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Positive feedback regulation is ubiquitous in cell signaling networks, often leading to binary
outcomes in response to graded stimuli. However, the role of such feedbacks in clustering, and in
spatial spreading of activated molecules, has come to be appreciated only recently. We focus on the
latter, using a simple model developed in the context of Ras activation with competing negative and
positive feedback mechanisms. We find that positive feedback, in the presence of slow diffusion,
results in clustering of activated molecules on the plasma membrane, and rapid spatial spreading as
the front of the cluster propagates with a constant velocity �dependent on the feedback strength�.
The advancing fronts of the clusters of the activated species are rough, with scaling consistent with
the Kardar–Parisi–Zhang equation in one dimension. Our minimal model is general enough to
describe signal transduction in a wide variety of biological networks where activity in the
membrane-proximal region is subject to feedback regulation. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3149861�

I. INTRODUCTION

Cell signaling networks often generate binary �on or off�
responses in presence of a diverse set of stimuli in the local
environment. A common element present in many of these
networks is a positive feedback loop,1,2 which can give rise
to discrete decisions.1,3,4 A positive feedback loop can arise
when an activated signaling molecule creates a mediatory
molecule that in turn enhances the activation of the signaling
molecule. When the timescales of the biochemical reactions
involved are slower, or of the same order, as that of the
diffusion of the molecules participating in the reactions, non-
linearities associated with positive feedback could couple
with diffusion to result in spatial clustering, and in spreading
of activated molecules at a rate much faster than diffusion.
Various models describing growth of advantageous alleles in
the area of population biology,5 kinetics of reaction fronts in
autocatalytic systems,6,7 spreading of bacterial colonies,8 and
pattern formation during embryonic development,9 have in-
corporated the coupling of nonlinearities with diffusion in
their dynamics. It was also found that autocatalytic reactions
in the presence microscopic discreteness could give rise to
spatial clustering of active species.5,6 These models are natu-
rally constructed to explore the behavior of systems at the

length and time scales relevant to the population, organism,
or cellular level. The role of positive feedback in spatial
dynamics of subcellular processes, relevant for signal trans-
duction in cell signaling networks, has begun to be appreci-
ated only very recently.10,11 In this paper, we study the
spatial-temporal evolution of cell signaling dynamics subject
to feedback regulation when diffusive processes occur on
time scales similar to the signaling reactions. The diffusion
of molecules is usually much slower �about �100 times12� in
the plasma membrane compared to the cytosol, thus the ef-
fects we described are most relevant for the molecules in the
plasma membrane participating in membrane-proximal cell
signaling.

II. MODEL

As a prototype of signaling events on a two-dimensional
cell membrane that involves positive feedback regulation, we
consider the activation of the membrane associated Ras fam-
ily of proteins. Ras can be activated by a Guanine exchange
factor protein, son of sevenless �SOS�. Specifically SOS
catalytically converts guanosine diphosphate �GDP� bound
Ras to its guanosine triphosphate �GTP� bound activated
form.

It was discovered recently13,14 that catalysis of Ras-GDP
to Ras-GTP aided by SOS becomes even faster ��75-fold�
when a membrane associated SOS molecule is bound to
Ras-GTP at an allosteric site. This mechanism introduces
positive feedback regulation of Ras activation.15 Activated
Ras has been observed to form clusters, and the diffusion
coefficient in these clusters can be small.
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We study the following simplified set of three reactions
that aim to mimic positive feedback, as in Ras activation:

Z + Y→
k1

X + Y, Z + X + Y→
k2

2X + Y, Y→
k3

� . �1�

In the above reactions, the Y species can be thought of as
representing SOS, while Z and X are analogous to Ras-GDP
and Ras-GTP, respectively. The first two reactions in Eq. �1�
correspond to activation of Ras without and with positive
feedback, respectively. The last reaction describes detach-
ment of SOS from the plasma membrane upon phosphoryla-
tion by activated Erk, a transcription factor that gets acti-
vated as a result of Ras activation. The reaction scheme is
quite general and can be applied to a large variety of com-
peting positive and negative feedbacks found in cell signal-
ing. In such cases, when the diffusion time scale is much
faster than the reaction time scales in Eq. �1�, stochastic fluc-
tuations in the feedback reactions can give rise to binary
outcomes �activation versus deactivation� when the number
of molecules is small.3 Here we show that the opposite limit,
when diffusion time scales are slower than the reaction
times, give rises to spatial clustering, and enables signal
propagation by advancing cluster at a much faster rate than
diffusion. We also find the growing fronts become rough, in
a manner consistent with the Kardar–Parisi–Zhang �KPZ�
equation.24,25

III. METHOD

We construct a lattice model in one �d=1� and two
�d=2� dimensions to study the model described above using
a kinetic Monte Carlo �MC� simulation. The system with
d=2 describes signaling on a cell membrane, and the one
dimensional system may be relevant if the molecules are
constrained to move in narrow channels. For ease of presen-
tation, the MC scheme in described for d=1 �Fig. 1�, but can
be easily generalized to higher dimensions. At t=0, a lattice
point �site i� can be unoccupied or occupied by a particle of
X, Y, or Z species. A site cannot be occupied by more than
one particle because of their hardcore repulsion. We have
chosen initial concentrations of Z and Y particles as 0.469
and 0.03, respectively. All the simulations are performed
with an initial homogeneous distribution of Z and Y particles.
At every MC trial a lattice site is picked at random, and if its
occupancy �ni� is nonzero, we attempt the following moves

with equal probability by calling a random number r� �0,1�
from a uniform distribution. �i� If 0�r�1 /4, a nearest
neighbor point �i+1 or i−1 with probability 1/2� is selected,
if that site is empty �ni+1 or i−1=0�, then the diffusion move
�exchange of particle occupancy between i and, i+1 or
i−1� is accepted with a probability pD=�tDMC, where,
�t=1 / �k1

MC+k2
MC+k3

MC+DMC�, when all the species have the
same diffusion constant, DMC. The parameters, k1

MC, k2
MC,

k3
MC, and DMC, used in the MC trials are related to the physi-

cal rate constants �in d-dimensions� by, k1=2k1
MCdl0

d,
k2=6k2

MCdl0
2d, k3=k3

MC, and D=DMCl0
2 respectively, where

l0 denotes the lattice spacing in the simulation and the time
scale is set by �t. �The details of this derivation are left
to Appendices B and C.� We also study the case when the Y
species
has a different diffusion constant, DY

