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Abstract
Flat mapping based cortical surface registration constrained by manually traced sulcal curves has
been widely used for inter subject comparisons of neuroanatomical data. Even for an experienced
neuroanatomist, manual sulcal tracing can be quite time consuming, with the cost increasing with
the number of sulcal curves used for registration. We present a method for estimation of an optimal
subset of size NC from N possible candidate sulcal curves that minimizes a mean squared error metric
over all combinations of NC curves. The resulting procedure allows us to estimate a subset with a
reduced number of curves to be traced as part of the registration procedure leading to optimal use of
manual labeling effort for registration. To minimize the error metric we analyze the correlation
structure of the errors in the sulcal curves by modeling them as a multivariate Gaussian distribution.
For a given subset of sulci used as constraints in surface registration, the proposed model estimates
registration error based on the correlation structure of the sulcal errors. The optimal subset of
constraint curves consists of the NC sulci that jointly minimize the estimated error variance for the
subset of unconstrained curves conditioned on the NC constraint curves. The optimal subsets of sulci
are presented and the estimated and actual registration errors for these subsets are computed.
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1 Introduction
Registration of surface models of the cerebral cortex has important applications in inter-subject
studies of neuroanatomical data for mapping and analyzing progression of disorders, such as
Alzheimer's disease (Thompson et al., 2001b) and studying growth patterns in developing
human brains (Thompson et al., 2000; Gogtay et al., 2004; O'Donnell et al., 2005a; Goghari
et al., 2007). Investigators have studied several anatomical and functional aspects of the human
brain such as genetic influences (Thompson et al., 2002) and the influence of medication and
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drugs of abuse on the structure and function of the brain (Nahas and Burks, 1997; Changeux,
1998). Surface based registration techniques have been applied in several studies including
explorations of the brain during developmental stages (Blanton et al., 2001; Sowell et al.,
2002) in subjects with schizophrenia (Narr et al., 2001), and in relationship to handedness and
gender (Luders et al., 2003). There are two main categories of methods that align the cortex
from a subject to an atlas: manual landmark based methods (Joshi et al., 2007b; Thompson et
al., 2002) and automatic methods based on alignment of geometric features (Wang et al.,
2005; Besl and McKay, 1992; Fischl et al., 1998; Goebel et al., 2006) or surface indices (Tosun
et al., 2005). The main advantage of automatic methods is that there is no manual input required
for performing the alignment and hence labor intensive expert delineations of sulcal landmark
curves are not required in large scale studies. However they may be less reliable in the sense
that they do not incorporate higher level knowledge of cortical anatomy. Curvature-based
features do provide information about sulcal/gyral anatomy, which is used in these automatic
methods. However, we use the term ‘higher level knowledge’ of sulcal anatomy here to describe
the knowledge that a trained human observer has of how cortical patterns appear in typical and
atypical brains, and which cortical areas should correspond to each other. The experienced
human observer should be able to guide the cortical registration correctly, even if the resulting
correspondence leads to suboptimal curvature registration, something that existing automatic
methods cannot do. While automatic methods have been successfully applied in a wide range
of studies (Goebel et al., 2006; O'Donnell et al., 2005b; Kippenhan et al., 2005; Hoffman et
al., 2004; Sozou et al., 1997; Caunce and Taylor, 1998; Cootes and Taylor, 2004), in a recent
study we have found that alignment based on curvature can lead to misalignment of sulci
(Pantazis et al., 2009).

Consequently, current automated approaches may not be satisfactory in studies where the
investigator requires that specific sulci are accurately aligned. Data from subjects with cortical
lesions or elderly subjects with pronounced cerebral atrophy may be handled better by manual
delineation. It is likely that landmarks defined by experts, who have been trained to make
consistent decisions when faced with ambiguities that frequently arise in the analysis of cortical
geometry, will produce improved registration results in these cases.

The objective of landmark based manual registration methods is to minimize the misalignment
error in sulcal curves. Their disadvantage is that the individual tracers need to be trained.
Additionally, there is inter-rater variability which introduces some uncertainty into the
procedure. This source of error can be minimized, to some degree, by training, the definition
of a standard delineation protocol (Pantazis et al., 2009; Sowell et al., 2003; Van Essen,
2005) and use of a computer-assisted curve delineation tool (Shattuck et al., 2009). There is
an inherent trade off between the manual effort required for tracing sulcal landmarks and
registration accuracy. Increasing the number of sulcal landmarks achieves more accurate
registration, but it also increases the required manual effort. Consequently, manual procedures
may be prohibitively labor-intensive for large scale studies unless we minimize the number of
sulcal curves required in the manual tracing protocol.

