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Abstract

Xeroderma pigmentosum (XP) is caused by defects in the nucleotide excision repair (NER) pathway. NER removes helix-
distorting DNA lesions, such as UV–induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun
sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously
depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is
a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF
can result not only in XP, but also XPF-ERCC1 (XFE) progeroid syndrome, a disease of accelerated aging. In an attempt
to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation
(XPFR153P) were compared to an XP–causing mutation (XPFR799W) in vitro and in vivo. Recombinant XPF harboring either
mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant
complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly,
differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant
in the cytoplasm. This was confirmed by fluorescent detection of XPFR153P-YFP expressed in Xpf mutant cells. In addition,
microinjection of XPFR153P-ERCC1 into the nucleus of XPF–deficient human cells restored nucleotide excision repair of UV–
induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a
fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in
XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these
patient cells therefore reveals a novel mechanism to potentially regulate a cell’s capacity for DNA repair: by manipulating
nuclear localization of XPF-ERCC1.
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Introduction

Xeroderma pigmentosum (XP) is a rare autosomal recessive

disease characterized by photosensitivity and a greater than a

1000-fold increased risk of skin cancer in sun-exposed areas of

the skin [1]. In approximately 20% of patients, there is also

progressive neurodegeneration leading to loss of coordinated

motion, vision and hearing [2,3]. XP is caused by mutations in

genes that encode proteins required for nucleotide excision

repair (NER) of DNA. Eight complementation groups of XP

have been identified based on fusion studies with XP patient

cells. These complementation groups include XP-A through

XP-G and a variant, XP-V. The severity of XP varies

tremendously, with diagnosis occurring anywhere from infancy

to adulthood [1]. The severity of the disease is determined

largely by which gene is mutated and to what extent the

mutation affects NER.

NER removes helix-distorting lesions in DNA, for example

cyclobutane pyrimidine dimers (CPDs) and pyrimidine pyrimi-

done photoproducts (6–4PPs) caused by the ultraviolet (UV)

component of sunlight [4]. There are two ways by which DNA

damage is recognized in NER. Lesions anywhere in the genome

can be recognized by the complex XPC-RAD23B [5,6]. For some

lesions, this is facilitated by a second complex XPE/DDB2-DDB1

[7]. Alternatively, lesions that occur in the coding strand of DNA,

within transcribed regions, can trigger NER if they stall

progression of RNA polymerase II [8,9]. This requires CSA,

CSB and XAB2 [10–12]. Once the damage is recognized, the
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subsequent steps of damage excision are believed to be uniform.

The basal transcription factor TFIIH is recruited to the site of

helix-distortion to unwind the DNA around the lesion, using two

of its ten subunits, XPB and XPD [8,13]. RPA and XPA bind the

unwound repair intermediate to stabilize it and recruit subsequent

factors. The damaged strand of DNA is then incised by two

structure-specific endonucleases, the heterodimer of XPF-ERCC1

and XPG, which cut 59 and 39 of the lesion, respectively [14–17].

This leads to removal of the lesion as part of a 24–32 base

oligonucleotide. The resultant gap is filled by the replication

machinery including RPA, PCNA, RF-C, DNA polymerase d/e,
and the backbone is sealed by DNA LIGI or LIGIIIa-XRCC3

[18–20].

XPF-ERCC1 is a highly conserved endonuclease that nicks

double-stranded DNA 59 to a junction with single-stranded DNA

[21]. In addition to NER, XPF-ERCC1 is involved in the repair

of DNA interstrand crosslinks (ICL) [22] and double-strand

breaks [23]. XPF and ERCC1 are paralogs thought to have

arisen by gene duplication of the conserved nuclease and helix-

hairpin helix protein-interaction domains [24]. The proteins

interact via their C-terminal helix-hairpin-helix domains and this

interaction is required to stabilize both proteins in vivo [25,26].

XPF contains the nuclease catalytic domain [27], whereas

ERCC1 mediates the interaction with XPA and recruitment to

NER complexes [28,29]. Unlike NER-specific proteins XPA and

XPC, XPF-ERCC1 appears to be essential for human develop-

ment or viability since no patients have yet been identified who

are homozygous for early nonsense or frameshift mutations in

either gene.

XP-A and XP-C are among the most common complementa-

tion groups in XP [30]. XP-C patients have severe skin

abnormalities but generally lack neurological symptoms [31]. In

contrast, XP-A patients show profound neurodegeneration, in

addition to cutaneous features [1]. XP-F patients typically have

very mild cutaneous features of XP, including late onset of skin

cancer, but often have complications due to neurodegeneration as

adults. It was recently discovered that mutations in XPF can lead

to a second disease, XFE progeroid syndrome (short for XPF-

ERCC1), characterized by spontaneous, accelerated aging of

multiple tissues, including the nervous system [32]. Herein, we

attempted to understand the molecular basis for how mutations in

XPF could lead to such diverse outcomes. This led to the surprising

discovery that mutation of XPF promotes mislocalization of XPF-

ERCC1 to the cytoplasm of cells.

