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Abstract
This paper proposes a new approach based on missing value pattern discovery for classifying
incomplete data. This approach is particularly designed for classification of datasets with a small
number of samples and a high percentage of missing values where available missing value treatment
approaches do not usually work well. Based on the pattern of the missing values, the proposed
approach finds subsets of samples for which most of the features are available and trains a classifier
for each subset. Then, it combines the outputs of the classifiers. Subset selection is translated into a
clustering problem, allowing derivation of a mathematical framework for it. A trade off is established
between the computational complexity (number of subsets) and the accuracy of the overall classifier.
To deal with this trade off, a numerical criterion is proposed for the prediction of the overall
performance. The proposed method is applied to seven datasets from the popular University of
California, Irvine data mining archive and an epilepsy dataset from Henry Ford Hospital, Detroit,
Michigan (total of eight datasets). Experimental results show that classification accuracy of the
proposed method is superior to those of the widely used multiple imputations method and four other
methods. They also show that the level of superiority depends on the pattern and percentage of
missing values.
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1. Introduction
Missing value is a common problem in real-world data processing and pattern recognition.
Management of missing values becomes critical when the number of available samples is small
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[1]. Modifying an algorithm primarily designed to work on complete datasets to work on
incomplete datasets is a challenge. In general, an appropriate strategy based on the ultimate
processing goal may be developed. However, in the case of datasets with a small number of
samples, not only the final goal but also the percentage and the distribution of missing values
should be considered in algorithm development [2-3].

Traditional missing value management methods are based on the preprocessing of the data
independent of the final goal and the associated processing scheme. In these methods, the
missing values are estimated or the deficient samples are removed [1]. Although in this
approach the data processing algorithm does not need to change, the data is not efficiently used,
especially when a large portion of the samples have missing features. Modern missing value
management methods are designed for specific applications and associated processing schemes
where missing value management is integrated into the processing scheme [4]. These
algorithms either apply multiple data processing stages, e.g., multiple imputations or somehow
avoid the unknown values in the processing scheme, e.g., decision trees.

Although modern algorithms are shown to be successful in different applications, their
proposed solutions are not designed to deal with a high percentage of missing features or a
large number of systematic missing values that are frequent scenarios in some data categories
such as medical datasets [1]. The main challenge arises from insufficient statistical power after
the missing values are imputed. In this situation, the following questions arise.

• How to measure the complexity of the missing values?

• How to work with the missing values when imputation of the missing values is
inappropriate?

• How to manage the missing values when the same features are missing in the test and
training samples?

This paper proposes a new approach, named selection-fusion, based on the subspace
classification method. In the proposed approach, missing value management is integrated not
only in the training but also in the testing of the classifier. To this end, a set of classifiers are
trained on the subspaces of the original feature space and then clustered using a distance metric.
The best classifiers in each cluster, depending on the testing data, are combined to construct
the overall classifier and estimate the final output.

The proposed approach is compared with the multiple imputations method as the most similar
incomplete data processing method. Our major contributions can be summarized as follows.

• As part of the algorithm, we define a quantitative measure for the complexity of the
missing values. Based on this measure, the usefulness of the algorithm for a particular
dataset can be evaluated.

• We consider missing values in both of the training and the testing datasets without
filling the missing values.

• We show that the proposed approach can be efficiently implemented for the support
vector machine classifiers.

The rest of the paper is organized as follows. In the next section, we review the state-of-the-
art for incomplete data processing. Details of the proposed selection-fusion method and its
application to missing value management are described in Section 3. In this section, we address
the above three challenges using multi-classifier fusion. We describe how each classifier is
selected and how the results are combined to boost up the performance. The experimental
results are presented in Section 4. We highlight the application areas of the new method and
also discuss its limitations in Section 5 and conclude the paper in Section 6.
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2. Related Work
In a missing value problem, considerable portions of the data fields may be incomplete. To
describe the seriousness of the data deficiency, the primary question in a typical missing value
problem is “the missing value pattern.” For example, in Pneumonia data described in [6], on
average 6.3% of the feature values are missing while one individual feature is missing for 61%
of the cases. On the other hand, in C-Section problem [6], only 1.2% of the feature are missing,
while 27.9% of the cases have at least one missing feature. However, these figures do not
provide clear ideas about the complexity of these problems. In fact, despite a smaller percentage
of the missing values, the second problem is more complicated than the first.