MC, in which case
�t=1 / �k1

MC+k2
MC+k3

MC+Dmax
MC �, where, Dmax

MC takes the value
of the larger diffusion constant between DMC and DY

MC. The
diffusion moves for X or Z species and Y species are chosen
with a probability, pD=�tDMC, and pDY

=�tDY
MC, respec-

tively. �ii� If 1 /4�r�1 /2, a nearest neighbor point �i+1 or
i−1� is selected, if that site is occupied �ni+1 or i−1=1�, and i
and i+1 �or i−1� sites have a pair of Z and Y particles, then
the first reaction in Eq. �1� is executed with a probability
pr1

=k1
MC�t. �iii� If 1 /2�r�3 /4, we attempt the second re-

action in Eq. �1�. Any of the pairs, �i+1, i−1�, �i+1, i+2�,
and �i−1, i−2� is chosen with equal probability, and, if all
the three sites �site i and the chosen pair of sites� are occu-
pied with X, Y, and Z particles, the reaction is executed with
a probability pr2

=k2
MC�t. �iv� If, 3 /4�r�1, and if the site i

is occupied by a particle of Y species, we attempt the last
reaction in Eq. �1� with probability pr3

=k3
MC�t.

While the model we study is quite general, we have
studied it using parameters relevant to Ras activation. The
production of Ras-GTP from Ras-GDP through SOS can
be represented by the reaction scheme in Eq. �1� as shown
in Appendix A, where Z, X, and Y particles represent Ras-
GDP, Ras-GTP, and SOS molecules, as indicated before. The
model parameters obtained from the rate constants
measured in vitro are, k1=3.29�105 �m2 molecules−1 s−1

and k2=4.62�103 �m4 molecules−2 s−1. The diffusion
constant of Ras molecules varies from 0.01 to 1 �m2 /s.16

Therefore, we have chosen units such that, l0=1 �one
lattice spacing� and DMC=10 in the simulations cor-

Z Z

i i + 1 i i + 1

XZ YY

i i + 1 i i + 1

ZX Y XX Y

i i + 1i ‐ 1i i + 1i ‐ 1

Y

i i

(a)

(c)

(b)

(d)

(i) (ii)

(iii)

D k1

k2

k3

FIG. 1. �Color online� Monte Carlo rules for the model.
The Monte Carlo moves are shown on a lattice in
d=1. The white circle denotes an empty site. This color
scheme is followed in all figures. �a� Shows a diffusive
move with diffusion constant D. �b� shows a pairwise
reaction between Z and Y particles with a rate k1. �c�
The possible positive feedback reactions between X, Y,
and Z particles with a rate k2. �d� Annihilation of Y
particles with a rate k3.
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respond to l0=0.1 �m and D=0.1 �m2 s−1 in actuality.
This choice also implies that, k1

MC=0.001, k2
MC=10.0 and a

concentration �Z=0.469 of Z particles in simulations
correspond to k1=4.0�105 �m2 molecules−1 s−1,k2=12.0
�105 �m4 molecules−2 s−1, and a Ras concentration of
47 molecules /�m2, respectively, in experiments. These esti-
mates are within realistic ranges of the parameters for cellu-
lar systems, and we use them for most of the simulations
presented in the main text. More details of this particular
choice of parameters are shown in Appendix C. We found the
qualitative features of our results do not change as the above
parameters are varied over at least a factor of 10. As long as
feedback is sufficiently strong, the phenomena we describe
are robustly reproduced.

IV. RESULTS

A. Domain growth in two dimensions

Spatial dimension plays a crucial role in controlling the
dynamics of the system. In d=1, the particles get locked in
arrested states indefinitely, even when the Y particles are
spared of the annihilation reaction �k3

MC=0�. Although this
scenario is not relevant for the molecules interacting in a
cell’s plasma membrane, such a situation may arise if signal-
ing molecules are constrained to move in narrow channels.
The physical reason underlying this behavior in d=1 is the
following: When a Y particle is flanked by two neighboring
X species �Fig. 1�c� �iv��, the Y particle cannot participate in
any reaction and is rendered “inactive” indefinitely because
of the topology of one dimension and the hardcore interac-

tions between the particles. Thus, when all the Y particles
become inactive, all the reactions in the system come to a
stop leading the system into the arrested states.

We focus on d=2, where there are no corresponding
geometrical constraints for inevitable arrested states. Instead,
the system displays nucleation and domain growth: initially
X particles are created from Z particles through the first re-
action in Eq. �1�. Clusters of X particles may seed a “critical
nucleus” that grows with time because of the positive feed-
back. The nucleation and growth of domains of the X par-
ticles is shown in Fig. 2�a�. In the absence of positive feed-
back �k2

MC=0�, X particles are created, but there is no
nucleation or domain growth in the system �Fig. 2�b��.

The concept of a critical nucleus size can be formulated
in the following way. If a cluster of X particles of size l is
created, it can increase in size because the X particles at its
boundary convert the nearby Z particles �in presence of Y
particles, which are homogenously distributed throughout the
region� into X particles by the positive feedback reaction.
However, it may also shrink in size as the X particles can
also diffuse away from the cluster. The time scale for the
removal of a particle by diffusion from a region of size is
�D� l2 /D, while the time scale associated with creation of X
particles from Z particles through positive feedback reaction
is �feedback�1 / �k2�̄Y�̄Z�, where �̄Y and �̄Z are the average
densities of the Y and Z particles, respectively. Thus, if
�D��feedback, the X particles in the cluster will diffuse away
before they can increase the size of the cluster by positive
feedback. This suggests that clusters of size,

t=0 MCS t=800 MCS t=1600 MCS t=2400 MCS t=3200 MCS

t=0 MCS t=10000 MCS t=20000 MCS t=30000 MCS t=40000 MCS

(a)

(b)

FIG. 2. �Color online� Domain growth in d=2. Particle configurations from the simulation in a 256�256 lattice. At t=0, the system starts with 30 768
uniform randomly distributed Z particles �concentration=0.469�, and 2000 Y particles �concentration=0.030�. The parameters k1

MC=0.001, DMC=10, and
k3

MC=0, are used for all simulations; configurations with k3�0 are shown in the EPAPS �Fig. S1�. �a� Configurations showing domain growth of the X particles
among the Y and Z particles for a strong positive feedback �k2=10�. Particles of different species and empty sites are shown following the same scheme as
in Fig. 1. Each MC step �MCS� corresponds to �t�0.05 s. �b� Configurations when the positive feedback reaction is turned off �k2=0�. Each MC step �MCS�
corresponds to �t�0.1 s.
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l 	 lc = �D/k2�̄Y�̄Z�1/2, �2�

will grow due to positive feedback regulation. The decay of
the Y particles limits the time available for growth of the
domains of X particles. This is because; once all the Y par-
ticles are annihilated, no new X particles can be created.
Thus a larger value of the constant k3 results in a smaller size
of the largest X domains �Fig. S1 in the EPAPS�. Therefore,
to characterize the scaling properties of domain growth �e.g.,
size of the critical nucleus, or growth law�, we set k3

MC=0.
This is a choice of convenience, and does not alter the gen-
eral principles emerging from our study.