In this paper, we present an algorithm that finds the optimal subset of sulcal landmarks with a
given number of sulci.n ]0̄93 that leads to minimum mean squared error in registration. We
begin with a relatively large set of sulcal curves as candidate landmarks for cortical registration.
Our objective is to select an optimal subset from this set such that, for a given number of curves,
the sulcal registration error is minimized when computed over all sulci. One straightforward
approach is to actually perform registration of the sulcal curves for a set of training images
using all possible subsets and then measure the error in the remaining unconstrained sulcal
curves. The difficulty with this approach is that there is a huge number of combinations
possible. In our case we have 26 candidate curves. Suppose we want to define a protocol that
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uses 10 curves, the number of combinations to be tested is  million. If the error is
to be estimated by performing pairwise registrations of 12 brains (24 hemispheres), i.e.

 registrations, then the total number of registrations required is

 million.

Instead of performing actual brain registrations with multiple subsets of constrained sulci, we
perform only pair-wise sulcally unconstrained registrations using the elastic energy
minimization procedure described in (Joshi et al., 2007b,a) and summarized in Sec. 2.1. The
resulting maps produce reasonable correspondences so that we can model the measured sulcal
registration errors using a multivariate Gaussian distribution. Using conditional probabilities,
we then analytically predict the registration error that would result if we constrained a subset
of the curves to match using hand labeled sulci.

These errors can be rapidly computed using conditional covariances, and as we show below,
lead to reasonably accurate estimates of the true errors that result when constraining the curves.
For a fixed number of constrained curves, we estimate the error for all possible subsets of that
size and select the one with the smallest predicted error. We investigate the prediction accuracy
of our model by doing actual registrations using the optimal sulcal constraint set. Our algorithm
reveals the trade-off between the number of curves and registration accuracy. An appropriate
optimal subset of sulci can be chosen for a particular study based on the desired registration
accuracy. Once such a subset is chosen, only the sulci from that subset need to be manually
labeled on the brains used for a neuroanatomical study.

Our approach has some similarity with the robust point matching method (Rangarajan et al.,
1997; Chui and Rangarajan, 2003) which is a non-rigid registration algorithm that is capable
of estimating complex non-rigid transformations as well as correspondences between two sets
of points using soft assignments. In their approach, two sets of unlabeled landmarks are
identified but the point correspondence between them is not known. This correspondence is
then determined using a deterministic annealing algorithm. In contrast to their work, the
emphasis of our paper is on finding an optimal subset of labeled landmarks, using the landmark
correlation structure computed using population statistics. While this approach can in principle
can be applied in conjunction with any landmark matching method, we restrict our discussion
to the specific problem of sulcal landmark based cortical surface registration.

2 Materials and Methods
To coregister cortical surfaces we use the flat mapping method described in (Joshi et al.,
2007b) in which each hemisphere is mapped to the unit square, however the framework below
is readily adaptable to methods using circular or spherical maps of the cortical surface. Our
flat mapping approach induces a 2D parameterization that defines a point wise correspondence
between pairs of cortical surfaces such that the elastic energy of the two flat maps is minimized
subject to the constraint that homologous sulcal landmarks on the two surfaces are aligned with
respect to the 2D coordinate system.

Because of the similarity in sulcal anatomy across subjects, flat maps of cortical surfaces
computed independently for each subject will in general exhibit correlation in the locations of
sulci in the flat space, even if no constraints are placed on the locations to which individual
sulci are mapped. In our case, we minimize the elastic energy to ensure a smooth deformation
to the flat space which in turn produces maps that exhibit correlations in the variations in sulcal
locations when computed across subjects. Rather than work directly in the flat space, we instead

Joshi et al. Page 3

Neuroimage. Author manuscript; available in PMC 2011 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



use this parameterization to define a correspondence between points on the cortical surface so
that we can explore variations in the locations with respect to the native 3D coordinates of each
pair of brains that we coregister. Correlations among sulcal locations in the flat space will also
map to correlations in the 3D Euclidean space. We take advantage of this correlation by using
a multivariate Gaussian distribution to model the covariation of the errors or distances between
homologous pairs of points sampled uniformly along each sulcal curve. These errors are
defined as the Euclidean distance between corresponding points after mapping from the subject
to target brain, or vice versa, using sulcally unconstrained flat mapping of each cortex to define
the correspondence. We then approximate the effect of constraining a specific subset of sulci
to align by using the conditional probabilities computed from the error covariance of the
sulcally unconstrained registration results.