To describe the complexity of a missing value pattern, some statistical models are used in the
literature. Missing completely at random (MCAR) and missed at random (MAR) are the models
most frequently used in the database literature. Although due to their simplicity, they are not
always realistic models for the real-world problems, they provide relative measures of
complexity. The missing value for a random variable X is MCAR if the missing probability is
independent of the actual value of X or the values of the other features. The missing value is
called MAR if the missing probability is independent of the value of X after controlling the
other variables. Missing values due to equipment malfunction is an example of the MCAR
well-described pattern. However, in many real-world applications, MAR is a more realistic
model than MCAR [2].

Generally speaking, there are five classes of well-established strategies to deal with the missing
values: 1) discard the incomplete samples (e.g., pairwise deletion [2]); 2) avoid the missing
features by dynamic decisions (e.g., decision trees such as CART [7]); 3) recover unknown
values from the similar samples (e.g., Expectation Maximization (EM) [8]); 4) insert possible
values for the missing features, classify after each insertion and combine the classification
results (e.g., Multiple Imputations (MI) [9]); and 5) design multiple classifiers on the subsets
of the data and combine the classification results (e.g., ensemble classifiers [17]).

Discarding the incomplete samples and filling the missing values are very simple but
undesirable methods for a dataset with a small number of samples and a large percentage of
missing values. The former approach may discard significant amount of information when the
number of samples is limited and the latter approach may add considerable distortion to the
data when the percentage of the missing values is high.

Recovering the missing values form the other samples, also called single imputation, is the
traditional approach for the treatment of incomplete datasets with a small number of samples.
Many single imputation methods have been proposed over the years. Decision tree imputation
[7], nearest neighbor imputation [10], and mean value substitution [11-12] are examples of
classical imputation methods. These methods are only valid under specific assumptions such
as MCAR assumption for the mean value substitution approach or dense sampling for the
nearest neighbor imputation approach. Bayesian missing value treatment is a modern approach
that replaces the missing values with the most probable values [8].

From the classification point of view, there is a common problem in all traditional missing
value treatment methods: they provide a solution independent of the ultimate goal. Multiple
imputations (MI) method [1,9] is an alternative solution that uses Monte Carlo simulation to
generate more than one imputation of the missing values. However, the MI usually implies
several assumptions on the data distribution such as joint normality [13] and regression
relationships [14]. Application of MI is particularly favorable when the number of samples is
relatively small (100 cases or less). Markov Chain Monte Carlo (MCMC) method is a
successful MI method for datasets with a small number of samples [13-15].
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Recently, ensemble classifiers technique has been shown to be a valuable tool for missing value
management. In this approach, the results of multiple weak classifiers are combined to boost-
up the performance. Different groups have shown effectiveness of this approach for general
classification problems [16-17]. Recently, it has also been applied to the missing value problem
[18]. Despite its advantages, this approach suffers from two major limitations in its application
to the missing value problem: 1) lack of mathematical framework for the selection of the weak
classifiers; and 2) handling of the missing values in the testing data. In this paper, we overcome
both of these limitations.

From the performance point of view, the most effective ensemble approach in the literature
utilizes fusion. In this approach, outputs of a set of inaccurate classifiers are combined to
generate highly accurate classification results. A simple implementation of this idea, also
known as selection-fusion (SF), trains each classifier on a random subset of data [19]. This
implementation is shown to be effective for small datasets and improve the performance
compared with traditional methods. However, in the large datasets, since the number of possible
classifiers increases quickly, this implementation of fusion would not work well. A systematic
method to find an optimal set of classifiers, as proposed in the paper, solves the problem using
a manageable number of classifiers. In addition, when there are missing values in the data, as
is the case in this paper, random selection of the subsets is inapplicable.

In general, both of the testing and training datasets may have missing values. When a feature
is missing in the testing data, filling the missing value is the most common approach [19-20].
The advantage of the filling method has been mostly discussed under certain conditions like
the MCAR model and a sufficient sample size. Apparently, the performance degrades if these
assumptions are invalid [21-22]. Dealing with the missing value in the testing phase may be
completely different from the training phase. In the statistical methods, these two phases are
not necessarily separated. However, in the classification and machine learning methods, they
are separated.

