussian random fields. Thirion et al. [89], [90]
also studied the statistical dissymmetry in a set of deformation mappings. They analyzed
asymmetry vector fields using the Hotelling’s T2 field as their null distribution to assess the
significance of departures from the “normal” degree and direction of anatomic asymmetry.
In [31], Chung et al. formulated a unified framework for deformation morphometry using
several novel descriptors of localized deformation that were also treated as observations
from t or T2 distributed random fields. Specifically, they modeled brain growth over time
using deformations, whose vorticity and expansion rates were analyzed at each voxel using
the general linear model. For analyzing surface deformations, the Lipschitz constants [69],
conformal factors [103], and other differential parameters of grids representing deformations
have also been assessed. Rey et al. [76] experimented with different vector and tensor
measures for assessing brain deformation due to multiple sclerosis and mechanical mass-
effects due to tumor growth. They combined the norm of the deformation with its local
divergence, among other descriptors, to create maps that emphasized both shift and local
expansions associated with tumor growth.

Finally, we note that not all multivariate analyses of deformations operate at the voxel level.
The entire deformation vector field can be treated as a single multivariate vector and
analyzed using thin-plate splines and Riemannian shape spaces [16], principal components
analysis (PCA) [12], or canonical variates analysis [6] either for the purpose of
dimensionality reduction or for characterizing the principal modes of variation. In
Grenander and Miller’s formulation of pattern theory [54], anatomical template
deformations are regarded as arising via the stochastic differential equation Lu = n, where n
is (vector-valued) noise, u is the displacement field, and L is an infinite-dimensional self-
adjoint differential operator regularizing the deformation (which therefore has a countable
basis and real eigenvalues). Using spectral methods, the deformations can then be expressed
as multivariate vectors whose components are coefficients of the eigenfunctions of the
governing operator. This method has been used in computational anatomy for multivariate
analysis of deformations representing hippocampal or cortical shape using spherical
harmonics or Oboukhov expansions [57], [88], [91], elliptical Fourier descriptors [81], or
eigenfunctions of the Laplace-Beltrami operator on the cortex [31]. We also note that
spectral modeling of anatomic variation is implicit in many registration methods, which
often estimate deformation fields in a hierarchical multiscale fashion, using splines,
wavelets, or eigenfunctions of differential operators to parameterize the deformation.

The unique contribution of this paper, relative to prior work, is to examine how multivariate
analysis of the deformation tensor affects the results in tensor-based morphometry. We
include theoretical arguments regarding the distributions of deformation tensors and show in
empirical tests how they compare with simpler statistics based on eigenvalues, or Jacobian
determinants, while still controlling false positives at the expected rate. This leads naturally
to the use of the Log-Euclidean framework developed in [4], which has not yet been applied
in the context of TBM.
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This paper is organized as follows. In the following section, we briefly describe our
statistical method. We then proceed to illustrate the use of our statistical analysis in 2-D on
data from the corpus callosum of patients and healthy controls. We compare the
performance of different univariate and multivariate measures derived from the deformation
tensors using the false discovery rate (FDR). Finally, we use our tensor measures to analyze
the 3-D pattern of anatomical deficits in the brains of HIV/AIDS patients, relative to healthy
controls.

II. STATISTICAL ANALYSIS
In order to apply Hotelling’s T 2 test, we need to compute the mean and covariance matrices
of the tensor-valued data. Thus, here we provide a brief summary of the method to find
those quantities. In Rn, the mean S̄ of a set of n-dimensional vectors Si, i = 1,…, m is the
point that minimizes the summed squared distance d to all the Si. For data on a manifold A,
d becomes the geodesic distance, so S̄ is given by [46]

(4)

In the Log-Euclidean framework, computations are simplified by transforming the space of
symmetric, positive-definite matrices into a vector space on the tangent plane at the origin,
and then moving it back to the manifold using the exponential map once the mean is taken.
Thus, the formula for the mean is easily shown to be [4]

(5)

Arsigny et al. demonstrate that the covariance is

where dP is the probability measure, Ω is the space of possible outcomes and wεΩ. For
discrete data, this becomes

