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Abstract

Sequence variants that may result in splicing alterations are a particular class of inherited variants
for which consequences can be more readily assessed, using a combination of bioinformatic
prediction methods, and in vitro assays. There is also a general agreement that a variant would
invariably be considered pathogenic on the basis of convincing evidence that it results in
transcript(s) carrying a premature stop codon or an in-frame deletion disrupting known functional
domain(s). This commentary discusses current practices used to assess the clinical significance of
this class of variants, provides suggestions to improve assessment, and highlights the issues
involved in routine assessment of potential splicing aberrations. We conclude that classification of
sequence variants that may alter splicing is greatly enhanced by supporting in vitro analysis.
Additional studies that assess large numbers of variants for induction of splicing aberrations and
exon skipping are needed to define the contribution of splicing/exon skipping to cancer and
disease. These studies will also provide the impetus for development of algorithms that better
predict splicing patterns. We call for the deposition of all laboratory data from splicing analyses in
national and international databases in order to facilitate variant classification and development of
more specific bioinformatic tools.
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Introduction

While development of likelihood based prediction models integrating data from a variety of
sources (see Goldgar et al, 2008) will be a very useful tool for the classification of rare
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sequence variants in “high-risk” disease genes, there are several limitations to the
application of such models. In the first instance, classification may be hampered by the
availability of data on co-occurrence with clearly deleterious mutations, segregation, and
tumor pathology for rare variants identified in individual families. There is also a possibility
that results could be confounded if a “neutral” variant occurs in cis with an undetected
mutation. This problem would be exacerbated for genes such as the mismatch repair (MMR)
genes, where immunohistochemical testing is often used to prioritize gene testing. Assays
which assess the influence of specific missense alterations on protein function can assist
with the clinical classification of individual variants. The utility of such data in the
prediction process will be greatly increased when methods have been sufficiently developed
for their inclusion in multifactorial models which use multiple lines of evidence, and there is
already great promise for this aspect of multifactorial likelihood classification (see Couch et
al, 2008, and Goldgar et al, 2008). However, it will take some time and effort to generate
reference data across a range of mutation types and positions for any given functional assay
or gene.

Sequence variants that may result in splicing alterations are a particular class of variants for
which the functional and clinical consequences can be more readily assessed. In the first
instance, there are a variety of prediction programs that can be used to predict the
probability that a sequence change will disrupt the “normal” splicing pattern. Secondly,
given the availability of suitable biological material from a variant carrier, including
lymphocytes or lymphoblastoid cell lines (LCL), the predictions can be relatively easily
tested in vitro by analysis of mRNA in normal tissue. Thirdly, if there is convincing
evidence that the variant results in a transcript (or transcripts) carrying a premature stop
codon, or an in-frame deletion disrupting known functional domain(s), the variant would
invariably be considered pathogenic without need for additional data required for
multifactorial likelihood analysis. The aim of this commentary paper is to discuss current
practices used to assess the clinical significance of this class of variants, to provide
suggestions on how to improve assessment, and to highlight the caveats, advantages, and
obstructions to routine assessment of potential splicing aberrations.

Prediction and verification of potential splicing aberrations

A number of web-based programs may be used for bioinformatic analysis of potential
splicing aberrations. Details and descriptions of commonly-used programs are shown in
Table 1. Virtually all of these programs were originally developed for gene hunting, and
primarily take into account the consensus sequence or other sequence features like reading
frames. That is, the programs were not designed for prediction of the consequences of
sequence alterations. Analyses are done in a rather cumbersome fashion by generating
results for the wildtype sequence separately to the variant sequence, and there is no specific
output or interpretation comparing wildtype and variant sequences directly. Also, it is
generally more straightforward to assess loss of splice consensus sites than creation of de
novo sites because of the nature of the data input methods.

There are two broad classes of programs. The most clinically useful are those which can be
used to analyze the effect of sequence alterations in consensus sequences of donor and
acceptor splice sites which may disrupt or weaken canonical sites, or sequence alterations
which may create cryptic splice sites in intronic or exonic regions. In addition, several
programs have been designed to predict possible exonic or intronic splice enhancer (ESE/
ISE) and exonic or intronic splice silencer (ESS/ISS) sites. It is important to note that these
splice enhancer/silencer programs recognize multiple sequences that are potential binding
sites of splicing factors, but cannot denote which sites are actually used under physiological
conditions.