2.1 Sulcal Curves, Flat Mapping and Alignment
We used the BrainSuite software (Shattuck and Leahy, 2002; Shattuck et al., 2009) to
interactively trace the N = 26 candidate sulci depicted in Fig. 1 on both hemispheres of each
of the brains used in this study. In BrainSuite, the landmark tracing module uses Dikstra's
algorithm to guide the selection of sulcal paths by computing curvature-weighted minimum
path lengths between seed points interactively selected along the sulcus by the user. This results
in reduced inter-rater variability as reported in Shattuck et al. (2009).

The surface based registration method we used here performs simultaneous parameterization
and registration of the manually traced sulcal landmarks. The parameter space is the unit square
which can be viewed as a flat mapping of each cortical hemisphere. In order to generate such
a flat map with prealigned sulcal curves, we model the cortical surface as an elastic sheet and
solve the associated linear elastic equilibrium equation subject to a sulcal matching constraint
using the finite element method. Let φ = [φ1, φ2] be the two coordinates assigned to every point
on a given cortical surface such that the coordinates φ satisfy the linear elastic equilibrium
equation with Dirichlet boundary conditions on the boundary of each cortical hemisphere,
represented by the corpus callosum. We match the most anterior and posterior points of the
corpus callosum by constraining them to lie on two diagonally opposite corners of the unit
square. The elastic strain energy E(φ) is given by:

(1)

where Dφ is the covariant derivative of the coordinate vector field φ. The integration is
computed over the entire cortical surface, H, of each brain hemisphere. Let φB1 and φB2 denote
the 2D coordinates to be assigned to hemispherical surfaces of two brains, B1 and B2. We then
define the Lagrangian cost function C(φB1, φB2) as

(2)

where φB1(xk) and φB2(yk) denote the coordinates assigned to the sulcal landmarks xk ∈ B1,
yk ∈ B2 and σ2 is a Lagrange multiplier. The landmarks correspond to uniformly sampled points
along each sulcal curve. We refer the reader to (Joshi et al., 2007b,a) for implementation details.

When σ = 0 the constraints in Eq. 1 are ignored and we obtain a sulcally unconstrained
registration. Note that even in this case, the closed curve through the corpus callosum, which
bisects the brain into two hemispheres, is still mapped to the boundary of the unit square. As
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a result of this, and the mapping of the maximally anterior and posterior points on the callosal
curve to opposite corners of the unit square, the sulcally unconstrained flat mappings still
produce a degree of similarity in their mappings of the 26 sulcal curves.

We use these sulcally unconstrained mappings (σ = 0) to predict the errors that would result
when constraining a subset of sulci to map to the same locations in the flat space. To do this
we adopt a Gaussian model for errors in the registration of corresponding sulci and use
conditional densities to model the effect of constraining a subset of these sulci. This model is
described in Sec. 2.2. To test the accuracy of our predictions, we perform registrations with
σ = 3 with the set C in Eq. 2 representing the subset of the 26 sulcal curves that are chosen for
registration to constrain the mapping. The value for σ is chosen by studying the tradeoff
between sulcal matching accuracy and overlaps/singularities in the flat map as explained in
Joshi et al. (2007a). In that study, we found that lower values of sigma result in less accurate
sulcal alignment and higher values cause singularities in the flat maps. σ = 3 was found to
achieve optimal tradeoff between the sulcal matching accuracy and overlap in the flat maps.
This method, for both σ = 0 and σ = 3, results in a bijective map of each brain hemisphere to
the unit square such that the constrained sulci match in the flat space (Fig. 2). The point
correspondence from one cortical surface hemisphere to the other is then obtained using the
coordinate system of the common mapping to the unit square.