(6)

Thus, we obtain the Mahalanobis distance M

(7)

To avoid assuming a normal distribution for the observations at each voxel, we performed a
voxelwise permutation test [71], for which we randomly reassigned the labels of patients
and controls, and compared the p-values so generated to those of the data. This assembles a
nonparametric reference distribution—in fact a different distribution for each voxel—against
which the likelihood of group differences can be calibrated. All our statistics were computed
using 5000 permutations (this is easily sufficient to define a null distribution for
nonparametric estimation of p-values at the voxel level).
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A. FDR
Overall significance, correcting for the multiple spatial comparisons implicit in computing
an image of statistics, was assessed by positive false discovery rate (pFDR) methods [83] for
strong control over the likelihood of false rejections of the null hypotheses with multiple
comparisons. The pFDR method directly measures the pFDR under a given primary
threshold, and is more powerful than the popular sequential p-value FDR method (in [15]
and [49]), as it estimates the probability that the null hypothesis is true from the empirical
distribution of observed p-values [68]. The pFDR measure is theoretically more suitable for
representing the rate at which discoveries are false than the FDR measure when the primary
rejection region is relatively small [83].

Briefly, pFDR is the false discovery rate conditioned on the event that positive findings,
rejecting the null hypothesis, have occurred, and is given by

(8)

where πo = Pr(H = 0) is the probability that the null hypothesis is true, and γ is the rejection
threshold for the individual hypothesis, which was set to 0.01 in our experiments. We refer
readers to [82] and [83] for the details of the estimation procedures to obtain pFDR for
statistical maps. By conventions, a statistical map with pFDR < 0.05, i.e. the false discovery
rate is less than 5%, was considered to be significant. We note that the voxel-level t and T 2

statistics, used here for comparing methods, are not assumed to have parametric
distributions, as the cumulative (rank-order) distribution of p-values in FDR methods is
independent of the distributions of the statistics themselves.

III. APPLICATIONS
A. Description of Data

Twenty-six HIV/AIDS patients (age: 47.2 ± 9.8 years; 25 M/1 F; CD4+ T-cell count: 299.5
± 175.7 per µl; log10 viral load: 2.57 ± 1.28 RNA copies per ml of blood plasma) and 14
HIV-seronegative controls (age: 37.6 ± 12.2 years; 8M/6F) underwent 3-D T1-weighted
MRI scanning; subjects and scans were the same as those analyzed in the cortical thickness
study by Thompson et al. [97], where more detailed neuropsychiatric data from the subjects
is presented. All patients met Center for Disease Control criteria for AIDS, stage C and/or 3
(Center for Disease Control and Prevention, 1992), and none had HIV-as-sociated dementia.
Health care providers in Allegheny County, PA, served as a sentinel network for
recruitment. All AIDS patients were eligible to participate, but those with a history of recent
traumatic brain injury, CNS opportunistic infections, lymphoma, or stroke were excluded.
All patients underwent a detailed neurobehavioral assessment within the four weeks before
their MRI scan, involving a neurological examination, psychosocial interview, and
neuropsychological testing, and were designated as having no, mild, or moderate (coded as
0, 1, and 2, respectively) neuropsychological impairment based on a factor analysis of a
broad inventory of motor and cognitive tests performed by a neuropsychologist [97].

All subjects received 3-D spoiled gradient recovery (SPGR) anatomical brain MRI scans
(256 × 256 × 124 matrix, TR = 25 ms, TE = 5 ms; 24-cm field of view; 1.5-mm slices, zero
gap; flip angle = 40°) as part of a comprehensive neurobehavioral evaluation. The MRI
brain scan of each subject was coregistered with scaling (nine-parameter transformation) to
the ICBM53 average brain template, and extracerebral tissues (e.g., scalp, meninges,
brainstem, and cerebellum).
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The corpus callosum of each subject was hand-traced according to previously published
criteria [98], using the interactive segmentation software.