In order to quantify the size of the critical nucleus, and
the growing domains, we calculate the dynamic structure
factor defined as, S�q , t�= 	�X�q� , t��X�−q� , t�
, where �X�q� , t� is
the Fourier transform of the density �X�r� , t� of X particles;
and 	¯ 
 denotes averaging over initial configurations. We
employ methods similar to those used to deduce the size of
the critical nucleus from the structure factor at a first order
equilibrium phase transition.17 The key concept behind this
method as follows: Any domain of size, l�1 /q	1 /qc,
where qc is the wave-vector corresponding to the size, lc, of
the critical nucleus, will grow with time while domains of
size l� lc will dissolve in the unstable phase. Therefore, if
S�q , t� is graphed at different times, all the curves should
merge at the wave vector, q=qc. We apply the same method-
ology to characterize nucleation and domain growth in our

system, although, unlike the previous case,17 we follow a
transition from a nonequilibrium unstable steady state to a
stable steady state.

Our characterization of nucleation and growth of do-
mains from S�q , t� are summarized in Fig. 3. As depicted in
Fig. 3�a�, S�q , t� increases rapidly for small q, but gradually
�roughly by a constant amount with time� at large q. The
difference in the evolution of S�q , t� for q	qc, between our
system and one undergoing an equilibrium first order phase
transition �such as an Ising model�, comes from the ever
increasing number of X particles. In the equilibrium first or-
der transition, domains smaller than the critical size dissolve
and disappear into the unstable phase. In our case these do-
mains disintegrate into even smaller clusters of the stable
state �X particles�, resulting in a constant vertical shift, ��t�,
in S�q , t� as time increases. If we adjust each curve in S�q , t�
for ��t� at different times, we see a pattern similar to a sys-
tem undergoing a first order phase transition, with the curves
merging at a single wave vector, q=qc �Fig. 3�b��. The size
of the critical nucleus increases as the diffusion constant,
DMC, of the particles is increased �Fig. 3�c��. The size of the
critical nucleus, lc=2
 /qc, changes with the diffusion con-
stant of the particles �Fig. 4�d��, but the increase in lc does
not quite follow the dimensional analysis leading to Eq. �2�.
We have also calculated variations of qc as the densities of Y
and Z particles are changed �Fig. S2 in the EPAPS�, again

(a) (b)

(c)
(d)

FIG. 3. Characterization of nucleation and domain growth. The structure factor S�q , t� is used to characterize the nucleation and domain growth in the system.
All the data are averaged over 1000 initial configurations. �a� shows S�q , t� vs q calculated at times, t=800 MCS �circle�, t=1600 MCS �square�, t=2400 MCS
�diamond�, and t=3200 MCS �triangle�. The parameters are the same as in Fig. 2�a�. �b� The data points for S�q , t� in part �a� are shifted by ��t�, where
S�q→� , t�+��t�= 	�X

2�t→��
�0.25. For this choice ��t→��→0, because at long times all the Z particles are converted into X particles, which are
eventually homogeneously distributed in space; thus S�q�0, t→��→ 	�X

2�t→��
. �c� shows S�q , t�+��t� for DMC=100 at t=2750 MCS �circle�, t=3850
MCS �square�, t=4950 MCS �diamond�, and t=6050 MCS �triangle�. All other parameters are identical to that of �b�. �d� Dependence of the wave vector
associated with the size of the critical nucleus, qc, with the diffusion constant D. We determined the values of qc from the data points where any two curves
are, for the first time, separated by a distance that lies within the error bars �S in the S�q , t��+offset\Delta� data in that region. The upper and lower limits in
qc are calculated using, �S=�S /2 and, �S=�S, respectively. The solid line shows a function of the form, qc=AD1/2, consistent with Eq. �2�, for comparison.
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observing deviations from the behavior predicted by Eq. �2�.
Such a departure from simple scaling may arise due to a
combination of nonlinearity and stochastic fluctuations,18

and deserves further analysis. Also note, that in the above
calculation of the size of the critical nucleus, it has been
assumed that, as in the Ising system,19 the nucleation process
is described by a single reaction coordinate, the size of the
nucleus. It will be interesting to check the validity of this
assumption using transition path sampling20 like techniques
that have been applied in biochemical reaction networks.21

For k3
MC=0 in two dimensions, the number Nx�t�, of X

particles monotonically increase in time. As depicted in Fig.
4 for various values of the diffusion constant DMC, the frac-
tion of the X particles fX�t�=Nx�t� /M, where M is the total
number of Z particles at t=0, increases with time in a sig-
moid manner, and saturates to unity. While such a behavior
also follows from a mean-field treatment, the dependence on
the diffusion constant indicates the importance of the nucle-
ation and growth of clusters. We attempt to quantify the
growth of clusters from the data in Fig. 4 in the following
way. Let us assume, for simplicity, that all the X particles at
a time t are created from the growth of a fixed number n of
circular critical nuclei that arise at time t= t0. We can then
relate increase in fX�t� to the rate of the growth of the circu-
lar domains by22

dfX�t�
dt

= kn
dA�t�

dt
�1 − fX�t�� , �3�

where A�t�=
R2�t�, R�t� is the radius of each island of
X particles, k is the proportionality constant. If we assume
domains of size R0 are nucleated at t= t0, such that
fX�t0�=
nR0

2 /M and R�t0�=R0, we can solve Eq. �3� to get

fX�t� = 1 − �1 − fX�t0��exp�− kn�A�t� − A�t0��� . �4�

Fits to the above equation are also depicted in Fig. 4. Note
that approximating the complicated spatial arrangements in
Fig. 2�a� by a fixed number of growing domains is neither
correct at short times �before nuclei are formed� or at long

times �when the clusters merge�. Thus the model can only be
regarded as an approximation of intermediate times, and in-
deed the fits have been made so as to best match the rising
portion of the numerical curves in Fig. 4. The variations in
time in Eq. �4� are encoded in the increase of the area A�t�,
and hence the radius R�t�. We now assume a form
�R�t�−R0�� �t− t0�a, and extract a from the fits to the data in
Fig. 4. We find that a linear growth of the domains, i.e.,
R�t�� t, can fit the data to some extent. The many sources of
deviation from the form predicted by Eq. �4� include the
noncircular shape of the domains �rough walls�, inhomoge-
neous nucleation of the domains of the X particles, and merg-
ing of domains. In the next section, we address the roughness
of a single interface between the Z and X particles due to
positive feedback and diffusion alone.