Hum Mutat. Author manuscript; available in PMC 2010 March 4.
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There is a general acceptance that there is fairly good prediction of the disruption of the
canonical splice donor and splice acceptor sites, the intronic dinucleotides 5’GT and 3’AG
that flank exons. Sequence changes in these highly conserved sites are well recognized to
affect the splicing of the adjacent exon(s). Their evaluation in the clinical setting ranges
from: classification as pathogenic on basis of sequence information alone; classification as
pathogenic with the support of appropriate bioinformatic prediction; or classification as
pathogenic with the support of experimental evidence as backup to bioinformatic prediction.
Poorer (or no) recognition of normal splicing patterns for the wildtype sequence when
analyzed using default settings of the relevant programs is likely to influence the decision to
supplement bioinformatic predictions with experimental evidence. However, we know of at
least one example where a variant affecting the invariant dinucleotide position at an intron
extremity is apparently not associated with a splicing aberration (BRCA2 NM_000059.1:c.
8331+1G>T), despite prediction of splice site loss by most bioinformatic programs tested
(Radice, unpublished data). This suggests that even variants located in canonical splice
donor and splice acceptor sites should not be unequivocally assumed to alter splicing.

It is recognized that the consequences of alterations in the exonic and intronic regions close
to consensus acceptor and donor sites are more difficult to predict a priori. This is partly
because, although there is some over-representation of specific nucleotides in these regions,
their sequence shows substantial variability (Pettigrew and Brown, 2008). Furthermore, the
location of the branch point can vary somewhat. Bioinformatic modeling can thus help
assess the potential effect of such variants on splicing.

However, a major challenge to bioinformatic prediction is that use of cryptic splice sites
(also known as ectopic splice sites) as a consequence of disruption of normal splicing is not
very well predicted. This is often because the very nature of a cryptic site defines it as a site
that is not recognized during normal splicing, or best recognized, in the event of low-
abundance naturally-occurring splice variants. This may also be because the cryptic site is
some distance from the original site and the sequence information may not be analyzed by
bioinformatic prediction programs. Thus, while abrogation or creation of consensus or other
splicing regions by a particular sequence variant may be relatively well predicted, the nature
of the splice product(s) resulting from this sequence alteration cannot be accurately defined.
Yet another challenge is the prediction of ectopic splice site use that results from an
alteration that enhances use of the cryptic splice site, or creates a de novo splice site. Recent
progress has been made in this field of research, indicating that size of exon likely to be
skipped, splicing factor motif scores, availability of decoy splice sites and density of
silencers are predictors of aberrant splicing events (Kralovicova and VVorechovsky, 2007). It
also appears that cryptic 5’ donor splice sites are best predicted by computational algorithms
that accommodate nucleotide dependencies, and take information about non-adjacent
positions into account (Buratti, et al., 2007) and aberrant 3’ acceptor splice sites are
characterized by higher purine content than authentic 3" acceptor splice sites (Vorechovsky,
2006). However, this evidence has yet to be incorporated into modeling tools. Experimental
evidence supporting bioinformatic predictions is thus preferable for clinical decision-
making.

These statements are supported by a subset of published studies that have compared
bioinformatic predictions with in vitro findings (Auclair, et al., 2006; Bonatti, et al., 2006;
Buratti, et al., 2007; Claes, et al., 2002; Houdayer, et al., 2008; Lastella, et al., 2006; Sharp,
et al., 2004; Tesoriero, et al., 2005; Tournier, et al., 2008), and by unpublished data of the
authors on variants in the BRCA1 (MIM# 113705) and BRCA2 (MIM# 600185) (Sinilnikova
et al, Radice et al), and MLH1 (MIM# 609310) and MSH2 (MIM# 609309) genes (Spurdle
et al). Although few studies have comprehensively compared numerous bioinformatic
programs to each other and to in vitro results, evidence to date suggests that use of any
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particular single program is not indicated (Houdayer, et al., 2008; Tournier, et al., 2008)
(unpublished data of authors). In addition, no information is available on specific aspects of
the analytical procedures, such as modification of default settings, or importance of the
amount of input sequence, with respect to their influence the outcome of bioinformatic
analyses. Thus, also taking into account the differences in baseline algorithms and sites
assessed (Table 1), it should not be assumed that any single prediction program will be
100% efficient at predicting the existence of likely splicing aberration. Therefore, use of
more than one program is preferable. In addition, in vitro analysis has an important role in
confirming or establishing use of ectopic (cryptic or de novo) splice sites and defining what
aberrant splice products are associated with a specific sequence variant.