In summary, the conventional missing value treatment algorithms either estimate the unknown
values or remove the deficient samples. Estimation of the unknown values needs particular
assumptions about the data distribution. Obviously, any unrealistic assumptions may bias the
results. On the other hand, removal of samples form the training pool reduces the statistical
power of the classification process. Therefore, both approaches are suboptimal.

3. Proposed Method
3.1. Classification of a Dataset with Missing Values

We use the ensemble classifiers idea to overcome the limitations discussed in the previous
section. We use a pool of classifiers each trained using a portion of the original data called a
subset. In other words, a subset is a collection of the samples that have complete data for a
specific subset of features. As such, each subset is identified by a set of samples and a set of
features. The subsets are selected such that each subset has no missing values and a collection
of the subsets includes all of the samples in the original data. By training multiple classifiers
using the data in the individual subsets, a set of completely trained but weak classifiers are
constructed. If the subsets are selected properly, the results of the weak classifiers may be
combined to build a strong classifier. This step is called fusion (See Figure 1).

Selection of the subsets is the most challenging part of the proposed selection-fusion algorithm.
Each subset is defined as a set of samples and a set of features from the original data. Since a
large number of samples are always desirable for classifier training, given a feature set, it is
desirable to find the largest number of samples for each subset. We refer to such subsets as the
complete subsets. Each subset of the original features corresponds to an empty or a unique
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complete subset. Therefore, there are at most 2n(F)-1 non-empty complete subsets for a data
with n(F) features.

There is a trade off between the set of features and the set of samples in a subset. Adding a
new feature may cause removal of some samples from the subset and vice versa. On one hand,
a small sample size does not allow efficient training of the classifier. On the other hand, a small
number of features limit the classifier accuracy. However, by balancing the feature set versus
the sample set, the performance of the classifier may be optimized.

Moreover, the fusion performance depends not only on the performance of the individual
classifiers but also on the diversity of the classifiers. The performance of the final classifier
will depend on the way the subsets are selected and the way the results of the weak classifiers
are combined. Variation in the performance of the classifiers that are combined can improve
the performance of the ensemble classifiers [5]. For example, in the case of two primary
classifiers, if the first one works significantly better in one part of the feature space and the
second one works significantly better in another part of the feature space, classifier aggregation
has the potential to improve the classification performance by selecting the first classifier in
the former part of the feature space and the second classifier in the latter part of the feature
space. Of course, achieving this limit needs additional information on the relative performance
of the classifiers which is not always available. In other words, good performance is achieved
when the individual classifiers are trained on specific but disjoint parts of the feature space. It
is also desirable to have at least one good classifier for each part of the feature space.

To formulate the missing values, assume S represents the original data and n(S) represents the
total number of samples. Define a n(S)×n(F) binary matrix M whose elements are:

(1)

and a 1×n(F) binary vector θ whose ith element is 1 if the set includes the ith feature. Also,
define Sθ to refer to the complete subset from S associated with the θ subset. A simple scenario
with just one missing value (the ith sample and the jth feature) is demonstrated in Figure 2. In
this case, two complete subsets cover all of the samples.

Since there are multiple classifiers, a notation is needed to distinguish different classifiers. To
this end, Γ(x; Ω) is used to show the result of a classifier trained by Ω dataset for a test sample
x. Here, Γ is a function from the sample space to the class label space (Rn(F) → N) where N is
the set of natural numbers. When a feature is missed in x, Γ imputes the missed value with the
average value of the feature. In the case that all features used by Γ are missed, the output is set
to an out-of-range value so that it is discarded later. Although the proposed approach can be
extended to the multiclass classification, for the sake of simplicity, we present the method as
applied to the two-class classification.

Selection of the subsets and combination of the results are nontrivial problems as they directly
impact the performance of the ultimate classifier. These two problems are addressed in the
following sections.

3.2. Selection of the Subsets
Generally speaking, it is desirable to cover the entire data with as few subsets as possible. Each
subset should be large enough (with enough number of samples) to train a classifier. Also, the
classifiers need enough features in each subset to make a good decision about the class labels.
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Obviously, certain subsets such as those with all features but a small number of samples or
those with a small number of features even with a large number of samples are not desirable.

