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Abstract
To evaluate the antiretroviral activity of antiretroviral agents and to compare the effects of two
different antiretroviral agents, we propose a nonparametric mixed-effects model to investigate
change of CD4+ counts. The proposed model and methods are applied to analyze the data from
PACTG345 study. Population and individual patterns of change of CD4+ counts and a reference
band are obtained. Our results indicate that treatment with high-dose ritonavir is significantly superior
compared to low-dose ritonavir.

1 Introduction
In studies of the effect of highly active antiretroviral therapy (HAART) in the treatment of HIV
infection, the risk of progression to AIDS and patients' clinical condition have often been
indicated by immunologic markers such as CD4+ cell count1,2. This marker plays an important
role in evaluating antiviral therapy in clinical HIV research. A commonly used method for
studying response to treatment is the survival analysis3,4,5, for which censorship is defined
when CD4+ cell counts are below a specified value6. Advantages of the survival analysis
method include the ease of implementation using well-developed software, and intuitive
interpretation of results: the longer the survival of patient, the better the treatment. Recently,
joint modeling strategy has been used to study the relationship between survival and CD4+
counts7,8,9. The use of HAART to treat HIV infection can remarkably reduce viral replication,
increase CD4+ T-lymphocyte counts, delay disease progression, and turn HIV infection as a
chronic disease, which challenges survival analysis methods because this measurement
sometimes provides no useful information. Two obvious cases are when (i) two treatments fail
at the same time, or (ii) two treatments are both successful on the basis of failure time. Similar
concerns have been discussed elsewhere10. In this article we propose a flexible model to study
the common feature of antiviral activity, taking individualization into account, and to compare
the antiretroviral effects between two different treatments. The comparison results may prove
one treatment to be applicable to later large-scale studies. Our measure of response is the change
over time in CD4+ cell count from baseline; i.e., current CD4+ count subtracting baseline CD4
+ counts.

In a typical AIDS clinical study, the CD4+ response is often used to assess the immunologic
response of anti-HIV treatment11,12. For example, if the CD4+ response declines, the treatment
may be thought to be a failure, while increases in CD4+ response are normally considered signs
of therapy success13. The difference in CD4+ responses based on different antiretroviral
treatments may be used to compare the antiretroviral activity of the treatments. Appropriately
analyzing CD4+ response is therefore helpful for AIDS drug development and for monitoring
individual patients with AIDS.
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2 Model and Methods
PACTG 34514,15 was designed to assess potential age-related differences in the
pharmacokinetics, safety and tolerance of ritonavir in combination with ZDV and 3TC in
HIV-1 infected infants and children; to ascertain the dose of ritonavir which may be suitable
for Phase II/III evaluation of ritonavir in combination with 3TCIM + ZDV in HIV-1; and to
evaluate the antiretroviral activity and the immunological effect of multiple doses of ritonavir
administered in combination therapy. Seventeen patients in group 1 were treated with a
combination of ritonavir 350mg/m2, ZDV 160mg/m2, 3TC 4mg/kg and thirty one patients in
group 2 were treated with a combination of ritonavir 450mg/m2, ZDV 160mg/m2, 3TC 4mg/
kg. Specimens were obtained on days 0, 1, 3, and 7 and weeks 2, 4, 8, 12, 16, 20, 24, 28, 32,
36, 40, 44, 48, etc. We consider the 48 week treatment period, and have 569 observations
among the 48 patients. Changes in CD4+ counts are presented in Figure 1, in which the left
and right panels represent the changes of CD4+ counts of individual patients from groups 1
and 2, respectively. Figure 1 shows that CD4+ responses within either group exhibit a large
between-subject variation.

The aims of this article include (i) providing a common feature of the antiviral activity of each
of the two treatments, taking individualization into account; and (ii) comparing the
antiretroviral effects between the two different treatments.

2.1 Model
Nonparametric regression has been used to fit longitudinal data when the data cannot be
analyzed by traditional parametric models. The aims of nonparametric regression analysis
include the exploration of curves for a particular population and for individual characteristics
within a mixed-effects framework. Shi, Weiss, and Taylor17 and Rice and Wu18 proposed the
following nonparametric mixed-effects model for longitudinal data:

(1)

where η(t) models the common feature, also called the fixed-effect or population curve; vi(t)
models individual variations from η(t); εi(t) are measurement errors; and yi(t) are response
processes. The vi(t) and εi(t) are assumed to be independent. vi(t) can be regarded as realizations
of a zero-mean process with a covariance function γ(s, t) = E{vi(s)vi(t)}, and εi(t) can be
regarded as realizations of an uncorrelated zero-mean process with a variance function σ2(t).
Let tij, for j = 1, ⋯, ni, be the design time points for the ith individual, then model (1) becomes

(2)

where n is the number of subjects and ni is the number of measurements taken from subject i.
For convenience, we denote yij as being equal to yi(tij) and εij as being equal to εi(tij).

