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Abstract: A pseudo-testcross pedigree is widely used for mapping quantitative trait loci (QTL) in outcrossing species, but the model for 
analyzing pseudo-testcross data borrowed from the inbred backcross design can only detect those QTLs that are heterozygous only in 
one parent. In this study, an intercross model that incorporates the high heterozygosity and phase uncertainty of outcrossing species was 
used to reanalyze a published data set on QTL mapping in poplar trees. Several intercross QTLs that are heterozygous in both parents 
were detected, which are responsible not only for biomass traits, but also for their genetic correlations. This study provides a more 
complete identification of QTLs responsible for economically important biomass traits in poplars.
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Introduction
Experimental crosses between different parents have 
served as a powerful tool for mapping quantitative 
trait loci (QTLs) that affect quantitatively inherited 
traits.1,2 Crossing two parents allows different but 
linked loci to be co-segregating, with which the seg-
regation of an unknown QTL can be inferred from the 
segregation of observable markers. For many agricul-
tural and experimental species, segregating crosses 
initiated with two contrasting inbred lines, such as the 
backcross, double haploid, RILs or F2, have been used 
for genetic mapping. A number of statistical models 
for QTL mapping have been originally established 
for these advanced crosses3–6 and have been instru-
mental for the mapping and identification of biologi-
cally meaningful QTLs.7,8

There is also a group of important species, like for-
est trees, whose biological properties prevent the gen-
eration of inbred lines and, therefore, of any advanced 
cross. However, because these species are highly het-
erozygous, their cross of one generation (F1) often 
displays substantial segregation and have many dif-
ferent types of segregation. Some loci may have four 
different alleles between the crossing parents, generat-
ing four genotype classes in the progeny. Many others 
may also follow the F2 pattern in a 1:2:1 ratio (called 
intercross loci) and the backcross pattern in a 1:1 ratio 
(called testcross loci).9 Using the testcross markers, 
i.e. those that are segregating in one parent but not in 
the other, Grattapaglia and Sederoff10 proposed a so-
called pseudo-testcross strategy for linkage mapping 
in a controlled cross between two outbred parents. 
Although it only makes use of a portion of markers 
from the genome, this strategy provides a simple way 
for genetic mapping and has been widely utilized in 
practical mapping projects for outcrossing species.11,12

Current statistical mapping methods for the pseudo-
testcross strategy are directly borrowed from avail-
able software developed for the backcross resulting 
from two inbred lines.13 However, although the mark-
ers used to estimate a putative QTL follow a testcross 
segregation type, the QTL may be segregating like an 
intercross gene given the parents’ outcrossing nature. 
The idea of mapping more heterozygous QTLs with 
less heterozygous markers was conceived by Haley 
et al.5 Stam14 developed a computer software package 
called JoinMap to map QTLs for outcrossing popu-
lations. More recently, Lin et al15 have proposed a 

likelihood model for estimating QTL locations and 
QTL effects in an outcrossed family by jointly con-
sidering possible QTL-marker linkage phases. For 
outcrossing parents, the linkage phase of alleles at 
the markers and a QTL bracketed by the markers is 
unknown. In this note, we use Lin et al’s intercross 
model to reanalyze a published data set for a poplar 
mapping project,16 in an attempt to provide a com-
plete characterization of QTLs for biomass traits.