Using the above notations, the proposed selection-fusion classification is formulated as
follows: In the first step (selection step), a set of m feature subsets {θ1,…, θm} corresponding
to a set of complete subsets {Sθ1,…,Sθm} is selected. After training a classifier for each subset,
the results are denoted by {Γ(x; Sθ1),…, Γ(x; Sθm)}. Using these class labels in the fusion step,
a decision is made about the most likely class label for each data sample.

It has been shown that for a constant average performance, the maximum achievable
performance in the ensemble classification is achieved when the variance of the results of the
primary classifiers are at a maximum [5]. In other words, the best performance is obtained

when  is maximized under the constraint that  is a
constant where Er[.] is the error function and yj is the correct class label for xj. The lowest

achievable error for the ultimate selection-fusion classifier is  if meta
information is available about the best primary classifier for a test data. However, since the
best classifier for a specific test sample is not predictable, this limit is not achievable.

Based on the above, the proposed method starts with a pool of complete subsets represented
by B = [θ̑1 … θ̑n(B)]T. The pool size, n(B), can be relatively large even close to 2n(F)-1
(maximum number of complete subsets). Having this set of subsets, each element of a so-called
co-accordance binary matrix A is defined as:

(2)

where A is a binary matrix that shows the inclusion of particular samples in particular subsets.
The diversity of two subsets relates to the number of their common samples. The more common
samples they have, the less diversity they have. On the other hand, independencies of the
samples and a small number of common samples result in high diversity. Next, a symmetric
similarity matrix C is defined as:

(3)

Here, C includes the number of common samples between each two subsets. To generate a
similarity metric, a normalized version of C is defined as:

(4)

The similarity between each two subsets is a scalar between 0 and 1 and the self similarity of
each subset is 1. From the maximum variance rule for ensemble classification, the choice of
the subsets should maximize the diversity between each pair of the subsets. This choice is a
difficult NP-complete problem [12] and is not well-studied [10]. To translate this problem into
a well-studied clustering problem, a dual difference matrix D is defined as:
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(5)

Using this distance measure, the selection problem can be solved from a different point of view:
the well-known clustering methods. Each cluster is a collection of similar subsets with small
distances or almost identical information. The kth cluster is represented by a set of subset
indices Λk. By selecting the best subset from each cluster, a set of subsets that satisfies the
maximal diversity criterion while maximizing the overall performance can be obtained.

3.3. Quality Measure for the Selection Step
Now that subset selection is translated into a clustering problem, we apply the well-known k-
means clustering algorithm. Then, to evaluate the quality of the resulting clusters, we apply
the following Cluster Validity Index (CVI):

(6)

where Ek(.) represents expectation over k and Λk is a set showing subsets in the kth cluster.

In the clustering context, this cluster validity index shows whether there are significant clusters
in the data or not. When clusters are completely separated, CVI is very small, near 0. In the
worse case, when there are no distinct clusters, CVI is around 1. In our application, this index
shows whether a specific collection of subsets represents a complex or simple missing value
pattern. Simple missing value patterns correspond to well-separated subset clusters and
consequently smaller CVI. We use 1/CVI on a linear scale to generate a clear separation when
CVI is small. The more samples per feature are found by the clustering algorithm, the better
the generalization of the classifiers would be. Thus, there is a direct relationship between the
quality of the clustering results and the ultimate performance of the classification process.

Once the subsets are chosen, a classifier is needed for each subset. Selection of the best classifier
for each subset is discussed in [8,10]. In this work, as a widely-used and generally well-
performed method, we use the support vector machine (SVM) classifier in all of the
experiments. Note that the focus of this paper is not on the optimal classifier design for the
subsets.

3.4. Fusion Step
Similar to the traditional multiple imputations approach, the fusion step in the selection-
fusion algorithm combines the results of the individual classifiers to boost-up the overall
classification accuracy. In multiple imputations, the results are combined in a simple fashion:

(7)
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where Ii is the ith imputation of the incomplete data and q represents the number of imputations.
The number of required imputations is estimated by the Rubin's imputation efficiency law
quantified by [12]:

(8)

where γ is the fraction of the missing values in the data. The efficiency is a value between 0
and 1 and shows the performance of q imputations compared with the infinite number of
imputations. When q is small compared with γ, increasing q improves the efficiency. However,
when q is large enough, its further increments do not improve the efficiency considerably. This
criterion may be used to select appropriate number of imputations.