2.2 Registration Error
The point correspondence defined by registration allows us to map a point set from one brain
to another brain. For every pair of registered hemispheres, we map the traced curves of of one
brain, which we refer to as the subject, to the other, which we refer as the target. Note that the
cost function in Eq. 2 is symmetric with respect to the two brains so that the designation of
subject and target here are arbitrary. The registration is either sulcally unconstrained for error
prediction, or constrained for validation. We parameterize each sulcal curve over [0, 1] and
then compute S equidistant points on each sulcus.

The point to point errors en(s) are treated as S different samples of the error en, as illustrated
in Fig. 4, where en(s) is the registration error in 3D coordinates for location s on the nth curve.
Although the mapping function in Eq. 2 is symmetric with respect to the subject and target
hemispheres that are coregistered, the mapping of sulci from subject to target will produce
different errors than their mapping from target to subject. For symmetry, we repeat the
procedure by interchanging subject and target brains.

The alignment error in a sulcus causes a registration error in the surrounding cortical area.
Therefore, isolated sulcal curves (sulci that are great distance from other sulci) may have more
impact on registration, since their misregistration will affect large cortical regions. To account
for this effect, we parcellate the cortex into N = 26 regions by assigning each cortical point to
the geodesically closest sulcal curve (Fig 3). The parcellation was performed for all M brain

hemispheres. We then defined a weight function for the nth sulcus to be ,
where  is the surface area of the nth parcellated region in the ith brain, and Ai is the total
surface area of the ith hemisphere. Weights for each curve are then determined by averaging
their respective areas over all subjects.

The final surface registration error metric is then defined as

(3)
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where  and  represent the x, y, and z components of en, and  is the expectation
operator. Below, we rewrite the error ER in (3) using the substitution:

(4)

in order to simplify subsequent analysis.

2.3 Probabilistic Model of the Sulcal Errors

We model the sulcal errors  as jointly Gaussian random variables. We note that that
the sulcal errors are zero mean. This is because subject and targets are chosen arbitrarily and
they are also interchanged in the population. The distributions of sulcal errors are assumed to
be symmetric around zero since in one sample we have a subject and a target, and in another
they are interchanged to produce approximately the opposite displacements.

We describe computations for the x component of the error; similar computations are performed

for y and z. The distribution model of  is assumed to be Gaussian:

(5)

where Σx denotes the covariance matrix of Ex. Let  denote the sample error for the kth pair
of registered hemispheres, and P denote the number of such pairs. We compute the covariance
from the set of errors as:

(6)

Therefore, the x component of the surface registration error in Eq. 3 can be expressed as:

(7)

Similarly, the total registration error is

We now want to predict the registration error when some of the sulci are explicitly constrained
to register. We partition the curves into two sets: sulci F which are free (unconstrained) and
sulci C which are constrained, so that {1…N} = F ∪ C. The primary assumption in the approach
we describe in this paper is that the registration algorithm is well behaved in the sense that it
does not create unnatural deformations on the unconstrained sulci when a subset of them are
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constrained. In other words, if we constrain some sulci to register, the distribution of the
remaining ones would be the same as if the constrained ones matched simply by chance. Under
this assumption we can compute registration errors for the unconstrained sulci using a
conditional density, with the condition on the constrained sulci having zero error. In other
words we model the registration errors for the unconstrained sulci using a conditional form of
the distribution of the original jointly Gaussian density. The probability density of a jointly
Gaussian vector, conditioned on some of its elements being zero, is also jointly Gaussian.
Therefore, the registration error  after matching the sulci from set C can be obtained using
the conditional expectation:

(8)

where  is the conditional covariance matrix of the error terms corresponding to free sulci.
By rearranging sulci so that free sulci precede the constrained ones, we can partition the
covariance matrix as:

(9)

where  and  are the error covariances for free sulci and constrained sulci respectively,

and  and  are the cross-covariances.

The conditional covariance is given by:

(10)

which is the Schur complement of  in Σx (Mardia et al., 1979). The estimated registration
error  after constraining a subset of sulci is then:

(11)

This formula allows us to estimate the x component of the registration error for a particular
combination of constrained sulci and free sulci. The total constrained registration error is
evaluated by adding the x, y, and z components.

(12)
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We can use this formula to estimate the total registration errors for all  combinations of
sulcal subsets, where Nc is the number of constrained sulci, and choose the subset that
minimizes this error.