B. Fluctuations and interface motion

In the last section we observed that positive feedback
leads to formation and growth of domains. Here, we attempt
to quantify the motion and shape of the advancing interface
of the stable phase �region filled with X� into the unstable
phase �region filled with Z�, focusing on the positive feed-
back reaction by itself. Specifically, we start with an
initial configuration in a simulation box of size Lx�Ly,
where, one quarter of the box �0�x�Lx /4, and 0�y�Ly�
is occupied only by X particles and the other half of the box
�Lx /4�x�Lx, and 0�y�Ly� by Z particles. The Y particles
are distributed homogeneously in both the compartments.
The system then evolves according to the reactions in Eq.
�1�, with k1=0 �to prevent nucleation of additional domains
of X particles in the compartment filled with Z particles� and
k3=0. Thus, the spreading of the X particles to the space
initially occupied by Z particles occurs only due to positive
feedback and diffusion. We study both the cases, when
�A� the diffusion constants of the particles are equal,
DY

MC=DX
MC=DZ

MC=DMC; and �B� with DX
MC=DZ

MC=DMC and
DY

MC different from DMC. Periodic boundary conditions are
imposed along the y direction, and reflective boundary con-
ditions are applied at the x boundaries. We limit the maxi-
mum time reached in our simulation such that the interface
between the X and Z regions does not cross the boundary at
x=Lx. In the mean-field approximation, the dynamics of the
system is described in terms of the densities of X, Y, and Z
particles by the set of reaction diffusion equations:

��X

�t
= D�2�X + k2�Y�X��0 − �X� , �5a�

��Y

�t
= DY�2�Y , �5b�

where �X and �Y denote the densities of the X and Y particles,
respectively. The total number of the Z and X particles is
conserved, and on average �X+�Z=�0, where �Z is the den-
sity of the Z particles. The constants D, DY, and k2 are related
to the parameters used in the MC simulation as, D=DMCl0

2,
DY =DY

MCl0
2, and k2=6k2

MCdl0
2d, respectively, as shown in

Appendices B and C.

FIG. 4. Time dependence of production of X particles. Plots of variations of
the fraction fX�t� with time t, for different diffusion constants DMC. The
other parameters are identical to that of Fig. 2. The solid lines are fits to the

data with a function, fX�t�=1−Ae−B�t − t0�2a
, where A, B, and t0, are fitting

parameters, we set a=1, for all the fits, corresponding to a linear growth in
the size of domains of X particles with time.
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Equation �5a� is closely related to the well-known Fisher
equation, which is a generic model for dynamic processes
involving advance of a stable phase into an unstable region,
and has been applied to a wide range of phenomena in biol-
ogy, chemistry, and physics. It is a phenomenological de-
scription of the time evolution of a density field, ��r , t�,
r�Rd, where, a stable phase, �=�s, propagates into the un-
stable phase, �=0, following

��

�t
= D�2� + k���s − �� . �6�

While the Fisher equation cannot be solved exactly, stability
analysis shows that a sharp interface, ��r , t�=0 for r� �0,
r� �r� ,r��, r� �R; r��Rd−1, and �=�s for r� 	0, at t=0,
will move into the unstable phase ��=0� in the transverse
direction, r�, with a velocity, v
vmin=2�Dk�s, as the width
of the interface broadens to a size of �D / �k�s� at late times.
Comparison of Eq. �6� with Eq. �5a� suggests that when Y
particles are homogeneously distributed in the system, i.e.,
for �Y�r , t�= �̄Y =const, the interface between X and Z rich
regions should propagate into the Z compartment with a ve-
locity v
vmin=2��Y�0Dk2. However, the stochastic fluctua-
tions originating both from the reactions and the diffusion of
the particles should modify this conclusion, and we study the
effect of fluctuations by examining the velocity and the
width of the interface from our kinetic MC simulations. We
define the leading edge of the advancing domain by a set of
height variables ��hj� , j=1, . . . ,Ly�. Each hj denotes the x
coordinate of the rightmost X particle, with y coordinate

equal to j. We then compute the average position �h̄�t�� and
the average width �w�t�� of the front from the height vari-
ables as

h̄�t� =
 1

Ly
�
j=1

Ly

hj�, and

w2�t� =
 1

Ly
�
j=1

Ly

�hj − h̄�t��2� ,

where 	 . . . 
 denotes the average over a set of runs �initial
configurations�.

In the simulations, the front moves with a constant ve-
locity after a short transient time. This transient period is

larger for smaller values of Ly. The graph of h̄�t� with time in
Fig. 5�a� shows that the interface advances with a constant
velocity, irrespective of the value of Ly. The velocity of the
interface calculated from the slope of Fig. 5�a� is plotted at
several values of DY in Fig. 5�b�. We find that the front
moves with velocities smaller than the minimum velocity
predicted by the mean-field analysis of the reaction diffusion
equation. Such a departure from the mean-field description
has been also observed in other reaction diffusion
systems.7,23 Furthermore, while the mean-field analysis pre-
dicts that the velocity of the front does not depend on DY, our
simulation shows �Fig. 5�b�� that the front velocity increases
with DY, and ultimately saturates to a constant value. Since
the reaction front propagates in the unstable phase because of
the reactions occurring at the leading edge, where the particle
concentration is very low, both molecular discreteness24 and
microscopic fluctuations7,25 arising from reactions and diffu-
sion of the particles, play important roles in determining the
velocity of the wave front. However, the actual front velocity
depends on these effects, as well as on the details of the
implementation of microscopic dynamics in a lattice model,7

in a complicated manner. Our results demonstrate that these
factors clearly play an important role in modulating the re-
action kinetics of the system.