The fusion step in the proposed selection-fusion method is different. Here, the distribution of
the missing values in the feature space is used to improve the performance. In contrast to the
multiple imputations where all imputations have the same weight, in the proposed approach,
the classification accuracy of each classifier for a given testing sample is used to weigh the
outputs. Since a subset of samples and features, not the whole data, is involved in the training
of each classifier, a specific subset may be advantageous depending on the sample being tested.
Thus, in the fusion step, the aggregation step is the weighted combination:

(9)

where φi,x is the relative inaccuracy or expected error of Γ(x;Sθi) estimated at x which depends
on the accuracy of Γ(.;Sθi) around x and the number of features used in the classifier.

Two factors are important in determining the classifier's expected error φi,x for a specific
sample: 1) general accuracy of the classifier; and 2) similarity between the features of the
samples in the training set and those of the testing sample. Thus, the local accuracy of the
classifier should be calculated for each individual testing sample based on two factors: 1) the
number of samples in the training set that are in the neighborhood of the testing sample; and
2) the similarity between the subset features (θi) and the existing features for the testing sample.

Now, we explain our approach to estimate the similarity between the training and testing
samples. If all features are identically informative, the similarity between the missing value

patterns in a subset and the testing sample can be characterized by  where θˆxj and θi are
the feature sets available for the testing sample xj and the ith subset, respectively. To take the

relative quality of the features into account, the similarity is written as  where K is a
diagonal matrix to weigh the features based on their information level.

We calculate φi,x using:

(10)
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where Y(x) is the label of x. When there is no ranking of the features, K is equal to the identity
matrix. Here, f is a non-increasing function that calculates the effect of similarity between the
feature spaces of the classifier and the testing sample. For simplicity, we define f(u) as 1/u.
When there are no common features, f removes the effect of the classifier from aggregation.
On the other extreme, when all features are present, f does not change the error measure.

Equation (10) can be calculated for the training data. However, for a testing sample, it needs
to be estimated since Y(x) is unknown. To estimate φi,x easily, we use all of the training samples
in the vicinity of the testing sample:

(11)

where

(12)

(13)

Note that the distance between the two samples is modulated by their common features through
the second term in Equation (12).

3.5. Pruning Step
In the previous sections, the primary assumption was that when the number of common samples
between the training sets of different classifiers is small, they would have a different
performance. However, this assumption is not always true as discussed below. We use a
pruning step to deal with this issue.

Our observations show that in addition to the desirable subsets, a few useless subsets may be
generated at the end of the selection process due to the simplified assumptions about the
diversity. In some cases, these subsets have poor performance for almost any testing dataset.
In other cases, different subsets do not have additional information and their corresponding
classifiers have almost identical outputs.

For the former case, assume a problem with three features where the first two features are more
informative than the last one. Also, assume that the first feature is missing in the first half and
the second feature is missing in the second half of the samples. A clustering algorithm in this
case will obtain three clusters: 1) with just the third feature; 2) with the third and first features;
3) with the third and second features. However, since the third feature is not very informative,
the subset from the first cluster will not contribute significantly in the fusion step due to its
poor performance, despite its large number of samples. In fact, the remaining two subsets are
sufficient for this scenario.

For the latter case, assume the above scenario but this time just the third feature is missing in
the first half of the samples. There are two significant subsets in the data: one subset with all
features (second half of samples) and one subset with the first and second features (all samples).
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These two subsets are certainly in two different clusters. Since the third feature is not
informative, the two clusters represent the same information and combination of the two
classifiers is not useful.

As described in the selection step, the CVI is a good performance measure if the diversity of
the subsets is high. When two clusters are separated by a set of informative and relevant
features, this is the case. However, when a large portion of the features are irrelevant, it is likely
to get a couple of clusters with similar information separated by the unimportant features.

The pruning step is designed to solve the above problems by removing weak clusters and
combining similar clusters. During the feature selection step, the irrelevant features are
identified and the distance metric of the clusters with the irrelevant features [Dij] are modified
accordingly. The overall process, including the pruning step, is summarized in Figure 3. In the
worst case, all clusters are combined after m-1 iterations. Although the pruning step does not
always have a large impact on the performance, it may reduce the computational complexity.