We model each of the x, y, and z components of the sulcal errors independently. Ideally, the
correlation among the x, y and z components of the errors in the sulcal locations should be
taken into consideration. We make the simplifying assumption that this correlation is zero
resulting in a factor 3 reduction in the size of the covariance matrices that need to be inverted
in the estimation step (Eq. 10). This makes our model more stable because we have to estimate
fewer parameters, which we compute from a relatively small population of 12 brains. When
we began this work, we tested both approaches, and found that the assumption of independence
between x, y, and z components produced more consistent and stable results.

The registration error is defined as a weighted sum of sulcal errors (Eq. 3). Whenever a sulcus
is missing, we assign zero sulcal error since meaningful point correspondence does not exist
in that case. Also, when a sulcus is constrained to align, we assign zero sulcal error. Therefore
the sum in Eq. 3 is effectively computed over the entire set of sulci. Consequentially, the
registration error effectively quantifies alignment of the entire cortex, and does not depend on
the number of measurements and constrained/free sulci.

3 Results
The sulci of 24 brains (48 hemispheres), were traced. Our tracings, consisting of 26 candidate
sulci per hemisphere (Fig. 1), were verified and corrected whenever necessary by a
neuroanatomist. We divided the brains into two subsets, a training set of 12 brains (24
hemispheres) and a testing set of 12 brains (24 hemispheres), in order to check:

• Accuracy of the estimator: whether the errors predicted by our method are close to
the actual errors after registration.

• Generalizability of the results to other datasets: if we chose a different dataset (testing
set) of brains and sulci, whether the registration errors remain similar to those for the
training dataset.

We applied our algorithm on the 12 training brains as described in Sec. 3.1, to find the optimal
subsets of sulci that minimize the registration error. To test if the predicted errors generalize
to other datasets, in Sec. 3.2 we used the 12 testing brains to calculate the actual registration
errors for all optimal subsets identified in the training brains.

3.1 Optimal sulcal set prediction
We performed sulcally unconstrained mappings for all the 12 brains from the training set by
directly minimizing Eq. 1 for each hemisphere separately, instead of doing pairwise
registrations using Eq. 2 with σ = 0, since the optimization in Eq. 2 becomes separable in the
sulcally unconstrained case σ = 0. Using the flat maps of the 24 hemispheres we computed
samples of sulcal errors , and , with S = 10 equidistant points for each sulcus, for all

possible  pairwise combinations of hemispheres as described in Sec. 2.2. The
resulting sample covariance matrices for these errors are shown in Fig. 5. Non-zero off-
diagonal elements indicate that the errors are correlated among sulci, and thus constraining
them ill affect the registration error for the others. The correlation structure of the sulcal errors
depends on the sulcal locations in the flat maps. Here we use square maps as discussed in Sec.
2.2, but we expect that our results should be robust with respect to the mapping method.
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By applying Eq. 12 to all subsets of a given number of constrained curves, we identified the
subset that minimizes the registration error. The optimal subsets of curves is given in Fig. 6
for all numbers of constrained sulci from 1 to 26. The estimates of the registration error obtained
according to Eq. 12 are listed in the column of Fig. 6 titled ‘Est Error’. We also calculated the
sulcal registration errors for each of these optimal subsets by doing actual registration (Fig. 6,
last two columns for the training and testing set of brains). In order to perform actual
registration, we chose σ = 3 as discussed in (Joshi et al., 2007a) for the constrained subset of
sulci. Comparing estimated and actual registration errors, in Fig. 6, we see that the predicted
values are close to those obtained when actually constraining the optimal subsets of curves.

Fig. 8 shows an example of the empirical distribution of the x-component of the registration
error  (Eq. 4) for the superior frontal sulcus. The Q-Q plot (Fig. 8b) indicates small deviation
from normality. A Lilliefors test rejected the null hypothesis of normality for the errors

, and  for many sulci, and therefore our Gaussianity assumption is not fully satisfied.
This is not surprising, since for example errors are naturally bounded by the size of the brains
and therefore some deviation from normality was anticipated. However, the distributions were
unimodal and the predicted errors of our model are in accordance with the actual ones (Fig.
6), indicating that our distributional assumptions are reasonable.