We can try to understand the effect of mobility of the Y
particles on the propagation of the interface heuristically as
follows.26 A pair of X and Z particles �denoted as �XZ��, in
presence of a Y particle, is transformed into a pair of X
particles �denoted as �XX��. This process can be represented
by the set of reactions,

m
in

(a) (b)

FIG. 5. Calculation of interface velocity from simulations. �a� Variation of the mean interface position h̄�t� with time t, shown for different sizes of the
interface. The box size along the direction of front propagation is set to Lx=512 for all the simulations. The data are averaged over 1000 initial configurations,
and the values of the rate constants are k1

MC=0, k2
MC=10, and k3

MC=0; the diffusion constants are set to DX
MC=DY

MC=1. �b� shows the variation of the front
velocity v, with the diffusion constant DY

MC. We have set DX
MC=1 for all the simulations, and the other parameters are identical to that of �a�. The system size

for this calculation is 512�128. The initial concentrations of X+Z particles and Y particles are set to 0.5 and 0.03, respectively, and the data are again
averaged over 1000 initial configurations. The solid dashed line shows the mean-field velocity predicted by the Fisher equation in Eq. �5�.
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XZ + Y ↔
�d+,d−�

XZY→
k2

XXY , �7�

where d+=2
�DXZ+DY�, d−=2�DXZ+DY� / l0
2, DXZ is the dif-

fusion constant of the XZ particle pair, and l0 is the lattice
spacing. Assuming, that XZY is equilibrated, i.e., d�XZY /dt
=0, at a much faster rate than any other reaction, we can
calculate an effective rate of X production in the reaction,

XZ + Y→
k2�

XXY ,

as k2�=d+k2 / �d−+k2�. Now we can immediately see that,
when, d−�k2, k2� increases as DY increases, and, that it satu-
rates to a value 
k2 / l0

2, at large DY �when, d−�k2�. The
above analysis provides a qualitative understanding of the
trends, but in order to obtain the quantitative change in ve-
locity of the interface due to particle correlations and sto-
chastic fluctuations one approach is to examine the Master
equation for the system.27 One can write down an action
functional from the Master equation in terms of coherent
states as a way to capture the effects of fluctuations28,29

�details in Appendix B�. A naïve dimensional analysis of the
terms in the action functional shows that the critical dimen-
sions of the terms proportional to k1 and k2 are, dc=2 and
dc=1, respectively. Thus, when k1=0, one may naively as-
sume that the fluctuations will not play any role in the system
at d=2	dc=1. However, the effective field theory describ-
ing the interface motion can be very different than the one
governing bulk dynamics, and fluctuations can still be impor-
tant for the former.30 Our simulations show that fluctuations
indeed affect the interface motion, and we leave that analysis
for a future work.

The effect of stochastic fluctuations is also manifested in
the spreading of the width, w�t�, of the interface as time
increases. The variation of w�t� with time for different values
of Ly is shown in Fig. 6, and the data can be collapsed on a
master curve w2�t�=L2�f�t /Ly

z�, with �=�z. Asymptotically,
f�x��x2� when, x�1 and f�x��const when x�1. These fits
suggest that the roughness of the interface follows the scal-

ing of the KPZ equation,31 where the exact scaling exponents
in d=1, take the values �=1 /2, �=1 /3, and z=3 /2. As ex-
pected from universality, the scaling exponents do not de-
pend on the value of DY.

V. CONCLUSIONS

Using a simple model, we have shown how positive
feedback in the presence of slow diffusion can give rise to
nucleation of clusters of activated molecules, which then
spread in space at a rate much faster than diffusion. The
minimal model aims to mimic positive feedback regulation
of signaling modules, such as Ras activation by the enzyme
SOS. However, the framework is quite general and can be
used to describe a variety of cell signaling processes11 that
are subject to feedback regulation. We also study the effect
of fluctuations on the motion of the reaction/diffusion inter-
face, and find that they lead to a rough interface no longer
described by the mean-field kinetics. Interestingly, the fluc-
tuations arising from positive feedback are irrelevant for de-
scription of bulk behavior.
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APPENDIX A: CALCULATION OF THE RATE
CONSTANTS FOR THE Ras-SOS SYSTEM

Activation of Ras through SOS can be described by the
following reactions:

�R1� S + RD ↔
�p1,p−1�

SRD→
p1f

S + RT,

�R2� Sa + RT ↔
�p2,p−2�

SaRT,

�R3� SaRT + RD ↔
�p3,p−3�

�SaRT�RD→
p3f

SaRT + RT.

The short forms of the complexes used above are as indi-
cated below,

S � SOS, RD � Ras − GDP, RT � Ras − GTP,

SRD � SOS − Ras − GDP,

Sa�allosteric site of SOS, SaRT�Sa−Ras−GTP, �SaRT�RD

��Sa−Ras−GTP�Ras−GDP Rtot=RT+RD+SRD+SaRT, Stot

=S+SRD+SaRT. The parameters pn and p−n indicate the
binding and unbinding rates of the nth reaction, respectively;
pnf denotes the rate of a catalytic step. The ratios of the rates,
p1D= p−1 / p1, p2D= p−2 / p2, p3D= p−3 / p3, and the catalytic
rates p1f, p2f have been measured in in vitro experiments,
and corresponding values are listed in Table I.

The above values are reported for the reactions occurring
in d=2 in the plasma membrane; the binding rates in d=3
measured in experiments are converted to d=2 using,
�pn�2D= �pn�3D /�, where �=1.7 nm, which is the radius of
gyration for a Ras molecule. All the reactions reported

FIG. 6. Scaling behavior of the interface width. The scaling of the width
w�t� of the interface is shown, at values of the simulation parameters iden-
tical to that of �a�. The values of the scaling exponents that enable data
collapse are z=3 /2, �=1, and �=1 /3, which are the exact values of the
exponents of the KPZ equation in d=1.
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above take place on the plasma membrane; thus, the values
of the rates at d=2 represent reaction kinetics in the physical
situation.