One important remaining point about the proposed algorithm is the initial condition for the
primary subset pool B. If we eliminate some of very unlikely subsets before running the
algorithm, the execution time of algorithm will be reduced. As discussed, the primary subsets
pool can be as large as 2n(F)-1. However, for the sake of computational cost, we limit the size
of the subsets pool. We reduce the size of the subsets pool by putting lower and upper bounds
on the number of features in each subset. According to the discussion about the desirable
subsets, the number of the features in each subset should be large enough to get a reliable
determination of the class label. A lower bound can be obtained using a simple feature reduction
technique; for details see [9-10].

4. Experimental Results
To support the hypotheses in the previous sections and to evaluate the proposed method and
compare it with the previous methods, we have conducted a variety of experiments using a
wide range of real-world datasets. Seven datasets from the University of California, Irvine and
our epilepsy dataset (a total of eight datasets) have been used in these experiments. Details of
the datasets are given in Table 1. The algorithms have been applied to the original data as well
as datasets with additional missing values generated by randomly deleting some of the values
from the datasets. All algorithms are run on Intel 3.0 GHz CPU with 2GB of RAM.

In the comparison study, the proposed method is compared with five well-known missing value
management algorithms: 1) pairwise deletion; 2) decision tree (CART); 3) Expectation
Maximization (EM) single imputation; 4) Multiple Imputations (MI) with EM; and 5) ensemble
classifier (voting selection-fusion (SF) with random selections). The Support Vector Machine
(SVM) is used for classification in all of the methods. Each dataset is divided into 6 equal parts,
1 part for the testing phase and 5 parts for the training phase. The training and testing parts are
permuted and the experiments are repeated for cross-validation. The execution time of each
permutation depends on the size of the dataset and the number of clusters, ranging from 125
sec for database number 1 (Breast Cancer) to 20 sec for database number 8 (HBIDS). All of
the algorithms are run on the 8 datasets (Table 1). To evaluate the effect of the percentage of
the missing values, some of the values are randomly removed from both of the testing and
training datasets using the MAR missing value pattern. This is repeated 20 times and the means
and standard deviations of the correct classification percentages are calculated and presented
in Table 2.

Generally speaking, the results show that the proposed algorithm outperforms the other
methods when either the percentage of the missing values is large (more than 20%) or the
number of samples in the dataset is small. On the other hand, the EM single imputation and
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MI with EM methods outperform the other methods when the number of the samples is large
and the percentage of the missing values is small.

In particular, the proposed method outperforms the previous methods in their applications to
the target problem of our research, i.e., epilepsy surgery candidate selection (HBIDS). This
problem can be considered as a prototype of the common medical diagnosis problems such as
breast cancer staging or leukemia genome expression, where a non-MAR missing value pattern
and a small number of samples are the most common limitations for the recovery of the missing
values. The human brain image database system (HBIDS) is developed for epilepsy patients
at Henry Ford Hospital, Detroit, MI [23,24]. The system will examine surgical candidacy
among temporal lobe epilepsy patients based on their brain images and other data modalities.
It is expected to discover relatively weak correlations between symptoms, medical history,
treatment planning, outcome of the epilepsy surgery, and the brain images.

At the time of this investigation, the HBIDS contains a 40-dimensional feature space and 55
samples. Our examination of the database shows that the missing values do not follow the
MAR or MCAR models [12,24-28]. Thus, the missing value patterns are not easily predictable.
Therefore, a complex probabilistic model is necessary. Also, there are a large number of
missing values that are non-random. Moreover, the missing values may have dependencies in
contradiction to the usual assumptions [13]. The complex probabilistic model and the large
percentage of the missing values limit the performance of the previous methods like expectation
maximization (EM) and multiple imputations (MI) [1,12].

In the second experiment, the relationship between the proposed index (CVI) and the
performance of the selection-fusion algorithm is evaluated. To this end, some of the samples
are randomly removed from 3 of the datasets (Breast Cancer, Pima Diabet, HBIDS) to generate
datasets with different patterns and percentages of the missing values. Then, the CVI and the
accuracy of the four missing value treatment algorithms (SF, EM, MI, CART) are evaluated
for each condition. The results are presented in Figure 4. This figure compares the accuracy of
the four methods when 1/CVI changes from 1 to 40 for the 3 datasets. The results illustrate that
although the relationship between the accuracy and the 1/CVI depends on the pattern of the
missing values, our approach (SF) is always superior when 1/CVI is larger that 20. Also, as 1/
CVI increases further, the superiority of the SF approach to the other methods becomes more
pronounced.