Materials and Methods
Mapping population
As one of the most important forest trees in biology 
and forestry, poplars have received an tremendous 
interest in genetic studies.17 We will use poplars as our 
study material to test the intercross model for QTL 
mapping. A mapping population used to map QTLs 
in hybrid poplars (Populus trichocarpa Torr. and A. 
Gray (T) × Populus deltoides Bartr. ex Marsh. (D)) 
was described by Yin et al12 and Wullschleger et al.16 
It is an outbred backcross, TD1 × D2, which was 
produced by crossing a female interspecies hybrid 
derived from a T tree from Pacific Northwest and a 
D tree from Illinois with a different male D individual. 
Given the outcrossing nature of these two poplar spe-
cies, this cross is expected to contain different types 
of heterozygous markers as listed in Lu et al.9 Using 
171 genotypes from this cross, a number of segre-
gating markers were generated from 92 microsatel-
lite (simple sequence repeat, SSR) and 24 amplified 
fragment length polymorphism (AFLP) primer pairs. 
Of these markers, 92 SSR and 556 AFLP markers are 
segregating in maternal parent TD1 but not in pater-
nal parent D2. A genetic linkage map was constructed 
from 544 of these testcross markers heterozygous 
in parent TD1. The map is composed of 19 link-
age groups, equivalent to the Populus chromosome 
number. A complete description of genetic map con-
struction was given in Yin et al.12

Poplar hybrids used for the mapping study were 
planted in the field using unrooted cuttings. A num-
ber of growth and biomass traits were measured for 
harvested poplar trees after one and two seasons of 
growth. These traits include the aboveground (leaf, 
branch, stem and cutting), belowground (fine and 
coarse root) and total biomass at two different years. 
The percentages of different organs over the total 
biomass were calculated (see for a detail16).
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Statistical analysis
All the biomass partitioning traits were analyzed by 
a testcross model and Lin et al’s15 intercross model 
incorporating the segregation pattern of heterozygous 
QTLs in both parents TD1 and D2. Model selection 
criteria (AIC and BIC) were calculated to determine 
the optimal model that explains the mapping data. As 
a tutorial-type article on QTL mapping published in 
this journal, we will provide a procedure of deriving 
the intercross model and its computational algorithm 
in the Appendix, aimed to help interested readers 
understand the methodological development of QTL 
mapping. One of the most important and difficult 
issues in QTL mapping is to determine the critical 
threshold for claiming the significance of a QTL. 
Because of the unknown distribution of the likelihood 
ratio test statistic, it is difficult to derive an analyti-
cal solution of the threshold. Permutation tests that do 

not rely on the distribution of a test statistic18 will be 
used to determine the threshold.

Results
Both the testcross and intercross models were employed 
to detect the QTL that affect various biomass traits in 
poplar hybrids at the first two years of growth. The 
critical thresholds for declaring the existence of a QTL 
were determined from permutation tests. A number of 
QTLs were detected by these two models, but only 
those detected genomewide are reported in this report, 
in order to increase the standard of QTL detection.

Table 1 tabulates the results about the chromosomal 
positions and genetic effects of QTLs obtained from 
the intercross and testcross model. In year 1, QTLs 
were mostly detected to locate on linkage group 4, 
with one on linkage groups 1, 3 and 6, respectively. 
Two QTLs on linkage group 4 and one on linkage 

Table 1. QTL detection and the parental origin of favorable QTL alleles for biomass partitioning at the first two years in the 
field for a hybrid poplar family.

Trait Intercross model Testcross model
Linkage 
group

Marker 
position

p̂ â d̂ LR R Linkage 
group

Marker 
position

â LR R

Year 1
Leaf biomass 4 S8_29 0.84 0.73 0.15 22.88 0.14 4 S8_29 0.91 21.87 0.14
Cutting % – 4 P_204_C 0.05 21.54 0.08
Above-ground 
biomass

– 4 S8_29 0.85 19.03 0.11

Above-ground % 1 S15_8 1.00 0.05 -0.02 26.11 0.15 1 S15_8 0.05 24.88 0.15
4 S8_29 1.00 0.06 -0.01 22.44 0.11 4 S8_29 0.06 21.23 0.11

Fine-root % – 3 T4_7 0.41 15.91 0.10
Stem % 6 P_204_C2 0.71 0.15 -0.02 29.51 0.09 –
Total biomass – 4 S8_29 0.75 15.61 0.10

Year 2
Branch biomass 13 T4_10 0.82 0.92 0.23 35.03 0.14 –
Branch % – 8 O_268_B -0.04 17.19 0.24
Cutting biomass – 12 T11_4 0.39 15.96 0.13
Leaf biomass 13 T4_10 0.81 0.79 0.18 31.03 0.14 – –
Above-ground 
biomass