When the concentration of the enzymes, S and SaRT, are
much smaller than that of the substrate, RD, we can have
�p−1+ p1f� / p1+Rtot�Stot and �p−3+ p3f� / p3+Rtot� �SaRT�. In
this situation, d�SRD� /dt�0 and d��SaRT�RD� /dt�0 repre-
sent a very good approximation �Michaelis–Menten pseu-
dostate approximation32� to the dynamics. This approxima-
tion holds well in cells because the concentration of Ras
�60–240 molecules /�m3� is larger than the concentration of
SOS �20–60 molecules /�m3�. In addition, SOS molecules
can act on Ras molecules only when they are brought in the
vicinity of the plasma membrane by Grb2 molecules associ-
ated with other signaling complexes. Thus, the concentration
of SOS molecules that are responsible for activation of Ras
can be even smaller than the measured values in in vitro
experiments. Furthermore, as time scales associated with p2

and p−2 are faster than that for the rates p1f and p3f,
d�SaRT� /dt�0 is a good approximation at time scales longer
than that for catalysis. With the above approximations, we
can write down the production of RT arising from reactions
R1 �without positive feedback� and R2 �with positive feed-
back� as

d�RT�
dt

= k1�S��RD� + k2�S��RT��RD� , �A1�

where

k1 =
p1fp1

p−1 + p1f
, �A2�

and

k2 =
p3fp3p2

�p−3 + p3f�p−2
. �A3�

Thus the values of the parameters k1 and k2

in Eq. �1� calculated for the Ras-SOS systems in
d=2 are, k1=3.29�10−5 �m2 s−1 /molecules and
k2=3.3�10−3 �m4 s−1 /molecules2.

APPENDIX B: DERIVATION OF THE MEAN-FIELD
EQUATION FROM THE MASTER EQUATION

We derive the Master equation for the model described
in the main text for d=1, but the procedure is easily gener-
alized to higher dimensions. Then following a standard for-
malism for second quantization, we write down an action
functional for the system. This action is then used to derive
the mean-field equations for the system.

The model is described by the set of variables, �ni
X�,

�ni
Y�, and �ni

Z� which denote the occupancy �0 or 1� the lattice
sites �i�. The probability of having a particular configuration
evolves in time following a Master equation,

�P��ni
X�,�ni

Y�,�ni
Z�t�

�t
= terms arising from reactions

+ terms arising from diffusion.

The terms originating from the first reaction of Eq. �1� are

R1 = �
i=1

N

k1
MC��ni

X1�ni
Y0�ni

Z0�ni+1
X 0�ni+1

Y 1�ni+1
Z 0P

���. . . ,ni
X − 1, . . .�,�. . . ,ni

Y, . . .�,�. . . ,ni
Z + 1, . . .�,t�

+ �ni
X0�ni

Y1�ni
Z0�ni+1

X 1�ni+1
Y 0�ni+1

Z 0P

���. . . ,ni+1
X − 1, . . .�,�. . . ,ni

Y, . . .�,�. . . ,ni+1
Z + 1, . . .�,t�

− ��ni
X0�ni

Y0�ni
Z1�ni+1

X 0�ni+1
Y 1�ni+1

Z 0

+ �ni
X0�ni

Y1�ni
Z0�ni+1

X 0�ni+1
Y 0�ni+1

Z 1�P��ni
X�,�ni

Y�,�ni
Z�,t�� .

�B1�

The first and second terms in the above expression represent
the following reaction steps,

The terms that will arise from the second reaction of Eq. �1�
are

R2 = k2
MC��ni−1

X 1�ni−1
Y 0�ni−1

Z 0�ni
X1�ni

Y0�ni
Z0�ni+1

X 0�ni+1
Y 1�ni+1

Z 0P

���. . . ,ni
X − 1, . . .�,�ni

Y�,�. . . ,ni
Z + 1, . . .�,t�

− �ni−1
X 1�ni−1

Y 0�ni−1
Z 0�ni

X0�ni
Y0�ni

Z1�ni+1
X 0�ni+1

Y 1�ni+1
Z 0P

���ni
X�,�ni

Y�,�ni
Z�,t�

+ �5 � 2 similar terms for steps �iv� – �viii��� .

�B2�

The terms contributing to the above expression originate
from the following processes:

TABLE I. Values of the measured parameters in in vitro experiments.

Parameters
p1

��m2 s−1 molecules−1�
p−1

�s−1�
p1f

�s−1�
p2

��m2 s−1 molecules−1�
p−2

�s−1�
p3

��m2 s−1 molecules−1�
p−3

�s−1�
p3f

�s−1�

Values 0.0658a 1.0a 0.0005a 0.1035a 0.40 0.047a 0.1a 0.038b

aReference 14.
bReference 13.
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The decay of the Y particle arising from the third reaction in Eq. �1� is represented by the following terms:

R3 = �
i=1

N

k3
MC��ni

X0�ni
Y0�ni

Z0P��. . . ,ni
X, . . .�,�. . . ,ni

Y + 1, . . .�,�. . . ,ni
Z, . . .�,t� − �ni

X0�ni
Y1�ni

Z0P��ni
X�,�ni

Y�,�ni
Z�,t�� . �B3�

The above process corresponds to

The diffusion moves will introduce the following terms:

DMC��ni
X0�ni

Y0�ni
Z0�ni+1

X 1�ni
Y0�ni

Z0�P��. . . ,ni
X + 1,ni+1

X − 1, . . .�,�ni
Y�,�ni

Z�,t�� − P��ni
X�,�ni

Y�,�ni
Z�,t�

+ similar terms for diffusion of Y and Z particles� . �B4�

The above terms correspond to the particle hops depicted below,

The master equation can be cast in a second quantized form,

���
 /�t=−H� ��
, where ��
=��ni
X��ni

Y��ni
Z�P��ni

X� , �ni
Y� , �ni

Z� , t��
�ni�
, and the Hamiltonian operator Ĥ, is a function of the
bosonic creation and annihilation operators �āi

X ,ai
X�, �āi

Y ,ai
Y�,

and �āi
Z ,ai

Z� for the X, Y, and Z particles. An action func-
tional S, can be constructed from the Hamiltonian in terms of
the coherent states, ��̂i

X ,�i
X�, ��̂i

Y ,�i
Y�, and ��̂i

Z ,�i
Z�. The

process of constructing the action functional is standard and
can be found in several references.28,33

Next we take the continuum limit, by performing the
following operations:

�i�t� → l0��x,t�; �̂i�t� → �̂�x,t�; �
i

→l0
−1� dx;

�i�t� → l0��x,t� + l0�x��x,t� + l0
2/2�x

2��x,t�

+ higher order terms,

�̂i�t� → l0�̂�x,t� + l0�x�̂�x,t� + l0
2/2�x

2�̂�x,t�

+ higher order terms,

where l0 is the lattice spacing. This can be easily generalized

to d dimensions where we get the following action:

S =� ddx�
0

t

dt��̂a�t�
a − DMCl0

2�̂a�2�ae−2v0�̂a�a

+ 2k1
MCdv0��̂Z�Z − �̂X�Z���̂Y�Y�e−2v0�̂a�a

+ 6k2
MCdv0

2��̂Z�Z − �̂X�Z���̂Y�Y���̂X�X�e−3v0�̂a�a

+ k3
MC��̂Y − 1��Ye−v0�̂a�a

� . �B5�

In the above expression v0= l0
d, and we have used the sum-

mation convention, ÂaAa= ÂXAX+ ÂYAY + ÂZAZ. The expo-
nential terms in the action arise because of the hardcore re-
pulsion between the particles. We expand such terms to
linear order as e−�0�̂a�a

�1−�0�̂a�a, since the higher order
terms in the expansion gives rise to dimensionally irrelevant
contributions �with critical dimensions dc�1�. Dimensional
analysis indeed reveals that various nonlinear terms have
critical dimension of dc=2, or dc�1. We find that all the
terms proportional to k2 have dc�1. The mean-field equa-
tions can be derived by extremizing the action with respect
to �̂i

X, �i
X, �̂i

Y, �i
Y, and �̂i

Z, �i
Z. Derivatives of the action with
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respect to �̂a �a= �X ,Y ,Z�� are zero for �̂a=1. The remain-
ing equations in �a are given by

��X

�t
= −

�H

��̂X
= �DMCl0

2�2�X + 2k1
MCdv0�Z�Y�e−2v0�

a
�a

+ 6k2
MCdv0

2�X�Z�Ye−3v0�
a

�a
, �B6�

��Z

�t
= −

�H

��̂Z
= �DMCl0

2�2�Z − 2k1
MCdv0�Z�Y�e−2v0�

a
�a

− 6k2
MCdv0

2�X�Z�Ye−3v0�
a

�a
, �B7�

��Y

�t
= −

�H

��̂Y
= DMCl0

2�2�Ye−2v0�
a

�a
− k3

MC�Ye−v0�
a

�a
.

�B8�

Although, the fields �a are not particle densities, one can
relate them to the actual densities by the transformations
�a=�ae−�̂a

and �̂a=e�̂a
. In the mean-field approximation,

�̂a=0 and �a=�a. Therefore, we get the following reaction
diffusion equations for the density fields:

��X

�t
= �DMCl0

2�2�X + 2k1
MCdv0�Z�Y� + 6k2

MCdv0
2�X�Z�Y

− �DMCl0
2�2�X + 2k1

MCdv0�Z�Y��2�0�
a

�a�a�
+ O���a�4� , �B9�

��Z

�t
= �DMCl0

2�2�Z − 2k1
MCv0�Z�Y� − 6k2

MCdv0
2�X�Z�Y

− �DMCl0
2�2�Z − 2k1

MCdv0�Z�Y��2�0�
a

�a�a�
+ O���a�4� , �B10�

��Y

�t
= DMCl0

2�2�Y − k3
MC�Y

− �DMCl0
2�2�Y − k3

MC�Y�2�0�
a

�a�a. �B11�

The last and the higher order terms arise in the equations
because of the site restriction constraints.

1. Naive scaling analysis

Scaling dimensions of the parameters in the above action
are as follows: The fields scale as, ��a�=L−d ; ��̂a�=L0;
where L is a length scale, therefore, the rate constants scale
as �k1

MCv0�=Ld−2 ; �k2
MCv0

2�=Ld−1 ; �k3
MC�=L−z ; �DMC�=L−z,

with z=2. As from the naive scaling of the rate constants, the
critical dimension �dc� for the positive feedback term is
dc=1 and that for the production of X particles by the first
reaction in Eq. �1� is dc=2. By expanding the exponentials in
the action one can see that terms higher than the second
order give rise to irrelevant terms. Therefore, we can expect
that when diffusion is important, the mean-field dynamics for

the density fields will hold for the positive feedback, and
production of X species, for dimensions d	1, and d	2,
respectively.

However, the fluctuations in the interfacial kinetics can
still be relevant in dimensions higher than the critical dimen-
sions. This seems to be the case for our system, where in
d=2, the interactions originating from the positive feedback
gives rise to rough interfaces.

APPENDIX C: CONNECTION BETWEEN THE MC
AND THE PHYSICAL PARAMETERS

Comparing the reaction diffusion equations that would
correspond to Eq. �1� with Eqs. �B9�–�B11� shows,
k1=2k1

MCdl0
d, k2=6k2

MCdl0
2d, k2=k3

MC, and D=DMCl0
2.

The length and time scales in the simulation are chosen
by setting l0=1, and DMC=10, in the simulation to a
length scale of 0.1 �m and a diffusion constant of
D=0.1 �m2 /s. With this choice k1

MC=0.0001 and k2
MC=10

correspond to k1=4.0�10−5 �m2 s−1 /molecules and
k2=12.0�10−3 �m4 s−1 /molecules2.34

1 J. E. Ferrell, Curr. Opin. Cell Biol. 14, 140 �2002�.
2 A. Becskei, B. Seraphin, and L. Serrano, EMBO J. 20, 2528 �2001�; M.
Freeman, Nature �London� 408, 313 �2000�; M. Reth and T. Brummer,
Nat. Rev. Immun. 4, 269 �2004�.

3 M. N. Artyomov, J. Das, M. Kardar, and A. K. Chakraborty, Proc. Natl.
Acad. Sci. U.S.A. 104, 18958 �2007�.

4 J. J. Tyson, K. C. Chen, and B. Novak, Curr. Opin. Cell Biol. 15, 221
�2003�.

5 N. M. Shnerb, Y. Louzoun, E. Bettelheim, and S. Solomon, Proc. Natl.
Acad. Sci. U.S.A. 97, 10322 �2000�.

6 Y. Togashi and K. Kaneko, Phys. Rev. E 70, 020901 �2004�.
7 D. Panja, Phys. Rep., Phys. Lett. 393, 87 �2004�.
8 A. L. Lin, B. A. Mann, G. Torres-Oviedo, B. Lincoln, J. Kas, and H. L.
Swinney, Biophys. J. 87, 75 �2004�.

9 H. Meinhard and A. Gierer, J. Cell Sci. 15, 321 �1974�.
10 D. Fange and J. Elf, PLOS Comput. Biol. 2, e80 �2006�; S. J. Altschuler,

S. B. Angenent, Y. Wang, and L. F. Wu, Nature �London� 454, 886
�2008�; F. Castiglione, M. Bernaschi, S. Succi, R. Heinrich, and M. W.
Kirschner, Phys. Rev. E 66, 031905 �2002�.

11 O. Brandman and T. Meyer, Science 322, 390 �2008�.
12 Y. Ohsugi, K. Saito, M. Tamura, and M. Kinjo, Biophys. J. 91, 3456

�2006�.
13 T. S. Freedman, H. Sondermann, G. D. Friedland, T. Kortemme, D.

Bar-Sagi, S. Marqusee, and J. Kuriyan, Proc. Natl. Acad. Sci. U.S.A.
103, 16692 �2006�.

14 H. Sondermann, S. M. Soisson, S. Boykevisch, S. S. Yang, D. Bar-Sagi,
and J. Kuriyan, Cell 119, 393 �2004�.

15 J. Das, M. Ho, J. Zikherman, C. Govern, Y. Ming, A. Weiss, A. K.
Chakraborty, and J. Roose, Cell 136, 337 �2009�.

16 P. H. M. Lommerse, K. Vastenhoud, N. J. Pirinen, A. I. Magee, H. P.
Spaink, and T. Schmidt, Biophys. J. 91, 1090 �2006�; H. Murakoshi, R.
Iino, T. Kobayashi, T. Fujiwara, C. Ohshima, A. Yoshimura, and A.
Kusumi, Proc. Natl. Acad. Sci. U.S.A. 101, 7317 �2004�.

17 A. C. Pan, T. J. Rappl, D. Chandler, and N. P. Balsara, J. Phys. Chem. B
110, 3692 �2006�.

18 N. G. v. Kampen, Stochastic Processes in Physics and Chemistry �North-
Holland, Amsterdam, 1992�.

19 A. C. Pan and D. Chandler, J. Phys. Chem. B 108, 19681 �2004�.
20 P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Annu. Rev.

Phys. Chem. 53, 291 �2002�; P. G. Bolhuis, C. Dellago, and D. Chandler,
Proc. Natl. Acad. Sci. U.S.A. 97, 5877 �2000�.

21 R. J. Allen, P. B. Warren, and P. R. ten Wolde, Phys. Rev. Lett. 94,
018104 �2005�; M. J. Morelli, S. Tanase-Nicola, R. J. Allen, and P. R. ten
Wolde, Biophys. J. 94, 3413 �2008�.

22 G. L. Oppo and R. Kapral, Phys. Rev. A 36, 5820 �1987�.
23 M. V. Velikanov and R. Kapral, J. Chem. Phys. 110, 109 �1999�.
24 E. Brunet and B. Derrida, J. Stat. Phys. 103, 269 �2001�.

245102-10 Das, Kardar, and Chakraborty J. Chem. Phys. 130, 245102 �2009�

http://dx.doi.org/10.1016/S0955-0674(02)00314-9
http://dx.doi.org/10.1093/emboj/20.10.2528
http://dx.doi.org/10.1038/35042500
http://dx.doi.org/10.1038/nri1335
http://dx.doi.org/10.1073/pnas.0706110104
http://dx.doi.org/10.1073/pnas.0706110104
http://dx.doi.org/10.1016/S0955-0674(03)00017-6
http://dx.doi.org/10.1073/pnas.180263697
http://dx.doi.org/10.1073/pnas.180263697
http://dx.doi.org/10.1103/PhysRevE.70.020901
http://dx.doi.org/10.1529/biophysj.103.034041
http://dx.doi.org/10.1371/journal.pcbi.0020080
http://dx.doi.org/10.1038/nature07119
http://dx.doi.org/10.1103/PhysRevE.66.031905
http://dx.doi.org/10.1126/science.1160617
http://dx.doi.org/10.1529/biophysj.105.074625
http://dx.doi.org/10.1073/pnas.0608127103
http://dx.doi.org/10.1016/j.cell.2004.10.005
http://dx.doi.org/10.1016/j.cell.2008.11.051
http://dx.doi.org/10.1529/biophysj.105.079053
http://dx.doi.org/10.1073/pnas.0401354101
http://dx.doi.org/10.1021/jp055239m
http://dx.doi.org/10.1021/jp0471249
http://dx.doi.org/10.1146/annurev.physchem.53.082301.113146
http://dx.doi.org/10.1146/annurev.physchem.53.082301.113146
http://dx.doi.org/10.1073/pnas.100127697
http://dx.doi.org/10.1103/PhysRevLett.94.018104
http://dx.doi.org/10.1529/biophysj.107.116699
http://dx.doi.org/10.1103/PhysRevA.36.5820
http://dx.doi.org/10.1063/1.478088
http://dx.doi.org/10.1023/A:1004875804376


25 J. Mai, I. M. Sokolov, and A. Blumen, Phys. Rev. E 62, 141 �2000�.
26 G. I. Bell, Science 200, 618 �1978�.
27 J. Keizer and M. Medinanoyola, Physica A 115, 301 �1982�; B. U.

Felderhof and R. B. Jones, J. Chem. Phys. 103, 10201 �1995�.
28 J. L. Cardy and U. C. Tauber, J. Stat. Phys. 90, 1 �1998�.
29 C. Escudero, Phys. Rev. E 70, 041102 �2004�.
30 M. Kardar, Statistical Physics of Fields �Cambridge University Press,

New York, 2007�; M. Kardar, Statistical Physics of Particles �Cambridge
University Press, New York, 2007�.

31 M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett. 56, 889 �1986�.
32 J. D. Murray, Mathematical Biology, 2nd ed. �Springer-Verlag, Berlin,

1993�.
33 F. van Wijland, Phys. Rev. E 63, 022101 �2001�.
34 See EPAPS Document No. E-JCPSA6-130-065923 for the effect of non-

zero k3 on domain growth and variation of the critical nucleus size on
concentrations of Y and Z particles. For more information on EPAPS, see
http://www.aip.org/pubservs/epaps.html.

245102-11 Positive feedback induces spatial clustering J. Chem. Phys. 130, 245102 �2009�

http://dx.doi.org/10.1103/PhysRevE.62.141
http://dx.doi.org/10.1126/science.347575
http://dx.doi.org/10.1016/0378-4371(82)90027-9
http://dx.doi.org/10.1063/1.469923
http://dx.doi.org/10.1023/A:1023233431588
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1103/PhysRevE.63.022101