The prediction of the effect of sequence alterations in possible enhancer and silencer
splicing elements is even more challenging. Firstly, these sites are relatively poorly defined,
so their accurate prediction is difficult. Moreover, their function in vivo in normal splicing is
defined by other important variables, including distance from the splice site and splice site
strength (Fairbrother, et al., 2004). Their activity is also likely to be influenced by context
effects such as secondary structure or adjacent negative elements (Fairbrother, et al., 2004).
So while there is evidence that exonic variants can alter ESEs at the nucleotide level to
cause aberrant splicing (Aretz, et al., 2004; Cravo, et al., 2002; Liu, et al., 1998; Mazoyer, et
al., 1998; McVety, et al., 2005; Sharp, et al., 2004; Zatkova, et al., 2004) there is also
considerable evidence showing that splicing aberrations are rarely associated with sequence
changes that alter the prediction scores for such sites, whether it be loss or gain of the site
(Anczukow, et al., 2008; Lastella, et al., 2006)(Spurdle et al, Sinilnikova et al, and Radice et
al, unpublished data). It has been suggested that identification of ESEs might be improved
by increasing standard thresholds used by bioinformatic programs, considering distance
from the intron-exon boundary, and assessing nucleotide evolutionary conservation of ESEs,
although the latter is of value for assessing loss of (evolutionarily conserved) sites only
(Pettigrew and Brown, 2008; Pettigrew, et al., 2007). However it is currently difficult to
estimate the efficiency of such filters given the small number of studies which have
comprehensively studied potential splicing aberrations associated with such sequence
variants, and the relative paucity of variants known to alter splicing elements to provide
positive controls for such filtering approaches. Accumulation of further data will thus be
necessary to provide the stimulus and empirical information for further development of
prediction programs. The introduction of large-scale array-based studies of alternative splice
product expression (Carninci, et al., 2005), especially if coupled with high throughput next
generation sequencing of transcripts from multiple samples, are likely to prove helpful in
this regard. Additional research into the role of auxiliary splicing signals in the selection of
aberrant splice sites in introns and exons will also provide a basis for further development of
currently available prediction tools (Kralovicova and Vorechovsky, 2007). Assessing
sequence variants based on loss or gain of these motifs is presently not pursued to any great
extent outside the research setting, and this would appear to be an appropriate course of
action in relation to use of health care funds.

Difficulties in interpretation of predicted and experimentally confirmed
splicing aberrations

The general approach to prediction and verification of splicing aberrations associated with
variants within or near the consensus splice sites is relatively straightforward. However, the
interpretation of results may be more challenging. Whether confirmed in vitro or not, the
clinical significance is not firmly established for in-frame single exon deletions which cover
domains of unknown function, or for small in-frame insertions or deletions. For example,
the BRCA2 NM_000059.1:¢.8488-1G>A substitution resulting in skipping of the first 12
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bases of exon 20 and an in-frame deletion of four amino acids is considered a variant of
uncertain significance (Howlett, et al., 2002). This highlights the caution that should be
taken with interpretation of variants that affect even the most conserved nucleotides of splice
sites.