Results

Characterization of R153P-XPF-ERCC1 activity in vitro
We first asked if mutations in XPF that cause mild or severe

disease differentially affect the biochemical properties of XPF-

ERCC1. To answer this, we compared the biochemical properties

of XPF-ERCC1 from two patients, XP42RO (a patient with mild

XP, homozygous for a mutation causing an R799W substitution in

XPF [33]) and XP51RO (a patient with XFE progeroid syndrome,

homozygous for a mutation causing an R153P substitution in XPF

[32]) to that of wild type XPF-ERCC1. Recombinant XPFWT-

ERCC1, XPFR153P-ERCC1 and XPFR799W-ERCC1 were puri-

fied from baculovirus-infected Sf9 insect cells using a His6 tag on

ERCC1. We previously reported [27] that our purified prepara-

tions of XPFWT-ERCC1 elute from a gel-filtration column in three

fractions: (1) a minor fraction in the void volume (,45 ml)

containing aggregated, inactive protein; (2) active heterodimeric

XPF-ERCC1 at ,65 ml, which corresponds to a molecular

weight of ,200 kD, as expected, and (3) monomeric ERCC1,

which peaks at ,78 mL, which corresponds to ,50 kD.

Recombinant XPFWT-ERCC1 eluted as expected (Figure 1A).

Both mutant protein complexes eluted with similar profiles that

differed substantially from that of XPFWT-ERCC1. The majority

of the mutant complexes eluted at ,45 mL rather than at 65 ml,

indicating that they were aggregated. The peak at 78 ml,

corresponding to free ERCC1 was identical for both mutant and

WT XPF-ERCC1 preps. These results suggest that the mutations

in XPF that cause both mild and severe disease lead to protein

misfolding that does not interfere with ERCC1 binding, but does

lead to protein aggregation.

We were able to purify a small amount of XPFR153P-ERCC1

and XPFR799W-ERCC1 from the fractions eluting at 65 ml,

indicating that at least some of the mutant proteins are likely to be

properly folded. SDS-PAGE analysis of the complexes after an

additional purification step over a heparin column revealed

dramatically reduced yields of the complexes of XPFR153P-ERCC1

and XPFR799W-ERCC1 compared to XPFWT-ERCC1 (Figure 1B).

Similarly, the amount of XPF protein detectable by immunoblot

in whole cell extracts of human fibroblasts harboring the XPFR153P

and XPFR799W mutations (XP51RO and XP42RO, respectively)

was reduced compared to normal cells (C5RO) (Figure 1C).

The catalytic activity of the purified heterodimers was

investigated by measuring their ability to incise a 32P-end-labeled

stem–loop DNA substrate at the single-strand:double-strand DNA

junction in the presence of 0.4 mM MnCl2 or 2 mM MgCl2 at a

2-fold molar excess of protein over substrate (Figure 1D). With

XPFWT-ERCC1, .80% of the stem-loop substrate was cleaved.

Both XPFR153P-ERCC1 and XPFR799W-ERCC1 also incised the

DNA substrate, demonstrating that both mutant complexes retain

catalytic activity (Figure 1D, lanes 5 & 7). Incision by both mutant

complexes was reduced compared to the WT complex. This may

simply reflect the fact that preparations of mutant heteroduplexes

were less concentrated than XPFWT-ERCC1 (Figure 1B), inevi-

tably leading to differences in the buffering conditions between

incision reactions.

We previously observed that mutant XPF-ERCC1 complexes

tend to be more active in the presence of Mn2+ than Mg2+ since

this metal has less stringent requirements for the proper alignment

of the active site residues [27]. Consistent with this, incision by

XPFR153P-ERCC1 and XPFR799W-ERCC1 was increased ,2-fold

in the presence of Mn2+ compared to Mg2+, whereas the cation

had no effect on incision by XPFWT-ERCC1 (Figure 1D). These

data support the conclusion that even monomeric XPFR153P and

XPFR799W are to some extent misfolded. Notably, there was not a

Author Summary

XPF-ERCC1 is a nuclease that plays a critical role in DNA
repair. Mutations in XPF are linked to xeroderma pigmen-
tosum, characterized by sun sensitivity, high incidence of
skin cancer, and neurodegeneration, or XFE progeroid
syndrome, a disease of accelerated aging. Herein we report
the unexpected finding that mutations in XPF cause
mislocalization of XPF-ERCC1 to the cytoplasm. Recombi-
nant mutant XPF-ERCC1 derived from XP– and XFE–
causing alleles are catalytically active and if delivered to
the nucleus of cells restore DNA repair. This demonstrates
that protein mislocalization contributes to defective DNA
repair and disease arising as a consequence of mutations
in XPF. It also illustrates a novel mechanism of regulating a
cell’s capacity for DNA repair: by manipulating nuclear
localization of XPF-ERCC1 to enhance or inhibit repair and
to prevent cancer or tumor resistance to chemotherapy,
respectively.

Mislocalization of XPF-ERCC1 Causes Disease
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dramatic difference in the enzymatic activity of XPFR153P-ERCC1

and XPFR799W-ERCC1 on stem-loop DNA substrates, indicating

that the biochemical basis for the more severe phenotype

associated with the R153P mutation is unlikely to be simply a loss

of catalytic activity.

Immunolocalization of XPF protein
R153P is situated in a lysine-rich domain of XPF that might be

part of a complex nuclear localization sequence (NLS). Thus we

next asked if XPFR153P-ERCC1 is mislocalized in cells. Differen-

tial immunofluorescence was used to identify the subcellular

localization of XPF-ERCC1 in XPF mutant cell lines that were co-

cultured with normal cells as an internal control [34]. XPF was

detected exclusively in the nucleus of normal fibroblasts (Figure 2A,

upper panel). In the same sample, XPF was detected in the

cytoplasm of XP51RO cells (harboring XPFR153P). In XP42RO

cells (harboring XPFR799W), the XPF signal was pancellular so that

the nucleus and cytoplasm could not be distinguished from one

another. To explore this further, we used immunofluorescence to

detect XPF in additional XP-F patient cell lines and to our surprise

discovered that in all mutant cell lines XPF was frequently

detected in the cytoplasm. In all cases, XPF mutant cell lines could

be discriminated from normal fibroblasts by the staining pattern of

the cell population: reduced nuclear XPF-ERCC1 and the

presence of cells in which the heterodimer was exclusively

cytoplasmic. This was true irrespective of the antibody used for

analysis [monoclonal 3F2 (Cancer Research UK), monoclonal

Ab-1 (Neomarkers), or polyclonal anti-XPF (Erasmus Medical

Centre)] (data not shown). This indicates that mislocalization of

XPF in the cytoplasm is a common consequence of XPF mutation.