3.2 Generalizability
In order to check the generalizability of the results, we used the 12 brains from the testing set.
We performed pairwise registrations of the testing brains constraining the optimal subsets of
sulci to be the same as the ones identified from the training set (for all subsets from 1 to 26
sulci). These optimal sets are given in Fig. 6, and the testing set errors are given in the last
column of Fig. 6, and also in Fig. 9. The average registration errors in this case were again
close to the predicted errors as shown in Fig. 6 and Fig. 9. To further test our method, we
subjectively selected a set of 6 curves to be constrained, namely CS, SFS, STS, IPS, CingS
and CalcS. This selection was based primarily on the length of sulci and second on a reasonable
spread throughout the cortex. The algorithm predicted an error of 194.36mm2 and the actual
error was 200.03mm2. The optimal set (SFS, STS, OTS, postCS, IPS, and CalcS) found by our
method had predicted an error of 167.19mm2 and the actual error was 164.77mm2, which is
better than our subjectively selected subset. We anticipate that in general the curves selected
by our method should be superior to those selected on an intuitive basis, since various
confounding effects due to elastic flat mapping, correlations in errors as well as population
variability are accounted for in the algorithm.

4 Discussion and Conclusion
We have described a general procedure for selecting subsets of sulcal landmarks for use in
constrained cortical registration. The procedure can be used to reduce the time required for
manual labeling of sulci in group studies of cortical anatomy and function.

The optimal subsets of curves, shown in Fig. 6, provide an idea of the criteria used by the
method to select curves. First notice that the central sulcus is not selected for protocols with a
small number of curves (less than 16). This is probably because sulci that are most stable and
consistent among brains, such as the central sulcus, may tend to align well even without
explicitly tracing them. Therefore, they may not improve the registration error sufficiently to
justify their inclusion in the tracing protocol. Furthermore, short sulci neighboring other
candidate curves are not preferred by the algorithm, because they do not sufficiently add
constraints to the registration. For example, the paracentral sulcus which is close to the
cingulate sulcus, and the subparietal sulcus which is close to the cingulate and the parieto-
occipital sulcus are not preferred by the method.
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On the other hand, one of the most important sulci for surface based registration seems to be
the superior temporal sulcus with its upper branch. This is possibly for two reasons: (1) it is
one of the longest sulci and hence aligning it will help register a large region of the brain; (2)
in cortical flat maps where the corpus callosum is mapped on the edges of a unit square, such
as in our method in Fig. 2, the temporal lobe is far from the edge of the unit square, which
always maps to the corpus callosum by construction. Therefore when no sulcal constraint are
placed in the temporal lobe, we tend to see large registration error. Consequentially, it is
important to align at least one sulcus in temporal lobe accurately, and hence it is selected by
our method. The other important sulcus is the Calcarine, which is not as long as the superior
temporal sulcus, but is highly variable among subjects.

Our mapping method biases sulcal selection to the extent that corpus callosum is already
aligned when performing the flattening. Since we align the corpus callosum for the mapping,
the registration errors tend to be smaller in this region, which biases our optimal curve set. This
is not necessarily a disadvantage. Every surface registration method requires some initial
mapping. For example, surface registration in FreeSurfer and BrainVoyager is properly
initialized by 1) volumetric alignment of brain scans to the Talairach space, and then 2) inflation
of surfaces to the unit sphere. Our goal is to define optimal sets of curves for registration; in
this paper we provide the optimal sets of curves when the registration method in (Joshi et al.,
2007b) is used. If another registration method is chosen, it is straightforward to extend our
method to find corresponding optimal sets of curves.

Registration error always remains when only a subset of sulci is used for registration. Whether
this is acceptable or not depends on the particular study being contemplated. For example,
anatomical studies (Thompson et al., 2001b; Sowell et al., 2002; Changeux, 1998; Gogtay et
al., 2004) require high accuracy and might need more sulci, whereas some functional studies,
such as those using low resolution magnetoencephalography data (Pantazis et al., 2005), can
tolerate higher registration error. Fig. 6 can be used as a guideline: based on the registration
accuracy required, a different number of curves may be used.