B. Registration Algorithm
The images were nonlinearly registered using a fluid registration algorithm that was recently
implemented [26]. In this approach, the template is treated as a viscous fluid, for which the
velocity of the fluid particles satisfies a Navier-Stokes equation. A force term derived from
the joint distribution of intensities between the images is used to drive the registration. This
model allows for the stress of the transformation to relax over time, thereby permitting large
deformations.

In practice, solving the velocity PDE is very time consuming. Thus, we use a filter based on
the Green’s function of the governing operator of the fluid equation, with sliding boundary
conditions [28] as was proposed by Bro-Nielsen and Gramkow [17], [18], [53] to increase
the speed of the registration.

As a cost function, we chose to maximize a modified version of the Jensen-Rényi
divergence (JRD). A more detailed description of our registration method can be found in
[25], [26]. To save computation time and memory requirements, the source and the target
images were filtered with a Hann-windowed sinc kernel, and isotropically downsampled by
a factor of 2. As in other TBM studies [38], [85], we preferred registration to a typical
control image rather than a multisubject average intensity atlas as it had sharper features.
The resulting deformation field was trilinearly interpolated at each iteration to drive the
source image towards the target at the original resolution to obtain the warped image.

C. Corpus Callosum Maps
In the case of the determinant, it is straightforward to understand the meaning of the statistic,
as it is directly related to volume change. The interpretation for statistics on the deformation
tensors is not so straightforward. Here we decompose the deformation tensor into various
components in order to achieve a better understanding of the statistics.

We first examine the 2-D case, as it is easier to visualize. To do so, we generated p-maps
(significance maps for group differences) based on various statistics derived from the
deformation tensors on the corpus callosum. The corpus callosum traces were turned into
binary maps, which were fluidly registered. This conversion to binary data was made to
allow exact matching of the boundaries, and the resulting interior profile of deformation did
not depend on the intensity-based fidelity term or on the Lagrange multiplier used in the
registration cost function. In the next section, we develop a more formal comparison of the
different statistics using the FDR, which adjusts the observed findings for multiple
comparisons that are implicit in evaluating an entire image of statistics.

The measures of deformation we will study below are the log10 of the determinant, the
principal log10 (eigenvalue), that is the largest eigenvalue in log space, log10 (trace), the
geodesic anisotropy and the rotation angle of the principal eigenvector to the horizontal axis.
A Student’s t-test was performed on these scalar statistics. Similarly, we computed the
Hotelling’s T2 p-values for two multivariate statistics, namely the eigenvalues of the
deformation tensors, and their logarithm.

Fig. 2 shows the p-values from the Student’s t-test for all of the distributions. The TBM
maps of the trace, determinant and maximum eigenvalues show atrophy mainly in the region
of the splenium and the body. These correspond reasonably well with one of our prior
studies which mapped the corpus callosum thickness (see [98]), where these two regions
were significantly affected by the disease. In that study, the genu was also atrophied. Here,
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this result can only be seen via the multivariate statistics. Statistically significant differences
in FA in the genu were also found in DTI analyses of the corpus callosum in HIV [99]. The
total corpus callosum area is on average 11.5% lower in HIV/AIDS, and significant atrophy
of the posterior body is detected in HIV patients. The trace, determinant, and principal
eigenvalues give similar results, while the rotation angle is noisy and not very powerful for
detecting regions of significant shape differences. This result may be due in part to the
uncertainty in the estimation of the principal eigenvector when the tensors are oblate (i.e.,
two eigenvalues are similar). In this situation, the choice of rotation angle becomes arbitrary,
which is important to consider if the statistics are defined on the deformation tensor, as the
estimate of the rotation in the decomposition of the tensor may become quite noisy. Even so,
the noise level is relatively stable even in regions where the average value of tanh(GA) is
large, as shown in Fig. 1.

It is interesting to note that regions of significance for the geodesic anisotropy are similar to
those where the deformation tensors perform better than the Jacobian determinant. This
makes sense, as the two features tap different channels of information regarding the
deformation, each of them is a scalar summary emphasizing different aspects of the
deformation tensor. The GA describes the directionality of the shape dissimilarities. Thus, a
high GA value indicates that the maximum eigenvalue (λ1) of the deformation tensor is
large compared to the minimum one (λ2 in 2-D). However, as demonstrated by the toy
model in Section I, the total volume difference λ1λ2 may still be small. Similarly, a high
determinant says nothing about the anisotropy of the change.