In the third experiment, to evaluate the effect of the number of samples in the dataset and the
percentage of the missing values on the CVI, some of the features are removed from the Breast
Cancer dataset, using the MAR, MCAR, and systematic missing value models. For each of the
resulting datasets, 1/CVI is calculated and plotted in Figure 5 versus the number of the samples
(sample space size) and the percentage of the missing values. The results show that the
relationships between the 1/CVI and the missing value parameters depend on the pattern of the
missing values, although it is always a monotone function. For example, a 1/CVI of 20 equals
23%, 25%, and 40% missing values for the systematic, MAR, and MCAR models, respectively
(Figure 5.b). Thus, for example, for a dataset with the MAR missing value pattern, the selection-
fusion algorithm is superior when more than 23% of the data is missing. Based on Figure 5.a,
the same argument can be made for the sample size. Figure 5 also shows that the systematic
missing value pattern is more sensitive to the percentage of the missing values and the sample
size compared with the MAR and MCAR models. In the systematic pattern, the 1/CVI increases
from 20 to 40 when the missing values increase about 10%, while in the MCAR model, this
requires at least 20% more missing values.

In the fourth experiment, the effect of the number of subsets on the performance of the proposed
method is evaluated by applying the method to the original HBIDS dataset and additional
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datasets generated by randomly removing some of the features from the original dataset. The
results are graphed in Figure 6.a. Note that with 10% missing values, 5 subsets yield the
maximum performance. In this case, the performance does not improve much by increasing
the number of subsets beyond 5. On the other hand, with 30% missing values, at least 8 subsets
are required to get the maximum performance.

In the fifth experiment, the performance of the proposed approach is compared with the
multiple imputation method by estimating their Receiver Operating Characteristic (ROC) for
the HBIDS dataset. The results graphed in Figure 6.b show that our approach has higher
sensitivity and specificity. The area under the ROC curve of the proposed method for the dataset
with 20% missing values is about 5% larger than that of the multiple imputations.

5. Discussion
Clustering is a well-established field and many of its results are applicable to the missing value
problem. The optimal number of subsets in our application has a close relationship with the
number of clusters in the clustering algorithms [11,12]. When the number of clusters is
unknown, the elbow criterion [12] is a common rule of thumb to determine the number of
clusters. Also, as shown in the clustering literature, determining the number of clusters is an
NP-Complete problem [12] but many fast suboptimal methods are proposed for it [11].

Since we use a weighted combination algorithm in the fusion step, the number of subsets may
not be very important. However, more subsets are not always desirable because the number of
parameters that need to be estimated in the fusion stage depends on the number of subsets.
With a small number of subsets, the parameters can be estimated more reliably using a limited
number of samples. In addition, although for the weak classifiers, the weight is small,
accumulation of a large number of weak subsets may deteriorate the overall performance.

The sample size and the percentage of the missing values are two important parameters of the
data but these parameters are not necessarily the most appropriate measures for the
quantification of the complexity of the missing values. Our experimental results (Figure 4)
show that the superiority of the selection-fusion method almost always improves as the CVI
decreases. This confirms that this index describes the complexity of the missing value problem
appropriately.

The relationship between the complexity of the missing value problem and the CVI is nonlinear
and depends on parameters other than the sample size and the missing value percentage.
However, our experiments using three databases show that the relationship is monotone (Figure
5). When the sample size decreases, the 1/CVI increases but the rate of its increase depends on
the missing value pattern. When the data is MCAR, the CVI does not change as much as the
other models as the sample size changes.

The impact of the diversity of the classifiers on the performance of the proposed method is
also explored through the evaluation of the CVI (Figure 5). When 1/CVI is large, classifiers
with more diverse performance can be found. This is due to the fact that we select one classifier
from each cluster and thus the distance between the selected pairs of classifiers is large (i.e.,
they are diverse) when the 1/CVI is large. A large 1/CVI corresponds to a small sample size
and a large missing value percentage. Thus, we can conclude that more missing values in the
data for a fixed sample size produce more clusters and therefore more subsets (Figure 6.a).
Comparing the performance of our approach with the multiple imputations in their applications
to the HBIDS dataset shows that our approach has higher sensitivity and specificity (Figure
6.b).
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A comprehensive analysis using 8 datasets with different sample sizes and different data
models show that our selection-fusion approach is superior to the previous approaches when
there are at least 20% missing values added with the MAR model. This difference is more
pronounced in the Sonar, Iris, Wine, and HBIDS datasets. These four datasets have smaller
sample sizes and therefore, the 1/CVI increases faster with the missing values. In particular, in
the HBIDS dataset, the presence of systematic missing values makes the 1/CVI more sensitive
to the large percentages of the missing values.