Our method determines the subset of sulci to be delineated in a registration study based solely
on the registration error. However, some changes in the selected subset can be made based on
other practical considerations, such as convenience in tracing. For instance, identification and
tracing of the central sulcus is always easy and it could be helpful in identifying the surrounding
sulci. Therefore we expect that it would be typically included in a tracing protocol.
Furthermore, for neuroscience studies focusing on particular cortical regions, the registration
error metric defined in Sec. 2.2 can be modified by assigning more weight to the regions of
interest. For example, in language studies interested in activation in the temporal lobe and
Broca's area we can increase the weights wn in Eq. 3 for STS, ITS, SF, abSF, hbSF, IFS. Our
method would then favor the aforementioned sulci and produce different sets of optimal curves
than the ones displayed in Fig. 6.

In this paper, we have used a registration method which constrains the endpoints of the sulci
to match. While allowing sulcal curves to slide as opposed to uniformly sampling them can
lead to slightly better results (Leow et al., 2005), uniform sampling with matching endpoints
has been used in a number of publications and has led to useful and important results. e.g.
(Gogtay et al., 2004; Thompson and Toga, 1996; Thompson et al., 2003; Sowell et al., 2003;
Thompson et al., 2001a, 1997). This approximation makes the analysis tractable as opposed
to letting the sulcal curves slide. The error in the sulcal curves was normalized and weighted
by the area surrounding each curve. Consequently the error does not depend on the length of
the curve but rather the area surrounding the curve.
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Errors and variability in identifying cortical landmarks are a common problem concerning all
landmark based techniques and can affect the registration error. However, they are beyond the
scope of this paper. For this particular study the curves were identified and cross-checked by
an expert neuroanatomist. Inter- and intra-rater variability is typically minimized by
appropriate training and cross checking of traces. A possible extension of our method could
allow modeling of intra/inter-rater variability in identifying sulci, so that sulci with high rater
variability are penalized in the protocol selection process.

Even though we used 2D flat maps, other registration approaches are also possible with our
method, such as spherical registrations used in FreeSurfer and BrainVoyager. Our methodology
readily extents to other landmark based registration methods in which the goal is to select an
optimal subset of landmarks for large scale studies, from a set of candidate landmarks. Finally,
it can possibly be applied to other problems of computer vision such as robotics (Madsen and
Andersen, 1998; Wang and Song, 2009; Greiner and Isukapalli, 1994), terrain matching (Olson,
2000), face recognition (Beumer et al., 2006), etc. for aiding optimal landmark selection.
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Fig. 1.
The complete set of candidate sulcal curves from which we select an optimal subset for
constrained cortical registration
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Fig. 2.
Registration of two cortical surfaces using sulcal matching constraint based on the flat mapping
method
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Fig. 3.
Parcellation of the cortex based on nearest sulcal curve
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Fig. 4.
Unconstrained mapping of the sulcal curves of the subject brain to the target brain using square
flat map as an intermediate common space: (a) subject brain with sulci, (b) target brain with
its sulci and mapped sulci from the subject and (c) sulci mapped to square map.
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Fig. 5.
Sample covariance matrices for the x, y, and z components (in mm2) of the registration error,
represented as color coded images.
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Fig. 6.
Optimal subsets of sulci for cortical registration. Each row gives the indices of the optimal
subset of sulci that minimize the registration error against all other combinations with an equal
number of constrained curves (also see Fig. 1). The three right columns show respectively:
Estimated (est) error for the optimal subset of curves computed from the conditional error
covariance matrices for the training data as defined in Eq. 12; actual registration error (tm)
computed from the coregistered brains from the training data for this set of constraint curves;
and actual registration error (tst) computed from coregistered brains from the test data.
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Fig. 7.
Optimal sulcal sets for 5, 10, and 15 curves.
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Fig. 8.
(a) Empirical distribution of the x-component of the registration error in the superior frontal
sulcus; (b) Q-Q plot of the error against a normal distribution.
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Fig. 9.
Plot of registration errors: Estimated (est) error for the optimal subset of curves computed from
the conditional error covariance matrices for the training data; actual registration error (tm)
computed from the coregistered brains from the training data for this set of constraint curves;
and actual registration error (tst) computed from coregistered brains from the test data.
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Fig. 10.
Top row: subjective selection of 6 curves, with preference on long sulci distant from each other
that are expected to minimize cortical registration error; bottom row: optimal sulcal set with
the 6 curves selected by our method.
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