Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Oct;67(2):523–528. doi: 10.1073/pnas.67.2.523

A Factor for the Binding of Aminoacyl Transfer RNA to Mammalian 40S Ribosomal Subunits*

David P Leader 1,2,3, Ira G Wool 1,2,3, James J Castles 1,2,3
PMCID: PMC283239  PMID: 5289006

Abstract

A factor present in rat liver supernatant catalyzes binding of Phe-tRNA to 40S ribosomal subunits from rat skeletal muscle. This factor could be distinguished from aminoacyltransferase I by a number of criteria: (1) at lower concentrations of magnesium (5 mM) the 40S binding factor was approximately seven times as effective as T-I in catalyzing binding of Phe-tRNA to 40S subunits; (2) the kinetics of the binding reaction were different when catalyzed by the 40S binding factor, in particular the initial rate was greater than in the presence of T-I—indeed, the kinetics of the T-I catalyzed reaction resembled nonenzymic binding; (3) GTP was required for maximal binding of Phe-tRNA to 40S subunits in the presence of the 40S binding factor, but not for the T-I catalyzed reaction; (4) the 40S binding factor was inactivated by N-ethylmaleimide whereas T-I was not; (5) finally, the 40S binding factor was more susceptible to heat inactivation. Binding of aminoacyl-tRNA to 40S ribosomal subunits may be a paradigm for the initiation of protein synthesis, and the 40S binding factor may play a role in the process.

Full text

PDF
526

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown J. C., Smith A. E. Initiator codons in eukaryotes. Nature. 1970 May 16;226(5246):610–612. doi: 10.1038/226610a0. [DOI] [PubMed] [Google Scholar]
  2. Castles J. J., Wool I. G. Polyuridylic acid directed binding of phenylalanyl transfer ribonucleic acid to mammalian 40S ribosomal subunits. Biochemistry. 1970 Apr 28;9(9):1909–1916. doi: 10.1021/bi00811a008. [DOI] [PubMed] [Google Scholar]
  3. Ibuki F., Moldave K. Evidence for the enzymatic binding of aminoacyl transfer ribonucleic acid to rat liver ribosomes. J Biol Chem. 1968 Feb 25;243(4):791–798. [PubMed] [Google Scholar]
  4. Kaempfer R. Ribosomal subunit exchange in the cytoplasm of a eukaryote. Nature. 1969 Jun 7;222(5197):950–953. doi: 10.1038/222950a0. [DOI] [PubMed] [Google Scholar]
  5. Laycock D. G., Hunt J. A. Synthesis of rabbit globin by a bacterial cell free system. Nature. 1969 Mar 22;221(5186):1118–1122. doi: 10.1038/2211118a0. [DOI] [PubMed] [Google Scholar]
  6. Liew C. C., Haslett G. W., Allfrey V. G. N-acetyl-seryl-tRNA and polypeptide chain initiation during histone biosynthesis. Nature. 1970 May 2;226(5244):414–417. doi: 10.1038/226414a0. [DOI] [PubMed] [Google Scholar]
  7. Lin S. Y., McKeehan W. L., Culp W., Hardesty B. Partial characterization of the enzymatic properties of the aminoacyl transfer ribonucleic acid binding enzyme. J Biol Chem. 1969 Aug 25;244(16):4340–4350. [PubMed] [Google Scholar]
  8. Marcker K. A., Smith A. E. On the universality of the mechanism of polypeptide chain initiation. Bull Soc Chim Biol (Paris) 1969;51(10):1453–1458. [PubMed] [Google Scholar]
  9. Martin T. E., Rolleston F. S., Low R. B., Wool I. G. Dissociation and reassociation of skeletal muscle ribosomes. J Mol Biol. 1969 Jul 14;43(1):135–149. doi: 10.1016/0022-2836(69)90084-9. [DOI] [PubMed] [Google Scholar]
  10. Martin T. E., Wool I. G. Formation of active hybrids from subunits of muscle ribosomes from normal and diabetic rats. Proc Natl Acad Sci U S A. 1968 Jun;60(2):569–574. doi: 10.1073/pnas.60.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McKeehan W. L., Hardesty B. Purification and partial characterization of the aminoacyl transfer ribonucleic acid binding enzyme from rabbit reticulocytes. J Biol Chem. 1969 Aug 25;244(16):4330–4339. [PubMed] [Google Scholar]
  12. Miller R. L., Schweet R. Isolation of a protein fraction from reticulocyte ribosomes required for de novo synthesis of hemoglobin. Arch Biochem Biophys. 1968 May;125(2):632–646. doi: 10.1016/0003-9861(68)90622-x. [DOI] [PubMed] [Google Scholar]
  13. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  14. Nomura M., Lowry C. V. PHAGE f2 RNA-DIRECTED BINDING OF FORMYLMETHIONYL-TRNA TO RIBOSOMES AND THE ROLE OF 30S RIBOSOMAL SUBUNITS IN INITIATION OF PROTEIN SYNTHESIS. Proc Natl Acad Sci U S A. 1967 Sep;58(3):946–953. doi: 10.1073/pnas.58.3.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. II. A possible site on the 50 S subunit protecting aminoacyl transfer ribonucleic acid from deacylation. J Biol Chem. 1967 Nov 10;242(21):4939–4947. [PubMed] [Google Scholar]
  16. Prichard P. M., Gilbert J. M., Shafritz D. A., Anderson W. F. Factors for the initiation of haemoglobin synthesis by rabbit reticulocyte ribosomes. Nature. 1970 May 9;226(5245):511–514. doi: 10.1038/226511a0. [DOI] [PubMed] [Google Scholar]
  17. Rao P., Moldave K. Interaction of polypeptide chain elongation factors with rat liver ribosomal subunits. J Mol Biol. 1969 Dec 28;46(3):447–457. doi: 10.1016/0022-2836(69)90188-0. [DOI] [PubMed] [Google Scholar]
  18. Ravel J. M., Mosteller R. D., Hardesty B. NaF inhibition of the initial binding of aminoacyl-sRNA to reticulocyte ribosomes. Proc Natl Acad Sci U S A. 1966 Aug;56(2):701–708. doi: 10.1073/pnas.56.2.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schneir M., Moldave K. The isolation and biological activity of multiple forms of aminoacyl transferase I of rat liver. Biochim Biophys Acta. 1968 Aug 23;166(1):58–67. doi: 10.1016/0005-2787(68)90490-5. [DOI] [PubMed] [Google Scholar]
  20. Smith A. E., Marcker K. A. Cytoplasmic methionine transfer RNAs from eukaryotes. Nature. 1970 May 16;226(5246):607–610. doi: 10.1038/226607a0. [DOI] [PubMed] [Google Scholar]
  21. Smith A. E., Marcker K. A. N-formylmethionyl transfer RNA in mitochondria from yeast and rat liver. J Mol Biol. 1968 Dec 14;38(2):241–243. doi: 10.1016/0022-2836(68)90409-9. [DOI] [PubMed] [Google Scholar]
  22. Stanley W. M., Jr, Salas M., Wahba A. J., Ochoa S. Translation of the genetic message: factors involved in the initiation of protein synthesis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):290–295. doi: 10.1073/pnas.56.1.290. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES