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SUMMARY
Cancer registry records contain valuable data on provision of adjuvant therapies for cancer patients.
Previous studies, however, have shown that these therapies are underreported in registry systems.
Hence direct use of the registry data may lead to invalid analysis results. We propose first to impute
correct treatment status, borrowing information from an additional source such as medical records
data collected in a validation sample, and then to analyze the multiply imputed data, as in Yucel and
Zaslavsky (2005). We extend their models to multiple therapies using multivariate probit models
with random effects. Our model takes into account the associations among different therapies in both
administration and probability of reporting, as well as the multilevel structure (patients clustered
within hospitals) of registry data. We use Gibbs sampling to estimate model parameters and impute
treatment status. The proposed methodology is applied to the data from the Quality of Cancer Care
project, in which stage II or III colorectal cancer patients were eligible to receive adjuvant
chemotherapy and radiation therapy.
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1. Introduction
Cancer registries collect information on type of cancer, histological characteristics, stage at
diagnosis, patient demographics, initial course of treatment including surgery, radiation
therapy, and chemotherapy, and patient survival (Hewitt and Simone, 1999). Such information
can be valuable for studying variations in quality of cancer care, for example, across racial and
ethnic groups. Concerns have been raised, however, about the completeness of treatment
information in cancer registries. Bickel and Chassin (2000) and Malin et al. (2002)
demonstrated underreporting of adjuvant chemotherapy and radiation therapy for breast cancer
in hospital and state registries, respectively. Cress et al. (2003) reported similar treatment
underreporting for colorectal cancer in a state registry and showed that it was associated with
both patient and hospital characteristics. Thus, studies based solely on registry data would lead
to invalid results.
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The classical errors-in-variables approach (Carroll et al., 2006) often used in epidemiology
would be to analyze the relationship of registry data on treatment to clinical outcomes, and
adjust for reporting error. This approach might involve modeling the relationship between the
correct values of therapy variables in the validation sample and misreported/misclassfied ones
in the registry. The error-adjustment procedures are often complicated and are analysis-
specific. On the other hand, the therapy variables may be used by many researchers in analyses
for various scientific purposes. Implementation of the error-adjustment procedures might be
challenging for analysts who do not possess the relevant specialized statistical expertise.

A more appealing strategy might be multiple imputation (Rubin, 1987). In a typical missing
data problem, this method first “fills in” (imputes) missing variables several times to create
multiple completed datasets. Analysis of each set can then be conducted using standard
complete-data procedures. Finally, the results obtained from separate completed datasets are
combined into a single inference using simple rules. In the presence of underreporting, this
strategy is applied by imputing the uncollected correct treatment variables in the registry
outside the validation sample. The imputer also may incorporate additional information which
may not generally be available to other analysts, such as from other administrative databases
(Rubin, 1987, 1996). The imputation model characterizes the misclassification process and
makes the adjustment. The corrected registry data can then be analyzed without any additional
modeling of underreporting.

Yucel and Zaslavsky (2005) (henceforth “YZ”) proposed statistical models for imputing receipt
of adjuvant chemotherapy using data from the California Cancer Registry and from medical
records obtained from a physician follow-back survey, a validation sample for the registry data.
Cancer treatment patterns may vary across hospitals. Similarly, the cancer registry data are
aggregated from hospital registries, whose completeness of reporting may vary due to
differences in registrar resources, provider network structures, and other organizational factors.
Hence YZ’s model included individual and hospital level predictors, as well as hospital random
effects for provision and reporting of chemotherapy. They used multiply-imputed data sets to
estimate models for mortality within two years of treatment. Using the same models, Zheng et
al. (2006) profiled hospitals based on imputed rates of chemotherapy for colorectal cancer.

The method proposed by YZ focused on a single treatment variable. But patients may receive
multiple therapies in the course of treatment. For example, Malin et al. (2002) developed
individual quality scores to measure the receipt of each treatment (surgery, lymph node
dissection, radiation therapy, and tamoxifen/chemotherapy) by eligible breast cancer patients,
and added these scores to summarize overall quality. Furthermore, reporting completeness for
different treatments may also be associated. Ignoring such associations when correcting the
registry data may bias results of analyses concerning multiple therapies. In this paper, we extend
YZ’s method to impute the underreported status of multiple treatment variables. This approach
borrows strength from the validation sample to correct the misclassification in the registry
system, accommodating the associations among the multiple therapies.

In Section 2, we present the statistical models. In Section 3 we analyze data from our motivating
example. Finally in Section 4 we suggest directions for future research.

2. Statistical models
2.1 General framework

As in YZ, we let S1 and S2 denote the validation sample (those for whom medical record
abstraction was performed) and the remainder of the population (those with only registry data),
respectively, so the entire population is S = S1 ∪ S2. True treatment status is assumed to be
positive (treatment was provided) if the treatment is recorded in either the registry or the
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medical records abstract data; if the registry records show that the patient did not receive a
treatment, it might due to underreporting. We refer to receipt of each therapy as a statistical
“outcome” of the imputation model, although these can act as either dependent or independent
variables in the complete-data analyses (after imputation).

Let YO = (YO1, YO2, …, YOL) represent the true treatment status of L therapies, with YOl = 1 if
the person has received treatment l (l = 1, … , L) and 0 otherwise. The corresponding treatment
status as reported to the registry is YR = (YR1, YR2, . . . , YRL). Under our assumptions, YO is
directly observed among patients in S1, for whom both the registry data and medical records
are known, but not in S2, while YR is always observed in both S1 and S2. The relationship
between YOl and YRl is partially deterministic (YRl = 0 if YOl = 0), and partially stochastic
(YRl is a Bernoulli variable if YOl = 1), reflecting our assumption of stochastic underreporting.
Potential covariates X (characteristics of patients and health care providers) are also recorded
for all patients in the registry and assumed to be accurate in both S1 and S2. The statistical goal
is to impute YO in S2 from the model f(YO, YR|X, θ). Since YOl = 1 if YRl = 1, the imputation
is stochastic for unobserved YOl only when YRl = 0.

YZ considered the case where L = 1. They factorized the joint distribution over S as

where the outcome model fO(YO1|X, θO) represents the relationship of receipt of treatment with
patient and hospital characteristics, and the reporting model fR(YR1|YO1, X, θR) characterizes
the ways in which misclassification occur in the data. Note that this taxonomy differs from that
used in the classical errors-in-variables approach (Clayton, 1992). Our reporting model
corresponds to the “error/measurement” component of the classical model. However, whereas
the latter specifies a model for a disease outcome predicted by an exposure measured with
error, the “outcome” in our imputation model could be either exposure or outcome in the
analysts’ complete-data models.

The implicit assumption that the outcome and reporting models hold with the same parameter
values in S1 and S2 is referred to as transportability across different studies in classical
measurement error theory (Carroll et al., 2006, Chap. 1). In our motivating example, the
medical records data (validation study) are collected from a subsample of the registry sample
and hence constitute an internal part of the main study. If we assume the validation sample is
representative of the whole registry population after controlling for selection factors, the
transportability assumption naturally holds and the final analysis can be applied to the
completed data including both samples.

2.2 Model specifications
We propose a class of multivariate extensions of YZ’s univariate model, using a similar
factorization into the outcome and reporting models, i.e.

With L > 1, several types of associations exist among multiple therapies, including the
associations among different outcomes, YOi, YOj, associations of reporting of different
therapies, YRi, YRj, and possible dependency of reporting of one treatment, YRi, on the actual
receipt of the other treatment, YOj. Such associations might occur at the individual level, the
hospital level, or both. For example, at the individual level, colorectal cancer patients receiving
radiation therapy might have chemotherapy reported more completely because radiation
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therapy is provided in more centralized facilities (e.g. radiation center) than chemotherapy,
and the facilities report both chemotherapy and radiation therapy more systematically to the
registry than do the hospitals or doctors’ offices.

We use multivariate hierarchical probit models to characterize these outcome and reporting
processes, allowing us to describe the dependency structure parsimoniously in terms of
correlation coefficients of underlying continuous latent variables, and the variation across
hospitals through random effects. In addition, Bayesian analysis for probit models can be
conducted easily via a simple auxiliary variable Gibbs sampling algorithm (Chib and
Greenberg, 1998). Specifically, for the true status of treatment l of the jth person at the ith
hospital (i = 1,…, m, j = 1,…, ni), let YOlij = 1 if ZOlij > 0 and 0 otherwise. The latent variables
{ZOlij} follow a multivariate random-effects model

(1)

Matrix XOij = diag(XO1ij, XO2ij, … , XOLij) contains model covariates, including all or a subset
of the variables in Xij together with any desired transformations or interactions, whereas
WOij = diag (WO1ij, WO2ij, …, WOLij) contains covariates (including at least an intercept) whose
coefficients vary across the hospitals. Parameter  concatenates the fixed-
effects coefficients for each treatment, assumed to be common across all hospitals, and
parameter  contains random effects specific to hospital i. A correlation
matrix ρO = {ρOij} characterizes the correlations among the multiple latent variables for the
outcome data that cannot be explained through the common predictors.

Similarly, let YRlij and ZRlij denote the reported value of the lth treatment for patient j at hospital
i and the corresponding latent variable, respectively, so that YRlij = 1 if YOlij = 1 and ZRlij > 0,
and 0 otherwise. The corresponding multivariate random-effects model for {ZRlij} is

(2)

where covariate matrix XRij, WRij, and parameters βR, γRi, and ρR are the analogs of the
corresponding covariates and parameters from the outcome latent variable model (1).
Parameter α is an L × L matrix with zeros on the diagonal since no identifiable dependency
exists between YRlij and YOlij, while the off-diagonal element αij models the effect of receipt
of treatment i on the reporting of a different treatment j. More general formulations might
include interactions between XRij and YOij, or replace α with hospital-specific random effects
αi. We use the simple formulation (2) throughout this paper.

If both outcome and reporting latent variable models include random effects corresponding to
the same units, i.e. hospitals, then these effects might be correlated. For example, hospitals
with a higher actual rate of treatment might also tend to have better reporting systems.
Therefore, we assume a joint multivariate normal distribution for the random effects,

On the other hand, if the validation sample data set is much smaller than the fallible registry
data set, we might fit the more parsimonious fixed-effects model for the reporting and the more
general mixed-effects model for outcomes, conjecturing that random variation in reporting
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might influence inferences less than does variation in actual rates of treatments, and fix some
αij’s at zero if there is little data to estimate the corresponding effects.

Finally, we assume an improper uniform or diffuse normal prior distribution for fixed
regression coefficients βO, βR, and α, and a proper uniform prior for ρO and ρR (Gelman et al.,
2004, pg. 483–484), letting the posterior inferences be dominated by the observed data. We
assume a proper inverse Wishart prior on Σ, Σ ~ IWr(ν,Λ), where ν ≥ r and Λ > 0.

2.3 The missingness mechanism
We assume that the unobserved YO in S2 are missing at random (MAR) (Rubin, 1987), that is,
the probability that an outcome variable is observed depends on the observed data, such as the
fully observed X in the registry, but not on quantities that are missing. Under MAR, the
inference can be made solely based on the posterior distributions of the model parameters while
ignoring the missingness mechanism.

In our example, inclusion of the patient in the survey depends on the geographical region and
year of treatment. Such “planned missingness” for the registry sample excluded from the survey
might be MAR and ignorable if the corresponding selection indicators are included in the
models. On the other hand, to generalize the outcome model outside the domain represented
by S1, we need more specific assumptions about homogeneity of the reporting process. In the
medical records abstraction, because only certain years and regions were included, we need to
assume that patients in hospitals of the physician survey are similar to those not selected,
conditional on their hospital and patient covariates and observed registry-reported outcomes.
Another part of unobserved YO came from the physician survey nonresponses and was shown
to be related to known hospital and patient characteristics (Cress et al., 2003). The MAR
assumption becomes more plausible as the model is formulated to include more predictors in
X related to nonresponse.

To make inferences regarding comparisons among regions and periods, or among hospitals in
different regions and periods, however, it would be preferable to design the survey to represent
the entire state through the time span. For example, an annual ongoing quality measurement
process might draw a stratified sample representing patients from each of the 10 regions.

2.4 Inferential algorithm
We use Gibbs sampling (Gelfand, Racine-Poon, and Smith, 1990) to draw inferences for the
model parameters and impute the missing values. The main steps are sketched here; details for
the example with two therapies appear in the Web Appendix.

a. Draw the latent variables ZO and ZR from truncated multivariate normal distributions.

b. Draw fixed effects coefficients βO, βR, and α from multivariate normal distributions.

c. Draw random effects {γOi, γRi} from a multivariate normal distributions of each i.

d. Draw elements of ρO and ρR using the adaptive rejection Metropolis sampling
algorithm (Gilks, Best, and Tan, 1995).

e. Draw missing values of YO from multiple Bernoulli distributions where the
probabilities are estimated from the functions of cumulative distributions of L-variate
normal distributions.

Excluding the part for the prior distribution, the posterior distribution of the reporting model
parameter θR involves two parts, that is, f(YRS1|YOS1, XS1, θR) and f(YRS2|XS2, θR, θO) The
latter is the marginal of f(YRS2, YOS2|XS2, θR, θO) where YOS2 is unobserved but imputed in
the Gibbs sampling algorithm from the outcome model in S2, f(YOS2|XS2, θO) YZ considered
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the fact that S2 has a much larger size than S1 so a slight misspecification in either the outcome
or reporting model might result in an invalid inference for θR from (YRS2, XS2) that overwhelms
the information from the fully observed and hence more direct and valid (YRS1, YOS1 XS1).
They proposed to base the inference for θR solely on the validation sample likelihood f(YRS1|
YOS1, XS1, θR) and the prior distribution. The corresponding Gibbs sampling algorithm draws
θR from a conditional distribution that is incompatible with the joint distribution (Gelman,
2004), but this might provide more robust inferences against model misspecification. We adopt
their strategy in this paper.

3. Application
3.1 Study sample

The Quality of Cancer Care project combines data from the California Cancer Registry with a
survey of physicians to study patterns of care for colorectal cancer, including receipt of adjuvant
therapies, across various clinical and demographic factors (Ayanian et al., 2003). From the 10
regional cancer registries in California, we select all (n = 12594) patients age 18 or older who
were newly diagnosed with stage III colon cancer or stage II or III rectal cancer and underwent
surgery during the years 1994 to 1997. Our sample includes patients from 433 hospitals. From
records of those patients diagnosed and treated in 1996 and 1997 in registry regions 1, 3, and
8, representing the San Francisco/Oakland, San Jose, and Sacramento areas in Northern
California, respectively, 99% of the qualified patients’ treating physicians were identified and
mailed a written survey, asking whether their patients received adjuvant chemotherapy or
radiation therapy based on their medical records. The survey cohort included 1956 patients,
and physician responses, or direct abstracts from medical records by Registry staff, were
obtained for 1450 (74%) of these patients treated at 98 hospitals. Thus, the physician survey/
medical records abstraction constitutes the validation sample (S1) for the California Cancer
Registry data (S).

Patients’ age, gender, cancer stage at diagnosis, race, marital status, hospital transfer (whether
the patient was transferred between diagnosis and treatment), and adjuvant therapies
(chemotherapy and radiation therapy) were obtained from the cancer registry. Socioeconomic
status was represented by the median income of the patient’s census block group. We classified
the degree of comorbidity using the Deyo adaptation of the Charlson comorbidity scale (Deyo,
Cherkin, and Ciol, 1992), based on conditions identified in hospital records from 18 months
before to 6 months after cancer diagnosis. Hospital characteristics included in our models were
volume, presence of tumor registry accredited by the American College of Surgeons (ACOS)
Commission on Cancer, teaching status, and urban location. The small portion (0.01%–7.02%)
of missing data for patient and hospital characteristics was imputed using stochastic regression
imputation (Little and Rubin, 2002, Chap. 4).

3.2 Model fitting
Based on national guidelines (National Institute of Health, 1990), all patients included were
eligible for adjuvant chemotherapy, and those with rectal cancer were also eligible for adjuvant
radiation therapy. As expected, a majority of rectal cancer patients (66.6% from the survey and
55.3% from the registry) had received radiation therapy, as had a substantial number of stage
III colon cancer patients (10.5% from the survey and 7.22% from the registry). We analyzed
the whole sample, modeling the receipt and reporting of both treatments simultaneously in a
bivariate model regardless of guideline eligibility for radiation therapy. For the purpose of
comparison, we also analyzed each adjuvant therapy separately using univariate models.

In both imputation methods, the outcome model, but not the reporting model, includes an
indicator for being in the region covered by the follow-back survey, and another for being
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treated in 1996 or 1997. In the bivariate analysis, the reporting model for one treatment includes
the receipt of the other as a potential predictor. We included correlated random hospital
intercepts in the outcome model with an inverted Wishart prior, i.e. Σ2 ~ IW(2, (2I)–1), but we
did not include hospital random effects in the reporting part of the model. The latter stabilizes
model estimation due to the much smaller number of hospitals in the physician survey
compared to the registry, as well as the highly unbalanced sample size across these hospitals.
The priors used in the univariate models were similar to those in the bivariate model except
that we adopted a diffuse IG(1, 1) prior for random effects variance of chemotherapy and
radiation therapy separately.

Based on time-series plots and sample autocorrelation plots for the model parameters, we
concluded that the posterior series had converged after 2500 iterations of the Gibbs chain. The
estimates also appeared to be stable under several trials of different initial values of parameters
deliberately chosen to be overdispersed. Hence we based our inferences and collected
imputations after discarding the first 2500 iterations. We performed 30 imputations so that
multiple imputation efficiency (relative to an infinite number of imputations) higher than 97%
can be achieved (Rubin, 1987, pg. 114), collecting imputed data sets that were widely separated
in the Gibbs chain to minimize serial correlation.

3.3 Main results
Table 1 lists the estimated rates of adjuvant therapies using the survey, registry, and multiply
imputed/corrected registry data from the univariate and bivariate models. The multiple-
imputation estimates were obtained using the combining rules proposed in Rubin (1987). Rates
calculated from imputed data under both methods are substantially larger than those from the
registry alone.

Table 2 (in the Web Appendix) shows the parameter estimates for the bivariate model.
Chemotherapy was used more often among younger, married, or stage III rectal cancer patients,
and less often among those with lower income, stage II rectal cancer, or more comorbidities.
Patients who were transferred before surgery, typically to hospitals with more specialized
facilities for cancer care, were also more likely to receive the treatment. Patients at ACOS
hospitals were more likely to receive chemotherapy, while those at teaching hospitals appeared
to receive it less often. Patients in the region in which the survey was conducted were also
more likely to receive the treatment, as were patients who were treated in 1996 or 1997. For
the receipt of radiation therapy, the effect of patients’ age, marital status, comorbidity, hospital
transfer, ACOS hospital status, as well as year of treatment are similar to those for receipt of
chemotherapy. Male patients were more likely to receive radiation therapy. Patients with stage
II or III rectal cancer were much more likely to receive radiation therapy than those with stage
III colon cancer.

High-volume hospitals reported chemotherapy more completely than others, as did urban
hospitals; this might reflect greater investments in data management in these institutions.
Treatment of older or married patients was more often underreported. Finally, receipt of
radiation therapy is a strong predictor (β ̂R,radiation = 0.477, SE=0.144) of reporting
chemotherapy, confirming our conjecture.

There are fewer significant predictors for the reporting of radiotherapy, indicating a more
consistent pattern of reporting. In contrast to chemotherapy, which can be administered in
ambulatory settings outside hospitals, such as clinics and doctors’ offices, radiation therapy is
typically administered in centralized radiation centers where data recording and reporting are
also likely to be more systematic. Radiation therapy is also more completely reported in the
high-volume hospitals. In addition, patients with stage II or III rectal cancer were reported
more completely than others for radiotherapy. There is some but not significant evidence
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(β ̂R,chemo = 0.458, SE=0.305) that reporting of radiotherapy is more complete among patients
who had received chemotherapy.

As expected, the two therapies are strongly correlated at the individual level in both treatment
and reporting (ρ̂O = 0.704, ρ̂R = 0.770). In addition, there is moderate variation among hospitals

in provision of chemotherapy  but less for radiotherapy ,
and there is little correlation between the two  at the hospital level.

Coefficient estimates from univariate models for each treatment (results not shown) are very
similar to those obtained from the bivariate model. Since the univariate reporting model does
not explicitly model the effect of receipt of the other treatment, the associated effect appears
indirectly through other correlated predictors. In particular, in the reporting model for
chemotherapy, the univariate model identifies stage II or III rectal cancer as a significant
predictor (β ̂R,rectal2 = 0.720, SE=0.201; β ̂R,rectal3 = 0.458, SE=0.166). Those patients were more
likely to receive radiotherapy, and when the effect of receiving radiotherapy on reporting of
chemotherapy is picked up in the bivariate model, the coefficients of the stage variables become
smaller and nonsignificant (β ̂R,rectal2 = 0.440, SE=0.236; β ̂R,rectal3 = 0.213, SE=0.189).

3.4 Model diagnostics
We performed posterior predictive checks (Gelman et al., 2004, Chap. 6) for the model without
random reporting effects by duplicating the survey data and simulating true and registry
treatment status  in the second copy under the model. Such diagnostics aim to
check the lack of fit of the model for a subset of the data. In the first set of checks, we repeated
the same hospital numbers in the copy, thus conditioning on both the general parameters and
the hospital random effects; this analysis tests whether summaries of the observed data are
similar to those that would be obtained if new data were drawn under the model from the same
hospitals in the survey, and representing a full posterior predictive check. The second set of
checks conditions only on the general parameters, so the random effects were drawn from their
prior distributions rather than posterior distributions; this analysis tests whether summaries of
the observed data are similar to those that would be predicted if new hospitals were included
in the survey, representing a mixed predictive check (Gelman, Meng, and Stern, 1996, pg. 754).
For comparison, we also applied the corresponding diagnostics to the univariate models.

We chose check statistics that summarize the marginal and joint distributions of the measures
for patients and hospitals. These included the treatment and registry rates of both therapies, the
sensitivities of the registry data, the odds ratios of treatment and registry reports within and
between therapies, and the variances and correlations of the treatment and registry rates across
the hospitals.

Table 3 (in the Web Appendix) lists the observed-data statistics, their associated 90% posterior
predictive intervals (PI), and their associated one-sided posterior p-values, that is,

 under the full posterior predictive check. The results
obtained under the mixed predictive check are very similar to those under the full posterior
predictive check and are therefore omitted here. The odds ratios are significantly
underestimated from the univariate models. This is not surprising since that method does not
account for the associations between the two therapies except through the common predictors.
Conversely, the predictive intervals obtained from the bivariate model contain the observed
odds ratios and yield reasonable posterior p-values. Both methods tend to overpredict the
variance of chemotherapy rates and its correlation with registry rates across hospitals in the
survey, that is, VAR (Y ̅O1i.) and COR(Y ̅O1i., Y ̅R1i.), respectively. Posterior predictive checking
using models with only fixed effects produced similar results but with slightly less
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overprediction. Despite that, both methods generally yielded satisfactory predictions for other
summary statistics.

3.5 Analysis of multiply imputed data
We performed a simple analysis to illustrate use of the imputed data. As shown in Section 3.2,
stage III colon cancer patients were much less likely to receive radiation therapy than rectal
cancer patients, consistent with national guidelines that recommend administering this therapy
to the latter population. We were interested in investigating the pattern of receipt of radiation
therapy for colon cancer patients, controlling for receipt of chemotherapy, by fitting a simple
patient-level logistic regression model that omits the survey region indicator, the year of
treatment, hospital-level predictors, and random effects. Alternatives include the complete-
case approach (fitting only the survey data), using the underreported registry data, and fitting
the multiply imputed registry data under both the univariate and bivariate models .