13 T4_10 0.82 0.83 0.19 32.84 0.13 – – –

Coarse-root biomass – 12 S12_10 0.51 16.98 0.14
Total biomass 13 T4_10 0.81 0.80 0.19 31.47 0.13 – – –

Notes: p̂, diplotype probability of maternal parent TD1; â, additive effect; d̂, dominant effect; LR, the log-likelihood ratio; R, the percentage of the phenotypic 
variation explained by a QTL.
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group 1 were detected by both models. The AIC and 
BIC values calculated under the two models consis-
tently support the testcross model (Table 2). Thus, 
all the QTLs detected in year 1 are segregating due 
to maternal parent TD1. Leaf biomass, above-ground 
biomass, and total biomass were affected by the same 
QTL linked with marker S_29 on linkage group 4, sug-
gesting the pleiotropic control of this QTL. Linkage 
group 4 was also found to harbor a QTL (near marker 
P_204_C) responsible for cutting biomass percentage. 
Above-ground biomass percentage includes two QTLs, 
one linked with marker S15_8 on linkage group 1 and 
the other linked with marker S8_29 on linkage group 
4. Fine-root biomass percentage is controlled by a QTL 
linked with T4_7 on linkage group 3. All the QTLs 
detected each explain about 9%–15% of the pheno-
typic variation for biomass traits.

In year 2, different QTLs were detected to affect 
biomass traits (Table 1). The testcross model detected 
a QTL near marker O_268_B on linkage group 8 
for branch biomass percentage, a QTL near marker 
T11_4 on linkage group 12 for cutting biomass and 
a QTL near marker S12_10 on linkage group 12 for 
coarse-root biomass. Each of these QTLs explains 
about 13%–24% of the phenotypic variation for these 
traits. Because markers T11_4 and S12_10 are located 
on the same region of a chromosome, the linkage of 
different QTLs may be contribute to the correlation 
between cutting biomass and coarse-root biomass.

It is interesting to see that the intercross model iden-
tifies significant QTLs which could not be detected 
by the testcross model (Table 1). As compared to 
year 1, an increasing number of traits is controlled by 
intercross QTLs. In year 1, only one intercross QTL 
for stem biomass was mapped to marker P_204_C2 
on linkage group 6, whereas an intercross QTL near 
marker T4_10 on linkage group 13 was observed for 
stem biomass, leaf biomass percentage, aboveground 
biomass, and total biomass in year 2. These intercross 

QTLs operate in an additive (d/a ∼ 0) manner in year 1 
and in a partially dominant (d/a = 0.20–0.30) manner 
in year 2, where a and d are the additive and dominant 
effects of a QTL, respectively. It is also interest-
ing to find that QTL alleles in a coupling phase e of 
marker alleles derived from the maternal parent TD1 
contribute to favorable effects on increasing values of 
these biomass traits. The intercross QTLs detected in 
year 2 account for about 13%–14% of the phenotypic 
variation.

Discussion
Although statistical models for QTL mapping have 
been well developed since the publication of Lander 
and Botstein’s3 seminal paper, the model develop-
ment of QTL mapping in outbred populations, a group 
of species of great environmental and economical 
importance, has received limited attention. Stam14 and 
Lin et al15 proposed models and algorithms for QTL 
mapping of outcrossing traits, although the research 
from these two groups has a different focus. The latter 
incorporates the uncertainty on linkage phase, typical 
of outbred parents, into the mapping model, allowing 
a general formulation of mapping models. In this note, 
we used Lin et al’s model to map intercross QTLs that 
are segregating in both parents for a full-sib family 
of poplars. It is also our hope that, by providing a 
detailed procedure for model derivation (Appendix), 
interested readers of this journal can better understand 
general statistical principles behind QTL mapping, 
ultimately helping their result interpretations.