The relative amounts of alternative/aberrant splice products generated by a variant allele is
also important for establishing clinical relevance (Claes, et al., 2002), particularly when
there are several observed products but only one/some of these are clearly recognizable as
transcripts with pathogenic consequences. Such a scenario would require additional in vitro
quantitative expression studies. Since a number of naturally occurring splice products are
known to be produced for most genes, and since the type and amount of alternative/aberrant
splice product can differ depending on cell type and assay conditions (Lastella, et al., 2006;
Speevak, et al., 2003), it is essential to include a large number of controls assessed under
similar assay conditions to compare expression of “aberrant” splice products against the
quantity of naturally occurring splice products. Ideally, samples from more than one variant
carrier should also be tested. Even so, there would likely be some debate about the clinical
significance of a variant which results in increased expression of a stable truncating
transcript which occurs naturally at low abundance. It is thus important that experimental
tests take into account a possible differential expression between wildtype and variant alleles
which might be due to nonsense-mediated decay (NMD) of transcripts with a premature stop
codon produced by variant allele, or lack of expression of the variant allele due to a defect in
regulatory regions, etc. Useful information about the stability of transcripts carrying
premature stop codons is provided when cell culture assays are conducted both with and
without cycloheximide or other translation inhibitors, as a surrogate to assess NMD in vivo.
Without cycloheximide treatment, certain mutant transcripts which are subject to NMD are
almost undetectable due to their strong degradation, whereas the level of mutant transcripts
is comparable to the level of normal transcripts in the presence of cycloheximide (Perrin-
Vidoz, et al., 2002; Ware, et al., 2006). In addition, some sequence changes may be ‘leaky’,
in that variant allele produces a full-length/normal mRNA in addition to abnormal
transcripts, suggesting that the loss/inactivation of the constitutional wild-type allele at the
somatic level would not completely abrogate the synthesis of a normal protein product
(Bonnet, et al., 2008). How such a scenario translates to level of cancer risk is unknown. It
has also been observed that some nucleotide variants increase the efficiency of
physiological splice sites, leading to the loss of alternative transcripts normally produced by
the wild-type allele (Radice, unpublished data). Since the role of alternative mRNA isoforms
is generally still undefined, the effect of these changes in relation to cancer risk remains
unclear.

Another less tractable issue is whether in vitro results generated from assays on cultured or
even uncultured lymphocyte cells can be generalized to the target tissue in question (Claes,
et al., 2002; Speevak, et al., 2003). This is particularly important for subtle variation in
expression of an alternative splice product, which may be due in part to tissue-specific
variation in splicing due to tissue-specific expression of splicing factors. Further information
may be generated as more data from tissue microarray studies become available, but it is
likely that a specific study to assess all possible naturally occurring splice variants in the
target tissue would be required to address this issue. Lastly, the test itself is subject to
experimental limitations, with the anticipated effect influencing the design of splicing assay
components, including real-time PCR, fragment purification, sequencing, and use of coding
polymorphisms or the variant itself to quantitate relative allele expression. Thus, some
aberrant transcripts may be missed if they have not been predicted to exist, and the
experimental design cannot accommodate their detection.

Hum Mutat. Author manuscript; available in PMC 2010 March 4.
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It is thus likely that a subset of variants predicted or confirmed to cause splicing aberrations
will require further study using multifactorial methods (see Goldgar et al, 2008), including
assessing segregation in family studies.

Application of in vitro assays in the clinical setting — feasibility and need

There is no doubt that further information regarding clinical significance of rare sequence
variants would be obtained by introducing routine collection of fresh blood from such
patients for clinical RNA-based assays of altered splicing. While this is technically possible
for many clinical laboratories, such tests would introduce logistical issues from several
aspects. Blood for DNA tests can be used successfully if 1-5 days old, but blood samples for
RNA analysis would either require fresh collection for immediate processing or collection
into specialized collection tubes to limit degradation and/or the induction of artefactual
abnormal splice production resulting from environmental stress in aged blood (Speevak, et
al., 2003). Yet another possibility is to establish a lymphoblastoid cell line, although that is
time-consuming and would probably be considered excessive use of resources for a routine
diagnostic test. There would also be a need to design and conduct variant-specific tests,
requiring dedicated attention from molecular geneticists and technicians.

Another alternative for diagnostic testing could be the use of mini-gene assays, which
obviate the need for clinical blood collection. A genomic fragment encompassing the exon
of interest, and surrounding introns and immediate upstream and downstream exons, is
cloned into a standard mammalian expression vector, which is then introduced into cells in
culture (Anczukow, et al., 2008; Bonnet, et al., 2008; Zatkova, et al., 2004). The influence of
variants in this exon of interest on splicing can then be assessed by in vitro RNA analysis.
Theoretically this would allow for preparation of constructs to assay variants in the majority
of exonic regions, but is subject to a number of limitations. The system is very artificial in
that the entire gene sequence is not included in the assay, and that cell type may influence
production of natural alternative/aberrant splice products. Moreover, there are technical
challenges of creating constructs for very large exons, and the need to account for
transfection efficiency. Use of these approaches is thus a less attractive alternative to blood-
based assays which are already implemented to a degree in some laboratories, and is
unlikely to be feasible without centralization of such tests.