This raised the possibility that misfolding of mutant XPF caused

abnormal subcellular localization of the protein. Therefore, next

we asked if these mutant XPF proteins still interacted with their

obligate binding partner ERCC1. ERCC1 was detected in the

nucleus of normal (wt) fibroblasts, as expected. However, like XPF,

ERCC1 was frequently detected in the cytoplasm of XPF mutant

cells (Figure 2B). All eight XPF mutant cells lines tested were

readily distinguished from wt cells by their ERCC1 staining

pattern. Furthermore, there was a strong correlation between the

staining pattern for ERCC1 and XPF in all cell lines. This

observation indicates that ERCC1 can interact with each of these

mutant XPF proteins. Furthermore, the results suggest that

normally ERCC1 enters the nucleus as a heterodimer with XPF,

and is retained in the cytoplasm with XPF when XPF is misfolded.

To rule-out the possibility that the abnormal subcellular

localization of XPF-ERCC1 was an artifact of immunofluores-

cence, wt and XPFR153P fibroblasts were fractionated and XPF-

ERCC1 was detected by immunoblot in the nuclear and

cytoplasmic fractions (Figure 2C). In normal cells (C5RO), XPF-

ERCC1 is predominantly nuclear. XPF-ERCC1 was also detected

in the cytoplasmic fraction, but to an extent that could be

attributed to nuclear contamination, as determined by immuno-

detection of the nuclear protein nucleophosmin. In contrast,

substantially more XPF and ERCC1 were detected in the

cytoplasm than in the nucleus of XP51RO cells. Similar results

were obtained for other XPF mutant cell lines (XP24BR, XP26BR

and XP32BR) and using other antibodies against XPF and

ERCC1 (data not shown). Degradation products of both ERCC1

and XPF are commonly detected on immunoblot, but were not

overrepresented in the mutant cells. These data confirm the

immunofluorescence data and support the conclusion that

mislocalization of XPF-ERCC1 in the cytoplasm occurs in XPF

mutant cells.

Figure 1. Biochemical characterization of XPFR153P-ERCC1 and
XPFR799W-ERCC1 mutants. (A) Gel filtration profiles from the
purification of recombinant XPF-ERCC1, XPF R153P-ERCC1 and XPF R799W

-ERCC1 from baculovirus-infected Sf9 insect cells using a His6 tag on
ERCC1. Aggregated proteins elute at ,45 ml in the void volume of the
column; heterodimeric XPF-ERCC1 elutes at ,65 ml, corresponding to
,200 kD, and monomeric ERCC1 elutes at ,78 ml (,50kD). (B) SDS
PAGE analysis of purified protein complexes. Lane 1, 3 and 5 (D): XPF-
ERCC1, XPF R153P-ERCC1 and XPF R799W-ERCC1, respectively, after
purification over NTA-agarose, gel filtration and heparin columns.
Lanes 2 and 4 (A) show the proteins present in the fractions eluting at
45 ml in the gel filtration column step of XPF R153P-ERCC1 and XPF R799W

-ERCC1, respectively. (C) Immunodetection of XPF in normal (C5RO) and
XPF mutant cells. The star indicates the migration of a cross-reactive
band demonstrating equal loading [32]. (D) Incision activities of XPF-
ERCC1, XPF R153P-ERCC1 and XPF R799W-ERCC1 (200 fmol) on a 59-32P-
labeled stem-loop DNA substrate (100 fmol) in the presence of either
0.4 mM MnCl2 (lanes 2, 4 and 6) or 2 mM MgCl2 (lanes 3, 5 and 7).
Reactions were analyzed on a 15% denaturing polyacrylamide gel. The
46-mer substrate and 9–10-mer products are indicated.
doi:10.1371/journal.pgen.1000871.g001

Mislocalization of XPF-ERCC1 Causes Disease
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Figure 2. Differential immunofluorescence of cells from patients with XPF mutations. Fibroblasts from patients with mutations in XPF and
a normal control were grown in the presence of different size beads. After 24 hr the cultures were washed to remove extracellular beads, mixed and
co-plated on glass coverslips. The next day, the cells were fixed and immunostained as indicated. Cells were stained with Dapi to identify nuclei and
examined by phase contrast microscopy to identify the cell type by their bead content and by fluorescence microscopy for immunodetection of XPF
or ERCC1. (A) Analysis of XPF protein sub-cellular localization. Cells from an unaffected individual were labeled with 2 mM beads; XPF mutant cells
were labeled with 0.8 mM beads. (B) Analysis of ERCC1 subcellular localization in patients with mutations in XPF. (C) Immunodetection of XPF and
ERCC1 in nuclear and cytoplasmic fractions of normal fibroblasts (C5RO) and XPF mutant cells (XP51RO). Tubulin is used as a loading control of the
cytoplasmic fraction. Nucleophosmin is used as a loading control for the nuclear fraction. (D) Quantitation of the fraction of cells containing
exclusively nuclear XPF-ERCC1, XPF-ERCC1 in the nucleus and cytoplasm (pancellular) or exclusively cytoplasmic complex, as determined from
immunofluorescence images (n$100 cells per cell line).
doi:10.1371/journal.pgen.1000871.g002

Mislocalization of XPF-ERCC1 Causes Disease
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Remarkably, cytoplasmic XPF-ERCC1 is not detected by

immunofluorescence in all XPF mutant cells within a population.

To quantify the phenomena, the fractions of cells with exclusively

nuclear, exclusively cytoplasmic, or pancellular XPF-ERCC1 were

determined from immunofluorescence images (Figure 2D). In wt

fibroblasts, 93% of cells have XPF-ERCC1 only in the nucleus.

Seven percent of cells show pancellular XPF-ERCC1. But never is

the complex seen exclusively in the cytoplasm. In all of the XPF

mutant cell lines, XPF-ERCC1 was detected exclusively in the

cytoplasm of a fraction of cells ranging from 3–46% of the total

population. Thus all known XPF mutations lead to a reduction in

nuclear XPF-ERCC1 and an increase in the amount of the

complex detected in the cytoplasm.

Direct detection of XPFR153P

To further rule out the possibility that the cytoplasmic XPF-

ERCC1 detected was an artifact generated by non-specific

antibodies, human XPFR153P and XPFWT were tagged with YFP

and expressed in Xpf mutant hamster cells (UV41) for direct

detection of XPF protein. The expression of fusion proteins was

confirmed by immunoblot using antibodies against human XPF

and GFP (Figure 3A). Immunodetection of XPF revealed

overexpression of both fusion proteins relative to endogenous

XPF protein levels in normal fibroblasts (C5RO). Numerous

breakdown products of XPF were also observed, likely due to its

overexpression. But only a single fusion protein migrating at the

expected molecular mass of full length XPF-YFP was detected

using an antibody that detects GFP. To determine if the fusion

proteins were functional, transiently transfected cells were tested

for their sensitivity to UV to measure NER and mitomycin C

(MMC) to measure interstrand crosslink repair (Figure 3B). Wild-

type XPF-YFP yielded near complete correction of the hypersen-

sitivity of UV41 mutant cells to UV and MMC. By contrast,

despite the fact that XPFR153P_YFP was overexpressed to the same

extent as XPFWT-GFP, this protein was unable to correct either

DNA repair defect (Figure 3B), as expected based on the

hypersensitivity of the XP51RO patient cell lines [32]. To

determine the sub-cellular localization of XPFR153P, cells express-

ing the YFP-tagged protein were plated on glass coverslips and the

protein detected by fluorescence microscopy (Figure 3C). XPFWT-

YFP was exclusively in the nucleus. However, XPFR153P_YFP was

detected in the cytoplasm of 95% of the transfected cells. This

confirms the immunodetection data indicating that mutant XPF is

cytoplasmic.

Characterization of XPFR153P-ERCC1 activity in living cells
Unscheduled DNA synthesis (UDS) measures the incorporation

of radiolabeled nucleotides into the genome of non-S phase cells

after exposure to UV radiation and is a direct measure of NER

[35]. Previously, UDS in cells from patient XP42RO (XPFR799W)

and XP51RO (XPFR153P) was reported to be 20% and ,5% of

that in normal fibroblasts, respectively (Table 1). UV-induced

UDS was measurable in all of the mutant XPF cell lines except

XP51RO. This demonstrates that all of the mutant XPF proteins,

with the exception of XPFR153P, retain catalytic activity in vivo.

To ask if XPFR153P is also catalytically active in vivo,

recombinant, purified XPFR153P-ERCC1 was microinjected into

the nuclei of NER-deficient XP51RO primary fibroblasts to

determine if UV-induced UDS could be restored. XP51RO cells

were first fused on slides by treatment with inactivated Sendai

virus to produce homopolykaryons (multinucleate cells). Only

homopolykaryons were injected with protein, to permit identifi-

cation of those cells that were injected with protein. The slides

were irradiated with 10 J/m2 UV-C, cultured in the presence of

Figure 3. Characterization of XPF-YFP and XPF153-YFP in CHO
cells. (A) Western blot analysis of XPF-YFP expressed in Xpf mutant
cells. XPF-deficient hamster cell line, UV41, was transiently transfected
with wild type XPF-YFP or XPF153-YFP and the fusion proteins were
detected using an antibody against XPF or GFP. C5RO was used as
positive control for the XPF blot and as a negative control for the GFP
blot. UV41 cells transfected with YFP alone was used as a negative
control for XPF blot and as a positive control for GFP blot.
(B) Clonogenic survival of wild-type (wt), XPF-deficient CHO cell line
UV41, and UV41 transfected with wild type XPF-YFP and XPF153-YFP
after UV and MMC treatment. Colonies were counted 7–10 days after
treatment and results are plotted as mean 3 independent experiments.
(C) Subcellular localization of wild type XPF-YFP and XPF153-YFP after
transient transfection in XPF-deficient the CHO cell line UV41 detected
by fluorescence microscopy.
doi:10.1371/journal.pgen.1000871.g003

Mislocalization of XPF-ERCC1 Causes Disease
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3H-thymidine and nuclear grains indicating sites of thymidine

incorporation in non-S phase cells measured (Figure 4). As

expected, delivery of XPFWT-ERCC1 to the nuclei of cells led to a

significant increase in the number of grains detected in homo-

polykaryons relative to individual cells in the same culture

(Figure 4A). A significant increase in UV-induced UDS was also

detected in homopolykaryons injected with XPFR153P-ERCC1

(Figure 4C). This confirms the in vitro activity data and establishes

that XPFR153P is catalytically active in vivo if it is delivered to the

nucleus. UDS levels were not recovered to the same extent as

when WT protein was injected (Figure 4D). But injection of

XPFR153P-ERCC1 or XPFR799W-ERCC1 led to a similar increase

in UDS. This suggests that the incomplete recovery of DNA repair

is due to decreased concentration of the recombinant mutant

proteins relative to XPFWT-ERCC1 (Figure 1). These data support

the conclusion that mislocalization of XPF-ERCC1 contributes to

the DNA repair defect and symptoms caused by XPF mutations.