We are concerned with the population curve η(t), and individual curves si(t) = η(t) + vi(t), for
i = 1, 2, …, n. The mean function η(t) is important because it reflects the overall trend or
progress of an underlying population process and can be used as an important index for the
population response to a drug or a treatment in a clinical study. The estimation of si(t) is also
important, because it reflects individual response to a treatment in a study. A good estimate of
si(t) may help investigators make a better decision about individual treatment. The estimates
of individual curves si(t) are also useful if investigators wish to group or classify the subjects
on the basis of individual curves. A similar modeling approach was used to analyze CD4
counts8,16.
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2.2 Estimation method
The unknown functions η(t) and vi(t) in model (1) can be estimated using kernel
smoothing19-22, of which the main idea is to locally approximate a nonparametric function by
a polynomial of some degree using Taylor expansion. Wu and Zhang20 recently gave a
comprehensive survey of nonparametric regression methods for longitudinal data analysis. In
this paper we apply local linear smoothing to estimate η(t) and vi(t). Specifically, let t be an
arbitrary fixed time point where the functions η(t) and vi(t) will be estimated. Assume that η
(t) and vi(t) have second continuous derivatives. By Taylor expansion, η(t) and vi(t) at tij are
approximated by second order polynomials within a neighborhood of t. That is,

where Xij = (1, tij − t)T, β = {η(t), η′(t)}T, . It
follows that, within a neighborhood of t, model (1) can be approximated by a linear mixed-
effects (LME) model:

(3)

where ∊i = (∊i1, …, ∊ini)
T ~ (0, Ri) is a vector of measurement errors, and bi ~ (0, D) is a vector

of random effects,  and . Let Xi =
(Xi1, …, Xini)

T and yi = (yi1, yi2, ⋯, yini)T. Model (3) can be expressed as

(4)

Note that for a fixed t, model (4) is a standard LME model, for which, if D and Ri are known,
the estimates of β and bi can be obtained by minimizing the objective function23,

where the first term is a weighted residual, and the term  is a penalty resulting from
the random effects. To consider the local approximation error of model (4), we propose the
estimators of β and bi that minimize the objective function,

(5)

where Kih = diag{Kh(ti1 − t), …, Kh(tini − t)}, Kh(u) = h−1K(h−1u), and K(·) is a kernel function
and h is a bandwidth.

For given D and Ri, to solve the minimization problem (5) is equivalent to solving the mixed
model equation23:
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where X = (X1, ⋯, Xn)T, y = (y1, ⋯, yn)T, Z = diag(X1, ⋯, Xn), b = (b1, ⋯, bn)T, D = diag(D,

⋯, D), and ϴh = diag(ϴ1h, ⋯, ϴnh) with . The corresponding estimators can
be expressed as

where , . This procedure is a combination of local
likelihood method and linear mixed-effects modeling23. To obtain the estimators described
above by using existing software, one may operationally fit a standard LME model,

where  are regarded as the new responses, and  are covariates for the fixed-effect
and random-effect parameters, respectively.

In general, D and Ri are unknown, but can be estimated using maximum likelihood or restricted
maximum likelihood, implemented by EM algorithm or Newton-Raphson method23.

As a consequence, the estimates of η(t) and vi(t) can be obtained as follows.

2.3 Comparison of two curves
Let η ̂1(t) and η ̂2(t) be the estimates of the population curves of groups 1 and 2. The standard
error of the difference of the population estimates is defined as

where se1(t) and se2(t) are the standard errors of the η ̂1(t) and η ̂2(t), respectively. A reference
band of the width of two standard errors, centered at the average of the two estimated curves,
is roughly used to determine whether there is difference between the two groups. If the two
curves are encapsulated in the reference band, then they are regarded to be not significantly
different. This idea is similar in spirit to that proposed by Young and Bowman24 for cross-
sectional data.