The need and prioritization of splicing assays would be influenced by location of the variant
relative to (predicted) splicing sequences, the results from bioinformatic prediction of
aberrant splicing, and the probability of pathogenicity as currently determined from other
data mining approaches (Easton, et al., 2007, Tavtigian et al, 2008). Suggested interpretation
of bioinformatic splicing prediction results is shown in Table 2, including suggestions for
classification of sequence variants according to the system proposed by Plon et al (2008).
We specifically chose to use BRCAL and BRCA2 as examples, given the availability of
probabilities from data mining approaches for these genes, so that we can show how other
available data modulate the interpretation of predicted splicing aberrations. Similar
interpretation/ prioritization tables could be derived for any disease gene, including relevant
data for that gene if it is available.

Current data indicate that sequence changes in the highly conserved intronic dinucleotides
flanking exons will almost invariably result in splicing aberrations. For the donor site these
are GT, and for the acceptor site AG. A very strong association of such sequence alterations
with pathogenicity is supported for the BRCA1 and BRCA2 genes at least, where 100% of
splice site variants (95% CI 91%-100%) were estimated to be deleterious from estimates
derived largely from family history analysis of a large BRCA1 and BRCA2 dataset from
Myriad Genetics (Easton, et al., 2007). The confidence limits for this estimate are
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sufficiently wide that such variants might best be considered class 4 variants (likely
pathogenic, probability 95-99%) according to the classification system in the accompanying
article by Plon et al (Plon et al, 2008). Indeed, as noted above, evidence suggests that some
variants within consensus splice sites may not actually alter splicing. Bearing in mind the
limitations of bioinformatic analyses, particularly the difficulty in predicting the usage of
cryptic splice sites, there is nevertheless benefit to determining the expected gene products
for such splice site variants by exhaustive bioinformatic analysis. Using a range of programs
to assess likelihood of altered splicing and/or prediction of alternative products has value for
the design of experiments to assess the existence of any splicing aberrations. Moreover, if
resources for further study are limited, it would allow prioritization of a subset of variants
for in vitro assays. For example, variants predicted to generate products such as in-frame
single exon deletions or naturally-occurring splice products would be considered of more
equivocal clinical significance if confirmed. In vitro results for such variants would have
implications for clinical management, and would also identify variants for further
assessment using multifactorial likelihood analysis approaches.

Regarding variants near but not within the consensus splice donor and splice acceptor
dinucleotides, routine clinical in vitro assays would most certainly improve understanding of
the consequences of such variation given the poorer performance of prediction tools for
these less conserved regions. However, the number of variants to be assayed would be
considerable, unless preselection for analysis can be guided by other information such as
cosegregation with disease or tumor characteristics. By example, a crude search of the BIC
website (http://research.nhgri.nih.gov/projects/bic) for intervening sequence variants of
uncertain clinical significance in BRCAL and BRCAZ2 listed 150 BRCA1 variants (434
entries) and 121 BRCA2 variants (266 entries) in this category. It is also possible that the
number identified will be much larger in routine testing, although a further complication is
that variants in this category may not necessarily be reported outside the laboratory e.g. if
more deeply intronic. Access to such information is likely to facilitate variant classification
itself, as discussed in a separate paper by Greenblatt et al (2008). The role of bioinformatic
analysis in this instance would be to provide matching bioinformatic and in vitro data to
encourage and facilitate the further development of bioinformatic tools. Also, until argument
can be made to increase funding to at least a subset of clinical laboratories to undertake such
widespread testing as part of a routine service to patients, bioinformatic analysis would
provide a means to prioritize some variants for in vitro assays, and for alternative methods
of assessing variant pathogenicity such as multifactorial likelihood approaches. As shown in
Table 2, in the absence of further data from splicing assays or multifactorial likelihood
approaches, such variants could be considered class 3 variants (uncertain, probability 5%—
94.9%) unless existing predictions e.g. those based on sequence alignment, suggest that a
variant falls in class 4. As for variants within the conserved splice donor and splice acceptor
sites, it would not be considered appropriate to assign class based on possible aberrant
products resulting from a sequence change, given the relatively poor bioinformatic
prediction of cryptic splice site use in particular.