Clinical correlation
To determine if the severity of disease associated with a

particular mutation in XPF could be predicted by the amount of

XPF-ERCC1 detected in cell nuclei, the results in Figure 2D

were compared to the clinical information available about the

patients from which the cells were derived. In Table 1, the cell

lines are listed in order of decreasing UDS. Patients with mild

disease tend to have greater UDS or DNA repair. Patients

XP32BR and XP26BR could be exceptions, but they are too

young to know the full extent of their disease. In Figure 2D, the

cell lines are clustered into those from patients in which severe

disease/neurodegeneration was documented (right) or not yet

observed (left). There is a trend towards those with severe disease

to have more cells with non-nuclear XPF-ERCC1, but this trend

did not reach significance (p = 0.06, unpaired Student’s t-test),

likely due to the small sample size. Therefore, the detection of

cells with cytoplasmic XPF-ERCC1, while maybe useful to

screen for patients with XPF mutations is not sufficient to predict

patient prognosis.

Discussion

Classically, inherited mutations in a gene are associated with a

single disease. However, mutations in several genes involved in the

NER pathway can result in more than one disease. The most

prominent example is XPD, which if mutated can cause the

cancer-prone disease XP but also Cockayne Syndrome (CS)

characterized by photosensitivity, growth retardation, develop-

mental abnormalities and profound neurodegeneration, as well as

trichothiodystrophy (TTD), which is similar to CS, but also

involves the skin and nails [36]. Similarly, mutations in XPB can

also cause XP, TTD and a combined XP-CS [37] and mutations

in XPG can lead to XP or XP-CS [38]. Of all the genes whose

products are required for NER, only XPB, XPD and XPG are

required for the proper function and stability of the basal

transcription factor TFIIH [39]. Thus the more severe symptoms

of CS and TTD are attributed to a combined defect in NER as

well as transcription [36,40–42]. Mutations in XPF were recently

linked to a second disease in addition to XP, a disease of systemic

accelerated aging termed XFE progeroid syndrome [32]. In this

study, we sought to determine how mutations in XPF can lead to

such a wide variety of symptoms.

Table 1. Characteristics of XPF mutant cell lines.

Patient
Mutation
Allele 1

Mutation
Allele 2 Age (yr)

Skin
Cancer Clinical features UDS UV sensitivity

% of cells with
non-nuclear XPF-
ERCC1 Ref

C5RO none none – normal 100% 1X 7% [33]

Father of
XP42RO

R799W none – photosensitivity without skin
lesions

100% 1X rare [33]

XP23OS 455fs ?* 45 – mild XP 45% 4X rare [60]

XP7NE P379S silent 28 – mild XP 30% 2X 27% [61]

XP62ROu R799W R799W mild XP with late onset
neurodegeneration

20% not reported 65%

XP42ROu R799W R799W 62 + mild XP with late onset
neurodegeneration

20% 2X 33% [33]

XP2YO T567A ?¤ 657fs 65 + mild XP 17% 3X n.d. [46]

AS871 R589W del exon3 severe XP with
neurodegeneration

15% 2X 59%

XP26BR R799W R799W mild XP 15% not reported 33%

XP32BR R589W P379S 12 – mild XP 10% 2X 39%

XP24BR R799W R589W 29 – severe XP with
neurodegeneration

5% 3X 74% [61]

XP24KY R799W 537fs + 7bp 50 – XP with late onset
neurodegeneration

7% 3X 45% [46]

XP51RO R153P R153P 16 – neurodegeneration severe
progeria

,5% 10X .33% [30]

UDS unscheduled DNA synthesis
*The patient had normal levels of XPF transcript, suggesting one allele encodes a full-length mRNA.
¤Mutation could not be confirmed on genomic DNA.
u Siblings.
n.d. = not determined
doi:10.1371/journal.pgen.1000871.t001
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Mutations in XPF do not ablate catalytic activity
Since CS and TTD are attributed to defects in transcription

[34,43], the prediction is that mutations in XPB, XPD or XPG that

cause CS or TTD should affect basal transcription in addition to

NER, whereas mutations that affect only NER cause XP. Indeed,

mutations in the catalytic domain of XPG, for example A792V,

disrupt the endonuclease activity of XPG, but not its interaction

with TFIIH and therefore causes classical XP [44]. Similarly, a

mutation in the helicase domain of XPD, D234N, affects NER, but

not basal transcription and therefore leads to XP [45]. By analogy,

we examined the enzymatic activity of XPFR153P and XPFR799W,

which cause XFE progeroid syndrome and XP respectively, and

discovered that neither mutation ablates the catalytic activity of

the protein. Recombinant protein complexes harboring either

mutation are able to incise a stem-loop substrate in vitro (Figure 1)

and to restore NER in vivo (Figure 4). This is in keeping with the

fact that patients with XP-F have residual UDS or NER (Table 1).