Even though the log clearly performs better in most regions, we notice regions where the
determinant outperforms the full tensor for this test. This can occur for several possible
reasons. One such situation is when the eigenvalues are not very noisy, but the eigenvectors
are, as the former are associated with the determinant, while the deformation tensors take
into account both data. Any noise in the rotational component of the deformations tends to
reduce the power of the deformation tensor relative to the determinant (as the determinant
ignores rotations). A second situation is when the viscosity constants of the Navier operator
are set such that the penalty on the Laplacian is much less than the penalty on the grad-div
term (a volume conservation term). This can lead to greater degrees of rotation in the flows
(as would be typically found in an incompressible fluid). The rotation term can become very
noisy, especially when the Jacobian determinant term is heavily regularized (close to a
constant everywhere).

In Fig. 3, the cumulative distribution function of the p-values observed for the contrast of
patients versus controls is plotted against the corresponding p-value that would be expected,
under the null hypothesis of no group difference, for the different scalar and multivariate
statistics. For null distributions, the cumulative distribution of p-values is expected to fall
approximately along the x = y line (represented by the dotted line); large deviations from
that curve are associated with significant signal, and greater effect sizes represented by
larger deviations (the theory of false discovery rates gives formulae for thresholds that
control false positives at a known rate). We note that the deviation of the statistics from the
null distribution generally increases with the number of parameters included in the
multivariate statistics, with statistics on the full tensor typically outperforming scalar
summaries of the deformation based on the eigenvalues, trace or determinant.

D. Whole Brain Statistics
The geodesic anisotropy GA was found at each voxel using; tanh(GA) and is displayed in
Fig. 4. The hyperbolic tangent of the geodesic anisotropy was used rather than GA itself, as
it takes values in the interval [0,1], while those of GA span the interval [0,∞) (see [13]). We
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notice widespread directionality in the deformation tensors, which strengthens the idea that
valuable information may be found from the anisotropic components of the changes.

Fig. 6(a) shows the p-values from the Student’s t-test [Fig. 5(a)] applied to the log10(J)
distribution. T 2 values and their corresponding p-values are shown in Fig. 5(b) and Fig.
6(b), respectively. The p-values are considerably lower in the case of the Hotelling’s T 2

test. The T 2 test is thus more sensitive, and can detect differences that are not detected with
the conventional method, even when operating on the same deformation fields. Group
differences in brain structure between HIV/AIDS patients and healthy subjects are visible
throughout the brain, with the greatest effect sizes in the corpus callosum and basal ganglia.
That result essentially replicates the distribution of atrophy observed in our prior TBM
studies of HIV/AIDS where conventional statistics were used [25], [26], and is consistent
with results found in other volumetric studies (see [101] for a review of neuroimaging
studies of HIV and AIDS patients). The white matter exhibits widespread atrophy, as shown
by many prior studies of the neuropathology of HIV/AIDS (see for instance [1], [84]), (some
of which imply that the virus invades brain tissue by traveling radially through the white
matter from the ventricles, which are enriched with the virus). Atrophic effects associated
with HIV/AIDS are not detected in the vicinity of the cortex, perhaps because the
registration method is intensity-based and may not perform so well in that area.

As the p-values were so low, we also performed experiments to make sure no effects were
detected in truly null groupings of subjects where no disease-related difference was present.
We distributed the data into two groups of randomly selected patients and controls (6
controls and 13 patients per group), and created a statistical map of evidence for group
differences. The results of this test are shown in Fig. 7, which shows that the multiple
statistical tests are controlled for Type I errors (false positives) at the appropriate expected
rate.