Table 4 (in the Web Appendix) shows the results under various methods. As expected, the
coefficients estimated using only the survey data have the largest standard errors because of
the much smaller sample size. Conversely, estimates using uncorrected registry data have the
smallest standard errors because they do not account for misclassification and hence they
overstate the precision of coefficients. Among differences between the estimates from the two
imputation methods, most notably, the coefficient estimate for chemotherapy is smallest
(β ̂chemo = 1.079, SE=0.159) in the univariate model but largest (β ̂chemo = 2.059, SE=0.269) in
the bivariate model which better incorporates the associations between the two therapies. This
also changes the model fit for other predictors. For example, the univariate model identifies a
negative significant association (β ̂75–84 = –0.329, SE=0.149; β ̂85+ = –0.781, SE=0.366)
between the two oldest groups (75–84 and > 85 yrs old) and use of radiation therapy. But this
effect becomes nonsignificant (β ̂75–84 = –0.115, SE=0.148; β ̂85+ = –0.409, SE=0.377) in the
bivariate model because those patients are also less likely to receive chemotherapy (Table 2).

4. Discussion
To correct underreporting of adjuvant therapy in a cancer registry, we extended the multiple
imputation approach proposed by YZ to accommodate data on multiple treatments. The
extended model captures the associations and dependence among the treatments in the receipt
and reporting processes, and hence generates multiply imputed data that are more appropriate
for joint analyses involving several treatments. Furthermore, parameter estimates βR from the
reporting model might inform efforts to validate or improve the quality of registry data.

Other administrative systems also suffer from misclassification or misreporting of important
quality indicators or indexes, such as measures of diabetes care (Keating et al., 2003) and
comorbidity (Klabunde, Harlan, and Warren, 2006). The multiple imputation strategy
constitutes a promising tool to tackle this general problem in health services research.

The method can be easily applied to data with more than two variables, such as surgery,
chemotherapy, and radiation therapy for cancer patients. An immediate generalization is to
consider mixed types of treatment and reporting variables, such as misclassified adjuvant
therapy status and misreported comorbidity score which might be regarded as ordinal or
continuous. The extension would link the multivariate random effects probit models together
with the univariate continuous random effects model and characterize the correlations through
the latent Z’s.

Our method can be extended in several other directions. First, we might allow both
underreporting and overreporting in the registry data. This is similar to the general
misclassification problem in epidemiological research which allows both sensitivity and
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specificity to be less than perfect. The extension can include the same outcome model. The
reporting model, however, now includes models for underreporting (where YOl=1) and
overreporting (where YOl=0), corresponding to a second set of latent {ZRlij}.

Another extension is to combine information from more than two sources. For example, the
Cancer Care Outcomes Research and Surveillance Consortium (CanCORS) (Ayanian et al.,
2004) collects information about the enrolled patients from the cancer registry, patient survey,
medical records, and Medicare claims. While each source contains information on different
aspects of cancer care, all of them provide information on provision of adjuvant therapies and
some other overlapping variables. Our imputation strategy provides a means to synthesize
information from the various sources. Methods for analyses with such more general data
structures are a promising area for future research.
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Table 1

Adjuvant Therapy Rates %

Sample Chemo Radiation Chemo & Radiation

Survey 73.3 (1.16) 25.4 (1.14) 23.2 (1.11)

Registry (in the survey region) 57.9 (0.79) 22.2 (0.67) 20.0 (0.64)

Registry (statewide) 51.4 (0.45) 19.6 (0.35) 17.0 (0.33)

Imputed registry (univariate models) 61.2 (0.77) 23.1 (0.61) 19.3 (0.44)

Imputed registry (bivariate model) 61.1 (0.74) 23.3 (0.64) 20.2 (0.55)

Note: Inside the parentheses are the SEs.
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