Intriguingly, XP-F patients tend to have much milder photosen-

sitivity and later onset skin cancer than XP patients from other

complementation groups with the same level of UDS [46]. One

explanation for this is that NER occurs in XP-F cells but at a much

slower rate [47], making UDS a relatively poor reflection of the

true DNA repair capacity of a cell. In total, these data provide

clear evidence that viable mutations in XPF do not ablate catalytic

activity of the XPF-ERCC1 nuclease. Of note, all XP patients for

which the mutation in XPF was confirmed by sequencing genomic

DNA harbor one of three recurrent point mutations (R799W,

R589W or P379S). The rarity and limited repertoire of only

hypomorphic point mutations in patients strongly suggests that

XPF-ERCC1 nuclease activity is essential for normal embryonic

development.

Stability of XPFR799W-ERCC1 and XPFR153P-ERCC1 is
reduced

Mutations in a single gene could lead to diverse clinical outcomes

if mutations differentially affect the stability of the gene product. For

example, mutations affecting the stability of the TFIIH complex are

linked with TTD but not XP [34]. Total cellular XPF and ERCC1

are dramatically reduced in cells from a patient with XFE progeroid

syndrome (Figure 2C). However, XPF levels are reduced to the

same extent in whole cell extracts from a patient with mild disease

and 20% of the normal level of NER (Figure 1C). Therefore,

mutations in XPF clearly affect protein level, which undoubtedly

contributes to reduced DNA repair and disease. However, the level

of XPF-ERCC1 in patient cells, as detected by immunoblotting, is

inadequate to explain the differences in the severity in the DNA

repair defect and disease between patients with different mutations

in XPF. Interestingly, in at least a subset of XP-F patients, XPF

mRNA levels are normal, but XPF protein level is low [46],

indicating that mutant XPF is unstable.

Mutations in XPF affect protein subcellular localization
The novel and unexpected finding is that mutation in XPF leads

to increased cytoplasmic localization of the XPF-ERCC1 nuclease

complex (Figure 2 and Figure 3) and that this aberrant subcellular

localization is what prevents XPF-ERCC1 from participating in

DNA repair (Figure 4). This was demonstrated by immunofluo-

rescence detection of the complex using multiple antibodies. The

results were confirmed by examining the subcellular localization of

fluorescently tagged recombinant XPF (Figure 2). In further

support of this, ERCC1 is also mislocalized to the cytoplasm of

cells from the one patient reported with a mutation in ERCC1

[48].

Figure 4. Correction of XPF mutant cell NER defect by
microinjection of XPF-ERCC1. Primary fibroblasts from XFE proger-
oid patient XP51RO were fused to create homopolykaryons by
treatment with inactivated Sendai virus then plated on glass coverslips.
Only homopolykaryons were injected with recombinant XPF-ERCC1
protein complex (A) wild-type (B) XPFR799W-ERCC1 (C) XPFR153P-ERCC1.
The cultures were irradiated with 10 J/m2 UV-C and 3H-thymidine was
added to the culture. UV-induced unscheduled DNA synthesis was
detected by autoradiography. Homopolykaryons are indicated with
arrows. (D) Histogram indicating the average number of radiographic
grains in nuclei injected with each of the recombinant protein
complexes and uninjected cells in the same sample. Error bars indicate
the standard deviation. N indicates the number of nuclei analyzed in
each population. P values for the comparison between injected and
uninjected cells were calculated using an unpaired two-tailed Student’s
t-test.
doi:10.1371/journal.pgen.1000871.g004
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Cytoplasmic localization of XPF-ERCC1 is not observed in all

cells harboring XPF or ERCC1 mutations, suggesting the possibility

that mutations affect proper folding of XPF-ERCC1 and that

misfolded proteins are preferentially sequestered in the cytoplasm

through interactions with other proteins or preferentially degrad-

ed. Alternatively, there may be tremendous selection for cells with

nuclear XPF-ERCC1. This is consistent with the notion that the

repair complex is essential for viability. Indeed, continuous

passaging of XP51RO cells over years leads to a striking increase

in the fraction of cells with nuclear XPF-ERCC1 and reduced

sensitivity to the crosslinking agent mitomycin C (Ahmad,

Bhagwat and Niedernhofer, unpublished data). Thus the fraction

of cells with cytoplasmic XPF-ERCC1 may be underrepresented

in Figure 2D, although only early passage cells were used in this

study.

Disease caused by protein mislocalization
Many human diseases are caused by misrouting or mislocaliza-

tion of proteins, ranging from metabolic disorders to cancer.

Mislocalization of the tumor suppressors p53 [49], FOXO [50],

p27Kip1 [51] and b-catenin [52] into the cytoplasm rather than the

nucleus, leads to a loss of protein function and is associated with

cancer. In contrast, mislocalization of NF-kB [53], BRCA1 and

BARD1 [53,54] from the cytoplasm into the nucleus is also

associated with a variety of tumors. A classic example of a disease

caused by protein mislocalization is cystic fibrosis which is caused

by retention of the cystic fibrosis transmembrane conductance

regulator (CFTR) protein in the endoplasmic reticulum, instead of

its localizing to the cell surface [55,56]. In addition, nephrogenic

diabetes inspidus, retinitis pigmentosa, emphysema and a1-

antitrypsin deficiency liver disease are also caused by mislocalized

proteins [55].

Mislocalization of proteins may result from a mutated nuclear

localization sequence (NLS) or nuclear export sequence (NES).

Remarkably, the majority of the missense mutations in XPF is at

arginine residues and leads to conversion of the arginine to a

noncharged residue. So these mutations could affect a complex

NLS. All of the point mutations (RRP, RRW and PRS) are also

predicted to alter protein structure, supporting the notion that XPF

mutations affect protein folding and/or protein:protein interac-

tions that are critical for nuclear localization.