A serious concern in evaluating the added detection sensitivity of a proposed statistic is to
ensure that it has the appropriate null distribution when no signal is present. In an
independent experiment based on a large cohort of normal subjects, we also examined at the
cumulative distribution function of the p-values for the Hotelling’s T 2 statistic, for a group
of 100 controls divided into two gender- and age-matched subsets of 50 subjects each. The
results are shown in Fig. 8. As expected for a null distribution (i.e., a statistical contrast that
has been deliberately designed so that no effect is present), the results fall close to the
diagonal. Strictly speaking many repeated large and independent samples would be required
to prove that this p-value distribution were uniform on the interval [0,1], but this large
control population suggest that the multivariate statistics are able to control for false
positives at the expected rate.

IV. CONCLUSION
Here we used a combination of tensor-based morphometry, metrics on Riemannian
manifolds, and multivariate statistics to detect systematic differences in anatomy between
HIV/AIDS patients and healthy controls. The anatomical profile of group differences is in
line with studies using traditional volumetric methods, as the HIV virus is known to cause
widespread neuronal loss and corresponding atrophy of gray and white matter, especially in
subcortical regions. The multivariate method presented here shows this finding with a much
greater power than conventional TBM. In TBM, the Jacobian of the deformation (or its
logarithm) is commonly examined, and multiple regression is applied to the scalar data from
all subjects at each voxel, to identify regions of volumetric excess or deficit in one group
versus another. This is clinically relevant especially given the large efforts, for example in
drug trials of neurodegenerative disease, to detect subtle disease effects on the brain using
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minimal numbers of subjects (or the shortest possible follow-up interval in a longitudinal
imaging study). As such it is important to optimize not only the nonlinear registration
methods that gauge alterations in brain structure, but also the statistical methods for
analyzing the resulting tensor-valued data.

In neuroscientific studies using TBM, any added statistical power could be helpful in
detecting anatomical differences, for instance in groups of individuals with
neurodegenerative diseases, or in designs where the power of treatment to counteract
degeneration is evaluated, such as a drug trial. Even so, a major caveat is necessary
regarding the interpretation of this data. Strictly speaking, we do not have ground truth
regarding the extent and degree of atrophy or neurodegeneration in HIV/AIDS. So, although
an approach that finds greater disease effect sizes is likely to be more accurate than one that
fails to detect disease, it would be better to compare these models in a predictive design
where ground truth regarding the dependent measure is known (i.e., morphometry predicting
cognitive scores or future atrophic change). We are collecting this data at present, and any
increase in power for a predictive model may allow a stronger statement regarding the
relative power of multivariate versus scalar models in TBM.

Whether or not the multivariate statistics presented here offer greater value to a clinician or
neuroscientist in a particular TBM study depends to some extent on the problem being
studied. In some studies, it is of primary interest to know whether the volume of a particular
structure is systematically reduced in disease, or whether the regional volume of gray matter,
for example, is changing. In that context, the scalar Jacobian determinant would be a
sufficient statistic for testing the hypothesis of regional alteration in volume. Even so, in
longitudinal studies of growth for example, it is often clear from the deformations tracking
growth processes that the expansion is far greater in a specific direction, and this is both
interpretable physically and relevant to understanding the factors that drive growth in the
brain, as well as beneficial for optimizing the statistics to detect growth. In cases where the
full multivariate tensor statistics outperform simpler scalar summaries, efforts may still be
required in interpreting and understanding the sources of directional and rotational
differences, which may be less intuitive but more powerful as indices of morphometry in
development or disease.

For the measures based on eigenvalues or Jacobian determinants, there is a clear physical
interpretation to the detected differences in terms of directionally preferential effects or
changes over time. For the geodesic measures that combine rotational and scale differences,
there is no immediately clear interpretation of the effects unless the statistics of the rotations
and eigenvalues are also presented, as these decompositions allow the sources of variation to
be examined independently. In the case of the corpus callosum, we have noted regions
where the rotational and scaling components of the tensor show statistical differences in
partially overlapping regions of the structure, while the statistics on the full tensor pick up
differences in both of these areas. This is clearly a case where the best SNR is provided by
the more general statistic but interpretation of results is eased by examination of statistics on
the factorized components, which can readily be presented as well. The geodesic measures
that include rotational components may be hypothesized a priori as more relevant than the
scalar Jacobian when measuring brain growth over time for example. In that application, it is
known that there is a significant arching of the brain as a whole during embryonic
development and regionally after birth (see e.g. [92]), and so a study may deliberately seek
to find differences in relative rotations between anatomical structures. The same issue arises
in studying developmental brain asymmetry, in which the orientation of structures in one
hemisphere versus the other changes progressively between childhood and adolescence, and
this asymmetry (which is a rotational as well as volume asymmetry) is of
neurodevelopmental interest as a morphometric index of maturation and lateralization [80].
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Even in these cases, where geodesic and other rotationally-sensitive measures may be of a
priori interest, it would still be beneficial to show statistics on components of the full tensor
to identify the partially independent effects of rotation and scale during the growth process.