Although there is a set of QTLs segregating only in 
hybrid poplar TD1 (see also),16 the intercross model 
also finds those QTLs that are heterozygous in both 
maternal parent TD1 and paternal parent D2. Interest-
ingly, different QTLs were detected between years 1 
and 2. It is possible that the genetic control of quan-
titative traits is subjected to developmental changes. 
In a similar mapping experiment for poplar hybrids, 

Table 2. Model selection based on both AIC and BIC criteria.

Year Trait Linkage 
group

Intercross model Testcross model
LR AIC BIC LR AIC BIC

1 Above-ground percentage 1 26.11 7.17 12.76 24.88 5.21 8.54
4 22.44 7.30 13.18 21.23 5.35 8.98

1 Leaf biomass 4 22.88 7.28 13.13 21.87 5.32 8.90
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Wu et al19 also detected different QTLs that affect 
growth traits between the first two years in the field. 
In the establishment year, trees grow from unrooted 
cuttings, which needs to allocate more energy to 
adapt themselves to the environment of the field. But 
after trees develop a rooting system, the pattern of 
their growth will be alternated to better use resources. 
It is likely that these processes in years 1 and 2 are 
controlled by QTLs located at different chromosomal 
positions and with different segregating patterns.

Results from this study help to provide the expla-
nations about genetic mechanisms for trait corre-
lations. Strong correlations among leaf biomass, 
above-ground biomass (also its percentage), and 
total biomass16 in year 1 may be due to a pleiotropic 
QTL detected on linkage group 4. It turns out that 
these correlations in year 2 are mediated by a differ-
ent QTL on linkage group 13. On the other hand, a 
strong correlation between leaf biomass and cutting 
biomass percentage in year 1 may be due to the link-
age of different QTLs located on a similar region of a 
chromosome (linkage group 4). The linkage of differ-
ent QTLs on linkage group 12 may be responsible for 
the association between cutting biomass and coarse-
root biomass in year 2. A detailed understanding of 
the genetic mechanisms for trait correlations and the 
developmental change of such correlations deserves 
further investigation.
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Appendix
Pseudo-testcross design
In what follows, we give a tutorial-type procedure for deriving the statistical model for mapping intercross QTLs 
in a pseudo-testcross pedigree for outcrossing species. Consider an F1 family for QTL mapping derived from two 
outbred parents P1 and P2. Suppose there is an intercross QTL of alleles Q and q that is inferred by two flanking 
testcross markers each with alleles 1 and 0. Thus, the genotypes of the two parents should be 10/Qq/10 (for P1 
heterozygous at the markers) and 00/Qq/00 (for P2 homozygous at the markers), respectively. It is possible that 
the P1 genotype has two different diplotypes Φ1 = 1Q1|0q0 and Φ2 = 1q1|0Q0, assuming that the linkage phase 
between the two markers is known. Let p and (1 – p) be the probabilities for the F1 to carry diplotype Φ1 and Φ2, 
respectively. We use r, r1 and r2 to denote the recombination fractions between the two markers, between the first 
marker and QTL, and between the QTL and second marker, respectively. Under each diplotype, the frequencies 
of eight genotypes (comprising of two markers and one QTL) in the outcross between the P1 and P2 can be derived 
by assuming crossover independence and expressed in matrix form as

Marker Φ1 Φ2

Genotype Frequency QQ Qq qq QQ Qq qq

10/10 1

2
r

1

4 1 2r r
1

4 1 2 1 2( )r r r r+ 1

4 1 2rr
1

4 1 2rr
1

4 1 2 1 2( )r r r r+ 1

4 1 2r r

10/00 1

2
r

1

4 1 2r r
1

4 1 2 1 2( )r r r r+ 1

4 1 2r r
1

4 1 2r r
1

4 1 2 1 2( )r r r r+ 1

4 1 2r r

00/10 1

2
r

1

4 1 2r r
1

4 1 2 1 2( )r r r r+ 1

4 1 2r r
1

4 1 2r r
1

4 1 2 1 2( )r r r r+ 1

4 1 2r r

00/00 1

2
r

1

4 1 2r r
1

4 1 2 1 2( )r r r r+ 1

4 1 2r r
1

4 1 2r r
1

4 1 2 1 2( )r r r r+ 1

4 1 2rr

(1)