Our data add XPF to the list of proteins that if mislocalized

contribute to disease. While this leads to novel insight into the

regulation of XPF-ERCC1 and DNA repair in cells, the extent of

XPF-ERCC1 mislocalization, as measured by immunodetection,

does not predict the level of NER (UDS) or disease severity

(Table 1). This could be because each mutation differentially

affects folding of the protein and thereby differentially affects

protein expression, protein degradation and/or cellular localiza-

tion. Another possibility is that there are modifier proteins that

influence disease severity, in particular in patients with homozy-

gous mutations. However, we believe the former is of primary

importance based on the observation that titration the level of

expression of ERCC1-XPF in mice directly impacts lifespan and

the severity of symptoms [57,58].

In the case of XPF, it is the absence of XPF and its binding

partner ERCC1 in the nucleus leading to reduced repair of

genomic DNA that is disease-causing, rather than toxicity of

mislocalized protein. Our data illustrate a novel mechanism by

which the DNA repair capacity of a cell is determined: by nuclear

localization of XPF-ERCC1. The identification of proteins that

regulate this could lead to novel targets for improving DNA repair

to treat patients with mutations in XPF or reduce cancer risk after

exposure to genotoxic agents. Alternatively, these proteins would

be excellent targets for small molecule inhibitors that would reduce

repair and thereby prevent tumor resistance to genotoxic cancer

therapies.

Materials and Methods

Biochemical characterization of XPFR153P-ERCC1 and
XPFR799W-ERCC1

Purification of recombinant XPF–ERCC1 was performed

essentially as previously reported [27] from baculovirus-infected

Sf9 insect cells using a His6 tag on ERCC1. In brief, plasmids

pFastBac1-XPF and pFastBac1-ERCC1-His were used to transfect

Sf9 insect cells, and to amplify the virus according to the

manufacturer’s instructions (BAC TO BAC system; Life Technol-

ogies). Cell extracts were prepared 65 hr after infection with an

MOI of 5 and highly purified protein was obtained using

chromatography on Ni2agarose, gel-filtration and heparin

columns. Only XPF-ERCC1 eluting as proper heterodimer on

the gel filtration column at ,65 ml of eluant was collected. The

aggregated protein, eluting in the void volume (,40–50 ml), was

not used in experiments.

The endonuclease activity of wild-type and mutant XPF-

ERCC1 was performed using a stem2loop substrate also as

previously described [27]. A stem122loop22 oligonucleotide

(GCCAGCGCTCGGT22CCGAGCGCTGGC) was 59-32P end-

labeled. Nuclease reactions were performed on 100 fmol of DNA

substrate and 20–200 fmol of XPF-ERCC1 protein in a total

volume of 15 ml in optimized nuclease buffer (25 mM HEPES

pH 8.0, 40 mM NaCl, 10% glycerol, 0.5 mM b-mercaptoethanol,

0.1 mg/ml bovine serum albumin and 0.4 mM MnCl2 or 2 mM

MgCl2). The reactions were incubated at 30uC for 2 h and

stopped by adding 15 ml of 90% formamide/10 mM EDTA and

heating at 95uC for 5 min. Samples were loaded onto 15%

denaturing polyacrylamide gels and reaction products were

visualized by autoradiography and quantified on a PhosphorIma-

ger (STORM860; Molecular Dynamics).

Cell lines and culturing
Human fibroblasts immortalized with hTert were cultured in

Ham’s F10 with 10% fetal calf serum and antibiotics and

incubated at 3% oxygen as described previously [32]. Cell lines

included those derived from a normal individual (C5RO) [59], the

parent of a patient, heterozygous for a mutation in XPF [33], XP-F

patients (XP42RO) [33], XP23OS [60], XP24KY [46], XP7NE

[61], XP32BR, XP26BR, XP24BR [61], and XP62RO, and a

patient with XFE progeroid syndrome caused by a mutation in

XPF (XP51RO) [32]. Unscheduled DNA synthesis (UDS) in these

cells lines was previously reported as referenced above and

confirmed in mixed cultures (XP-F cells co-cultured with normal

cells using a more accurate click-staining method, as recently

described [62].

Immunodetection of XPF in patient cells
Cells were trypsinized, washed twice with PBS and lysed with

1 ml NETT buffer (100 mM NaCl, 50 mM Tris base pH 7.5,

5 mM EDTA pH 8.0, 0.5% Triton X-100) containing CompleteTM

mini protease inhibitor cocktail and phosphatase inhibitor cocktail

(Roche Molecular Biochemicals). Then the lysates were freeze-

thawed twice in liquid nitrogen to disrupt nuclear membranes.

From each sample, 50 mg of protein was resolved on 10% SDS-

PAGE gels after boiling for 10 min in the presence of loading buffer.

XPF was detected using a human XPF monoclonal antibody (clone

219; Neomarkers, Fremont, CA) at a dilution of 1:1000.
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Differential immunofluorescence of fibroblasts isolated
from patients with mutations in XPF

Cultures of primary human fibroblasts from patients with

mutations in XPF or a normal individual were grown in the

presence of different size beads (2 mm or 0.8 mm; Sigma). After

24 hr the cultures were trypsinized and washed extensively with

phosphate-buffered saline to remove any extracellular beads. The

cells were then mixed in various combinations and co-plated on

glass coverslips to provide internal controls of normal XPF-

ERCC1 protein levels [34]. After 16 hr, the cells were fixed with

2% paraformaldehyde in sodium phosphate buffer, pH 7.4, for

15 min then permeabilized with 0.1% Triton X-100 in PBS. The

samples were immunostained with polyclonal anti-ERCC1

(1:2000; [63]) or polyclonal anti-XPF (1:1000; [16]) followed by

goat anti-rabbit ALEXA 488 (1:500; Molecular Probes). Samples

were stained with Dapi to identify nuclei and examined by phase

contrast microscopy to identify the genotype of the cells according

to their bead content and by fluorescence microscopy for

immunodetection of repair proteins.
Cell fractionation. Cells were fractionated into nuclear and

cytosolic fractions as described [64], with minor modification. In

brief, cells were trypsinized, pelleted and washed twice with PBS.