The current work can be expanded in several ways. First, in a multivariate setting,
deformation fields could be analyzed using differential operators or tensors other than the
deformation tensor or deformation gradient; Ashburner [9] proposed examining the Hencky
strain tensors, instead of the logarithm of the scalar Jacobian. The current form of the
deformation tensors is, in some respects, a natural extension of TBM. There are many
commonly used alternative definitions of deformation tensors in the continuum mechanics

literature, and another possibility would be to use  instead. We also could have
chosen JT J, but taking the square root allows for a more natural comparison with the usual
TBM statistics (the determinant of the scalar Jacobian determinant) as det(S) = det(J). Using
the deformation tensor as defined in this work removes the local component of the rotation,
while retaining information on the local directional size differences.

We note that by examining the deformation tensor in this work, we are examining only the
symmetric positive-definite part of the Jacobian matrix, and three remaining degrees of
freedom (a rotational term) are still discarded and not used. The Log-Euclidean framework
can be extended to analyze the full Jacobian matrices, performing computations on that
space (see [5] for extensions of the Log-Euclidean framework to general matrix spaces).
Going from six to nine parameters may therefore further increase the power of the
multivariate statistics [106]. For sample sizes such as the one in this study, we decided to
use statistics based on 6 deformation parameters to lessen the likelihood that artifacts from
individual brains might appear in the results due to the large number of fitted parameters.
There is also a need to study the potential interactions between the chosen deformation prior
(regularizer) and the resulting null distributions of rotations arising from using the prior as a
regularizer. We have found that priors that tend to conserve volume more strongly (e.g.,
some fluid models or priors regularizing the logarithm of the Jacobian determinant) may
also result in large local rotations when image regions need to be displaced considerably to
optimize the deformation energy. Future larger samples will allow us to estimate empirically
the benefit of nine versus six parameters in the multivariate analysis and their interaction
with the chosen regularizer [19].