While the situation is likely to change as prediction methods develop over time, current
comparisons of bioinformatic predictions and in vitro data indicate poor prediction of the
existence and/or alteration of exonic and intronic splicing elements. This suggests that in
vitro screening of variants predicted to create or destroy such elements should currently be
limited to the research setting. This is especially true for exonic variants, since current data
from analysis of exonic sequence variants using protein sequence alignment-based methods
(Tavtigian et al, 2008) indicate that the posterior probability of pathogenicity is only 1%
(95% CI 0%-4%) overall for missense variants outside the BRCA1 Ring or BRCT domains,
and outside the BRCA2 DBD domain. This suggests that such variants might best be
considered class 2 variants unless splicing software predicts creation of a splice site and
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promotion to class 3. However, since prior probabilities for the individual A-GVGD
categories CO to C65 have yet to be determined for these regions of BRCA1 and BRCAZ2,
particularly for several small but well conserved motifs, a conservative approach would be
to rather consider any missense alterations in the categories C15 to C65 as class 3 at present.
Risk associated with exonic silent or intronic sequence variants at a distance from the intron-
exon boundary has not been specifically assessed for BRCA1 and BRCAZ2, but it is likely that
the large majority of these are not associated with a high risk of cancer given the results of
pooled analysis of difference classes of unclassified variants by Easton et al (Easton, et al.,
2007). They should thus be considered class 2 variants, unless, as rationalized above, they
are exonic C15 to C65 missense substitutions.

Although current evidence suggests a minor role of high-risk cancer-associated splicing
aberrations due to alterations in ESES and ISEs, there is some argument for routine RNA-
based assays of all rare sequence variants of unknown clinical significance in the research
setting, irrespective of bioinformatic predictions. There are examples of splicing alterations
associated with apparent missense variants that are not convincingly predicted using
bioinformatic methods (Farrugia, et al., 2008). Moreover, assay methods can be designed to
identify variants associated with unstable mMRNA expression, in addition to splicing
aberrations. The conduct of larger numbers of research studies would also establish the
overall clinical benefit of conducting in vitro assays on such variants,

The introduction of routine clinical splicing assays for even a subset of sequence variants
would place considerable strain on resources at various levels, and provides a sufficiently
strong argument to argue for additional health care spending to prevent overload on clinics
and laboratories. However, despite the mentioned theoretical and technical problems, the
analyses described have the potential to provide information of immediate use for the
clinical management of at-risk individuals. It is important to note there is considerable
evidence that mutations affecting mRNA splicing can be common molecular defects for
inherited disorders in humans, and that a high proportion of these splicing mutations can
occur at less stringently conserved splicing recognition sites (Ars, et al., 2000; Teraoka, et
al., 1999).

An overview of the suggested approaches to be applied is shown in Figure 1. Overall, we
suggest that additional studies assessing large numbers of variants for induction of splicing
aberrations and exon skipping are carried out to define the contribution of splicing/exon
skipping to disease. These studies will also provide the impetus for development of
algorithms that better predict these effects. In addition, we call for the deposition of
laboratory data from splicing analyses of any gene undergoing clinical testing in national
and international databases in order to facilitate variant classification and development of
more specific bioinformatic tools, and suggest that data deposition be a requisite of
additional funding that would be required to support the increased workload to clinical
laboratories.

Classification of sequence variants that may alter splicing would be greatly enhanced by
supporting in vitro analysis. We suggest that use of multiple bioinformatic prediction
programs is indicated for use in the clinical setting to assess the likely clinical significance
of variants in or near consensus splice regions. The optimal situation for clinical reporting is
that all variants in consensus splice site sequences predicted by bioinformatic tools to affect
splicing should be experimentally verified. At a minimum, the subset of consensus splice
region variants predicted to result in products of equivocal clinical significance, and those
variants near consensus splice regions, should be prioritized for in vitro assays. Due to their
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clinical relevance of the information they can provide, it would be preferable that such
assays are undertaken in the clinical setting as an initiative to evaluate variants for
counseling purposes. However, this would necessitate provision of additional funding to
clinical testing laboratories to support the resultant increased workload. It would be
beneficial if a condition of such funding is that the results of such assays should be made
available to the international clinical and research community through publication, and
submission of information to appropriate databases, to further specific and general
knowledge about the role of such variants in disease. The evaluation of splicing aberrations
as a result of predicted alteration of exonic and intronic splicing elements should be
considered an important area of research study to stimulate development of the relevant
prediction tools. We recognize that the clinical significance of some variants with aberrant
splicing products detected in vitro will remain uncertain, and further study using other
approaches will be required to resolve their clinical significance.
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Figure 1.
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Schematic representation of proposed approaches to assessing splicing aberrations in the

clinical setting.
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