The pellet was vortexed at maximum speed for 15 sec with 200 ml

of CERI reagent from the Pierce NE-PER fractionation kit (Pierce

Biotech) with CompleteTM mini protease inhibitor cocktail, then

incubated on ice for 10 min. This was followed by addition of

11 ml of CERII, vortexing for 5 sec and incubation on ice for

1 min. The mixture was spun at 13,000 rpm for 5 min and the

supernatant collected as the cytosolic fraction. The nuclei in the

pellet were suspended in extraction buffer (15 mM Tris-HCl

pH 7.3, 1 mM EDTA, 0.4 M NaCl, 1 mM MgCl2, 10% glycerol,

10 mM b-mercaptoethanol and CompleteTM mini protease

inhibitor cocktail), mixed for 1 hr at 4uC and spun down at

13,000 rpm for 10 min. The supernatant was collected as the

soluble nuclear fraction.

Subcellular localization of XPF–YFP in Chinese hamster
Ovary (CHO) cells

XPF cDNA was cloned into pYFP-N1 (BD Biosciences

Clontech, Palo Alto, CA) such that YFP was expressed as fusion

protein at the C-terminus of XPF. This construct, pXPF-YFP-N1,

was then used to create XPFR153P-YFP by QuickChangeR Site-

Directed Mutagenesis Kit (Stratagene, Cedar Creek, TX)

according to the manufacturer’s instructions. The wild type and

mutant constructs were transfected in XPF-deficient CHO cell

lines UV41 or UV47 using lipofectamine 2000 (Invitrogen,

Carlsbad, CA) following the manufacturer’s instructions. Cells

expressing YFP were flow sorted using Dako Cytomation MoFLo

high-speed cell sorter (Dako North America, Carpinteria, CA) 24–

48 hrs after transfection.

To study the subcellular localization of XPF, YFP-positive

CHO cells were plated on glass coverslips and grown to 95%

confluency. The next day, the samples were fixed with 2%

paraformaldehyde in sodium phosphate buffer, pH 7.4, for

15 min. The cells were permeabilized with 0.1% Triton X-100

in phosphate-buffered and nuclei were stained with Dapi-vector

shield (Vector Laboratories, Inc. Burlingame, CA). XPF-YFP was

visualized using an Olympus BX51 fluorescent 4 microscope at

60–100X magnification.

Clonogenic survival assays of wild-type and mutant CHO
cells

Wild type (AA8), XPF-deficient (UV41), XPF-YFP and

XPFR153P-YFP cells were seeded in 6 cm dishes in triplicate at

103–104 cells per plate, depending on the dose of genotoxin. After

16 hr, the cells were irradiated with UV-C or exposed to

mitomycin C (MMC). After approximately one week, the cultures

were fixed and stained with 50% methanol, 7% acetic acid and

0.1% Coomassie blue. Colonies, consisting of at least 10 cells, were

counted using a Nikon SMZ 2B 15 stereomicroscope microscope

with 10X eyepiece. The data were plotted as the number of

colonies that grew on the treated plates relative to untreated plates

6 the standard error of the mean for 2–3 independent

experiments.

Immunoblotting of XPF in Wt and mutant CHO cells
Whole cell extracts were prepared from C5RO and UV41 cells

transfected with vectors expressing YFP, XPF-YFP or XPFR153P-

YFP. Proteins were separated by SDS PAGE using a 10% gel.

XPF was detected using a human XPF monoclonal antibody

(clone 219; Neomarkers, Fremont, CA) at a dilution of 1:1000.

YFP was detected using a GFP monoclonal antibody (Clones 7.1

and 13.1; Roche, Indianapolis, IN) at a dilution of 1:1000.

Correction of XPF mutant cell UV sensitivity by micro-
injection of recombinant XPF-ERCC1

Microinjection of purified proteins was performed as previously

described [65,66]. Briefly, primary human fibroblasts from

XP51RO were fused by treating cultures with inactivated Sendai

virus and then plated on glass coverslips. Subsequently, purified,

recombinant XPF-ERCC1 protein complex (wild type or

containing the R799W or R153P substitution in XPF) was

injected into the nuclei of homopolykaryons. The cultures were

irradiated with 10 J/m2 UV-C and pulse labeled for 3 hrs with
3H-thymidine. Unscheduled DNA synthesis (UDS) was detected

by autoradiography.

One to ten femtoliters of a 10–100 nM solution was injected

into the nuclei of 10–20 homopolykaryons for each of the three

recombinant proteins and the number of radiographic grains

counted in at least 20 nuclei of the homopolykaryons and a similar

number of nuclei of single cells in the same sample. The mean and

standard deviation of the number of grains was calculated for each

of the three proteins. An unpaired, two-tailed Student’s t-test was

used to determine if there was a significant difference in

unscheduled DNA synthesis between cells that were injected with

recombinant XPF-ERCC1 and cells that were not injected.
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