The optimal tensor to use for detecting group differences in TBM may depend on the
directional properties of the underlying disease or developmental process being analyzed, as
well as the differential operator used to regularize the deformation. The standard
regularization operators used in nonlinear image registration tend to penalize Laplacians and
spatial gradients in the divergences of the deformation fields. Depending on the relative
influence of these terms (which is controlled in the governing Navier-Stokes equations by
viscosity coefficients), a redistribution of disease-related signal may occur between the
rotational versus scaling components of the deformation tensor, and the level of noise in
each of these tensor components may be differentially penalized by the partial differential
operators controlling the deformation. These regularization effects are complex and will be
the topic of further study. Finally, analytic formulae for the null distribution of the volume
of the excursion sets of T 2-distributed random fields were recently computed by Cao and
Worsley [22], [23], and these may also be applied in a Riemannian space setting to optimize
signal detection. Before a complete random field theory of tensor-valued signals can be
developed, further work is required to extend the concept of roughness and smoothness to
tensor-valued data, as these tensors arise in the statistical flattening and omnibus
significance testing for signal detection in scalar-valued random fields. Studies are also
underway to incorporate the Log-Euclidean framework in the cost functions (or statistical
priors) that regularize the nonlinear registrations themselves [75]. This suggests that these
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methods may be advantageous for both the registration and statistical analysis of tensor-
valued data, which are in many respects complementary problems.
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Fig. 1.
Left: Average of tanh(GA) for the controls. Right: Average of tanh(GA) for the patients. (a)
Controls. (b) Patients.
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Fig. 2.
Green regions indicate p-values for which p < 0.05. From left to right and top to bottom. The
template corpus callosum. The corner figure is an illustration of a deformation tensor at one
voxel. The axes of the ellipse point in the directions of the eigenvectors, and their lengths
represent the size of the associated eigenvalues. Scalar t-tests for group differences (AIDS
versus controls) for various alternative measures of shape differences: the determinant (λ1
λ2) of the deformation tensor (pFDR = 0.018), trace (λ 1 + λ2) (pFDR = 0.028), maximum
eigenvalue (λ1) (pFDR = 0.019), angle of rotation (θ) of the eigenvectors (pFDR = 0.44),
and the geodesic anisotropy (pFDR = 0.034). Also shown are maps constructed from the
multivariate Hotellings T2 tests: on the vector composed of the two eigenvalues (λ1, λ2)
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(pFDR = 0.016), and on the log of the deformation tensors (pFDR = 0.010). The shape
alterations in the genu (the most anterior part) of the corpus callosum are not detected unless
a multivariate test is used. Even areas with more subtle fiber degeneration are identified with
the multivariate statistics on the full tensor.
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Fig. 3.
This figure shows the cumulative distribution of p-values versus the corresponding
cumulative p-value that would be expected from a null distribution for a) the various scalar
statistics: trace (magenta), geodesic anisotropy (red), angle (cyan), maximum eigenvalue
(blue), and the determinant (green). b) the determinant (green), the eigenvalues (blue) and
the log of the deformation tensor (magenta). In FDR methods, any cumulative distribution
plot that rises steeply is a sign of a significant signal being detected, with curves that rise
faster denoting higher effect sizes. This steep rise of the cumulative plot relative to p-values
that would be expected by chance can be used to compare the detection sensitivity of
different statistics derived from the same data.
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Fig. 4.
Left: Voxelwise geodesic anisotropy calculated from 3. Right: Its hyperbolic tangent. Most
of the brain shows anisotropy, meaning that volume elements in the average anatomy of the
HIV/AIDS brain are not just isotropically contracted versions of their homologs in the
normal brain; there are some preferred directions to the contraction of tissue. This
directional preference is a type of information that is discarded when the Jacobian
determinants are examined in TBM, but can be exploited by multivariate tests on the full
tensor, providing additional power to detect disease effects. (a) GA. (b) tanh(GA).
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Fig. 5.
Left: Voxelwise t-values for log10 J. Right: Voxelwise T2 for log(S). (a) t. (b) T2.
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Fig. 6.
Left: Voxelwise p- values given by the Student’s t-test for the logarithm of the Jacobian
determinant log10(J) (pFDR = 0.29). Right: Voxelwise p-values computed from the
Hotelling’s T2 test on the deformation tensors. P-values are shown on a log10 scale; —3
denotes a voxel level p-value of 0.001. A brain with three cutplanes is shown, with the brain
facing to the right. As expected from the literature on the neuropathology of HIV/AIDS,
greatest atrophic effects are found in the subcortical regions, which border on ventricular
regions enriched in the virus. The multivariate methods show comparable patterns of
atrophy to the standard method, but with much greater sensitivity (i.e., better signal to
noise). (a) p(t). (b) p(T2).
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Fig. 7.
P-values are shown on a log10 scale from a permutation distribution assembled by
comparing two groups of subjects who do not differ in diagnosis. Two subsets of 13
randomly selected patients and six randomly selected controls were compared, i.e., the
sample was split in half and assigned to two groups randomly, while ensuring each group
had equal numbers of patients and controls. As expected, no significant morphometric
difference is detected. In any null random field, on average a proportion t of the voxels will
have p-values lower than any fixed threshold t in the range zero to one. This accounts for the
appearance of low p- values in some brain regions (e.g., the right temporal pole, shown here
in red and yellow colors).
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Fig. 8.
Cumulative distribution function of the p-values versus the p-values for 100 controls divided
into two equal size groups matched for age and gender (solid line). The dashed line shows
the expected value of the null distribution.
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