3 Data Analysis
We apply the model and methods described in the previous section to explore the data from
PACTG 345 study. Our focus is on (i) presenting a common feature of antiretroviral activity
of each of the different treatments; and (ii) comparing the antiretroviral effects of two different
treatments to obtain evidence that one treatment may be superior to another one. We use the
quartic kernel, K(u) = 15/16(1 − u2)2I(|u|≤1), for local regression, and the leave-one-point-out
and leave-one-subject-out cross-validation criteria21 for bandwidth selection, and implement
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the estimation procedure by using the well-developed Splus function nlme25. The population
curves (solid lines) reflecting the common change of CD4+ counts over time with the associated
confidence intervals (dotted lines) are shown in Figure 2, are also presented. The population
curve for group 1 maintains a horizontal trend before 34 weeks and a flat decline after 34 weeks.
In contrast, the population curve for group 2 maintains a steady increase until week 15 and
remains flat to week 48. This finding would suggest that the antiretroviral activity in group 2
is biologically superior to that in group 1.

Recalling the scatterplot of each individual given in Figure 1, one may note that the between-
subject variation is non-ignorable and the individual patterns may not follow the pattern of the
population curve. The trajectories of the change in CD4+ counts over time for 3 individual
patients from each group is presented in Figure 3. The population and individual curves are
indicated by solid and dotted lines respectively, and the changes in CD4+ counts based on
observed data are indicated by circles. For these patients, the population and individual curves
are different not only in magnitude but even in pattern. For each patient, the estimated
individual curve, although not perfect, is closer to the observed change in CD4+ count than
the overall population curve. In group 1, the 3 individual patient curves are similar to the
population curve at the beginning of treatment, and the individual curve of patient 1 keeps
following the population curve. However, the individual curve of patient 2 takes an upward
direction, while that of patient 3 takes a downward direction. These findings indicate that the
antiretroviral activity of patient 1 is similar to that of the population, while the antiretroviral
activity of patient 2 is greater than that of the population, whereas the antiretroviral activity of
patient 3 is lower than that of the population. In group 2, the individual curve of patient 1
basically follows the population curve, while the individual curves of patients 2 and 3 deviate
from the population curve in two different directions. Based on these three individual curves,
we can draw a similar conclusion to the patients in group 1. Given the large between-subject
variation, the estimated individual trajectories therefore provide more useful information than
do the population trajectories. This highlights the principal advantage of the mixed-effects
model, and has implication for individualizing treatment management of AIDS patients.

Figure 2 has shown that the treatment for group 2 seems to be better than that for group 1. We
now justify that this superiority is statistically significant. For this data set, a reference band is
obtained by using the method in section 2.3. The reference band and two population curves
are depicted in Figure 4. The population curves for groups 1 and 2 deviate from the reference
band substantially, and the treatment for the group 2 is almost significantly superior to that for
group 1.

4 Discussion
To analyze a data set from an AIDS clinical trial, we propose a nonparametric mixed-effects
model to estimate the population and individual curves of the change in CD4+ counts over
time. The flexibility of the model in that the model can appropriately capture the feature of the
CD4+ response to antiretroviral therapy, which may beyond the capability of parametric
models. The population curve delineates a common feature of the antiretroviral activity. By
introducing the mixed-effects structure to consider the between-subject and within-subject
information, we also gain particular features of the antiretroviral activity in individual patients.
To compare the antiretroviral activities of two treatment agents, we propose a novel approach
by comparing two population curves. The comparison principle is intuitive. Our findings
indicates that the treatment activity with high-dose ritonavir is more effective than that with
low-dose ritonavir. The superiority of the treatment for group 2 is reflected by the fact that the
common change in CD4 + counts is almost consistently larger than that for group 1.
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In conclusion, the model is flexible and the structure is parsimonious. The method is very
straightforward and robust in implementation, and intuitive in understanding. This model-
fitting approach may have methodologically and biologically valuable. An Splus program has
been developed for implementing the proposed methods, and the program is available upon
request.

In this paper we use a local linear technique to fit the nonparametric mixed-effects model. One
may use alternative methods including higher degree local polynomial kernel methods,
smoothing and regression splines, and so on.
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Figure 1.
Profile of the changes of CD4+ counts from the PACTG 345 study. Left: group 1; right: group
2.
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Figure 2.
Estimates of the population curves (solid lines) and the corresponding confidence intervals
(dotted lines), equaling to the estimated values ±2 standard errors.
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Figure 3.
Estimated values of the change in CD4+ counts for 6 patients. The solid and dotted lines are
the estimated population and individual curves respectively. The change in CD4+ counts based
on observed data are indicated by circles. Left: group 1; right: group 2.
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Figure 4.
Population curves for group 1 (solid line) and group 2 (broken line) and the reference band
(shaded area).
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