Marker
Genotype Frequency Observation QQ Qq qq

10/10 1

2
r

n1 1

4 1 2 1 2( )pr r pr r+ 1

4 1 2 1 2( )r r r r+ 1

4 1 2 1 2( )prr p r r+

10/00 1

2
r

n2 1

4 1 2 1 2( )prr pr r+ 1

4 1 2 1 2( )r r r r+ 1

4 1 2 1 2( )pr r p rr+

00/10 1

2
r

n3 1

4 1 2 1 2( )prr p rr+ 1

4 1 2 1 2( )r r r r+ 1

4 1 2 1 2( )prr pr r+

00/00 1

2
r

n4 1

4 1 2 1 2( )pr r p r r+ 1

4 1 2 1 2( )r r r r+ 1

4 1 2 1 2( )pr r pr r+

(2)

where r r r r r r= - = - = -1 1 11 1 2 2, , , and p p= -1 .  Considering two possible diplo-types, the expected genotype 
frequencies in the crosss should be a mixture of the genotype frequencies weighted by the diplotype probabilities, 
expressed as
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where n1, …, n4 that sums to n are the observations of 
each marker genotype in the outcross. According to 
Bayes’ theorem, the conditional probability (denoted 
by ωj|i) of QTL genotype j (  j = 2 for QQ, 1 for Qq 
and 0 for qq) given the marker genotype of individual 
i in the cross can be calculated using the probabili-
ties in matrix (2). Obviously, such conditional prob-
abilities for an outcross are different from those for a 
backcross, as expressed in matrix (1), that has a fixed 
parental diplotype.

Likelihood and estimation
In the outcross produced by the P1 and P2, n individuals 
are genotyped for a set of testcross markers (M) and 
phenotyped for a quantitative traits (  y) that is con-
trolled by an outcross QTL. The likelihood of observed 
phenotypes and markers can be expressed, in terms of 
three possible QTL genotypes in the outcross, as

L y M f y f y f yi i i i i i
i

n

( , ) ( ) ( ) ( )= + +





=
∏ ω ω ω2 2 1 1 0 0

1
� (3)

where the mixture proportion, ωj|i, i.e. the conditional 
probability of a QTL genotype given the marker gen-
otype, can be derived from matrix (2), and fj(y) is a 
normal distribution of the phenotypic trait, with mean 
µj and variance σ 2.

The likelihood (3) contains the unknown param-
eters that define the the marker-QTL diplotype prob-
ability of the F1 ( p), QTL position (r1, r2), QTL effects 
(µ2, µ1, µ0) and variance (σ 2). These parameters are 
estimated by implementing the standard EM algo-
rithm. The estimation process is described below.

The EM algorithm is implemented to estimate the 
unknown parameters (µj, σ

2, r1, r2, p). In the E step, 
calculate the posterior probability of an individual i to 
carry a particular QTL genotype j by

	
Π j i

i i

i i i i i i

f y

f y f y f y
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+ +
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2 2
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In the M step, estimate the unknown parame-
ters based on the calculated posterior probabilities, 
expressed as
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An iteration is repeated between steps E and M 
until the estimates of the parameters converge. The 
values at the convergence are the maximum likeli-
hood estimates of the parameters.

Hypothesis testing
The intercross model allows for the estimates of the 
additive (a) and dominant (d ) genetic effects for a het-
erozygous QTL. The significance of a QTL is tested 
by formulating hypotheses

H0:  a = d = 0,
�H1: � At least one of the equalities above  

does not hold.

Under each hypothesis, the plugging-in likelihood 
values are calculated, from which a log-likelihood 
ratio test statistics is estimated. The critical thresh-
old for declaring the existence of a QTL can be 
determined on the basis of permutation tests.18 The 
additive and dominance effects of a QTL can be fur-
ther tested.
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