In summary, the proposed selection-fusion algorithm is applicable to the problems with a small
CVI. This usually happens in the datasets with a small number of samples and a large percentage
of missing values.

6. Conclusion
Evaluation of the proposed selection-fusion algorithm on different types of datasets shows that
it can improve the classification performance on datasets with missing values. Our study shows
that the estimation of the missing values by the EM method works fine when the percentage
of the missing values is small. However, as the percentage of the missing values increases, its
performance deteriorates such that in some cases (like HBIDS), the pairwise deletion approach
may offer a superior solution. The selection-fusion approach maintains an acceptable
performance when the percentage of the missing values is small, at the expense of more
computational complexity in the classifier training and application.

The results of the surgery candidate selection problem (HBIDS) show that the selection-
fusion algorithm outperforms the other approaches. Also, the results of the Sonar and some
other UCI datasets agree with this observation. While the limitations in the surgery candidate
selection such as a large percentage of the missing values, a non-MAR missing value pattern,
and a small number of samples are the challenging problems in the medical record analysis,
the proposed selection-fusion approach is an appropriate solution to these problems. The
results show that the proposed approach outperforms the EM and MI methods in this type of
missing value patterns with a small CVI. In addition, we observe that this index decreases when
the sample size decreases or the percentage of the missing values increases. Based on these
two observations, we conclude that the proposed missing value management method is most
appropriate when the number of samples is small and the percentage of the missing values is
large.
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Fig. 1.
Selection-fusion approach: Overall view of the proposed two stage classification approach. In
the selection stage, a set of classifiers are trained on different feature spaces (subsets). In the
fusion stage, the results of the classifiers of the selection stage are combined.
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Fig. 2.
Subsets in the feature space: In the very simple case of just one missing value, two subsets can
be used to cover all of the samples.
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Fig. 3.
Selection-fusion algorithm for missing value management: B is the set of all subsets, M is the
missing value matrix as defined in Equation (1), A is the co-accordance binary matrix as defined
in Equation (2), C is the subset similarity matrix as defined in Equation (3), D is the distance
matrix as defined in Equation (5), CVI is the cluster validity index as defined in Equation (6),
xj is the testing sample, φ̃i,xj is the fusion weight as defined in Equation (11), and ΓBB(x) is the
classification result for the testing sample x as defined in Equation (9).
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Fig. 4.
Performance of missing value management methods versus cluster validity index: (a)-(c) the
results of the UCI Breast Cancer and Pima Diabet datasets, and the human brain image database
system (HBIDS), respectively (refer to Table 1). The selection-fusion (SF), expectation
maximization (EM), multiple imputations (MI), and CART methods are compared. 1/CVI
increases as the percentage of missing values increases. Note the overall superiority of the
SF method especially when 1/CVI is large.
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Fig. 5.
(a) Effect of the sample size on the cluster validity index (CVI) of the UCI Breast Cancer
dataset: In general, 1/CVI increases as the number of samples decreases. However, the rate of
change depends on the missing value model. Here, MCAR, MAR, and systematic missing
value are compared. (b) Effect of missing value percentage on CVI: In general, 1/CVI increases
as the percentage of missing values increases. However, the rate of change depends on the
missing value model. Note that when 1/CVI is large, classifiers with more diverse performance
can be found. This is due to the fact that we select one classifier from each cluster and thus the
distance between selected pairs of classifiers is large (i.e., they are diverse) when 1/CVI is
large.
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Fig. 6.
(a) Effect of the number of subsets on the performance of the method for the human brain
image database system (HBIDS). This figure compares the performance for 10%, 20%, and
30% missing values. As a rule of thumb, 6 to 10 subsets are sufficient. Let alone how much
data is missing, more than 10 subsets do not seem to improve the performance. (b) Receiver
Operating Characteristic (ROC) curves for the surgery candidate selection problem. The
selection-fusion (SF) and Multiple Imputation (MI) methods are compared. Note the
superiority of SF.
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