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ABSTRACT

Motivation: Time-course gene expression datasets provide
important insights into dynamic aspects of biological processes,
such as circadian rhythms, cell cycle and organ development.
In a typical microarray time-course experiment, measurements
are obtained at each time point from multiple replicate
samples. Accurately recovering the gene expression patterns
from experimental observations is made challenging by both
measurement noise and variation among replicates’ rates of
development. Prior work on this topic has focused on inference
of expression patterns assuming that the replicate times are
synchronized. We develop a statistical approach that simultaneously
infers both (i) the underlying (hidden) expression profile for each
gene, as well as (ii) the biological time for each individual replicate.
Our approach is based on Gaussian process regression (GPR)
combined with a probabilistic model that accounts for uncertainty
about the biological development time of each replicate.
Results: We apply GPR with uncertain measurement times to a
microarray dataset of mRNA expression for the hair-growth cycle in
mouse back skin, predicting both profile shapes and biological times
for each replicate. The predicted time shifts show high consistency
with independently obtained morphological estimates of relative
development. We also show that the method systematically reduces
prediction error on out-of-sample data, significantly reducing the
mean squared error in a cross-validation study.
Availability: Matlab code for GPR with uncertain time shifts is
available at http://sli.ics.uci.edu/Code/GPRTimeshift/
Contact: ihler@ics.uci.edu
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1 INTRODUCTION
A typical microarray time-course expression dataset consists of
measurements taken at a relatively small number of time points
(e.g. 5 to 10), where at each time point microarray measurements
are obtained on a small number (e.g. 3) of replicate samples. There
has been considerable work in recent years in bioinformatics on
the development of statistical techniques for accurately inferring
expression profiles from such data, in the face of both measurement
noise and biological variation across replicates (Bar-Joseph, 2004;
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Fig. 1. A schematic of the time points (numbered by days since birth for
each mouse) where we profile the second hair growth cycle. The numbers in
parentheses are the numbers of replicates profiled at that time point.

Tai and Speed, 2006). In this article, we focus on a different source of
variation that has received little attention to date, namely uncertainty
about the precise biological time at which measurements were taken.
We are specifically interested in the case where replicates that
were measured at the same time point are in fact developing at
different rates and correspond to different developmental times. The
general intuition we pursue is that even though the underlying true
expression profiles for each gene are masked by considerable noise,
we can nonetheless infer time shifts for each replicate by analyzing
all genes simultaneously.

As a motivating example, in this article, we use a time-series
dataset of mRNA expression for the hair-growth cycle in the mouse,
with microarray measurements for 6333 hair-cycle-related genes
from 2 or 3 replicates at each of 9 time points, resulting in a total of 24
individual mice (Lin et al., 2004, 2009); see Figure 1. Hair follicles
grow in repeated cycles, each of which can be coarsely broken
down into three phases: anagen, catagen and telogen. These cycles
have been well-characterized morphologically, but are understood
incompletely at the molecular level. Time-course microarray data
have been shown to be useful for automated, reliable identification of
hair cycle-associated genes (Lin et al., 2004). However, in addition
to the usual measurement noise, a significant source of variability
arises from the fact that each sample in the time course is taken from
a different individual, or replicate, and since each replicate develops
at a slightly different rate, we can never obtain truly synchronous
time points. From morphological observation, we find that after
a few weeks, replicates which are of the same age (time since
birth) may differ in the stage of hair follicle development by as
much as 2–3 days. If the expression profile is changing rapidly
over time, these developmental differences can result in major
discrepancies among the replicates’ observations, leading to poor
estimates of the underlying expression patterns. Moreover, if the
time interval between successive samples is relatively small, it is
even possible for two replicates measured at successive time points
to be in reverse order, i.e. the replicate measured at the later time
point may be less developed than the earlier measurement. Figure 2
illustrates this point with images from two pairs of replicates at
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Fig. 2. Histological sections from the back-skin of mice taken at different
number of days since birth. 23-2 indicates a mouse that is 23 days old, and
second in the set of replicates. The darker (somewhat vertically oriented)
parts of the image correspond to hair follicles. For the pair of images in
each row, the younger mouse (left image) appears to be developmentally
ahead of the older mouse (right image), i.e. the mice have reversed orders of
morphological development with respect to calender time. (a) and (b) show
that 25-1 (which is in the Anagen I stage) is at an earlier stage (less follicle
development) than 23-2 (in Anagen I/II). (c) and (d) show that the follicles
in 39-3 (which is in the Catagen I/II stage) are less regressed (i.e. are less
developed) compared with 37-2 (in Catagen II/III).

successive time points. If the estimated profiles are disturbed by such
desynchronization, analysis tasks, such as estimating the underlying
expression profiles and identifying periodically expressed genes,
become more inherently difficult. These desynchronization effects
have been previously discussed but not addressed in a systematic
manner in existing literature (Erdal et al., 2004; Wichert et al.,
2004). For datasets measuring multiple modalities (transcriptome
and proteome, for example) or relatively short transient responses,
we may expect timing and desyncronization effects to be more
pronounced and methods of coping with these effects may become
critical to analysis.

In this article, we describe a Gaussian process regression (GPR)
approach that explicitly models desynchronization effects among
replicates. GPR is a Bayesian non-linear regression technique, and
has been previously applied in several contexts in bioinformatics
(Gao et al., 2008; Kirk and Stumpf, 2009; Lawrence et al.,
2007; Yuan, 2006). Rather than specifying predetermined shapes
or other parametric assumptions, such as linear or polynomial
regression, GPR is a semi-parametric method that uses the data
themselves to represent the function, smoothed by an assumed
covariance structure. Since we have little if any prior knowledge
to determine what expression patterns to expect for different
genes, it is reasonable to use GPR to automatically discover the
shapes. We note in passing that our general approach for modeling
desynchronization among replicates should be generally applicable
to other statistical profile modeling methods such as splines (e.g.
Bar-Joseph et al., 2003).

To consider replicate desynchronization, we assume that each
replicate has an ‘ideal’ physiological age, and that the expression
profile viewed with respect to the physiological age is shared

across replicates. The observed age is then the ideal physiological
age plus a time shift due to developmental drift. We model
the time shift using a Gaussian prior, and use a maximum
a posteriori (MAP) approach to estimate the time shifts and
expression patterns simultaneously. We evaluate our method using
the aforementioned hair-cycle dataset, comparing our predicted
time shifts with morphological observations, and also using cross-
validation to measure the predictive accuracy of the model. Our
experiments indicate that the time-shift estimates from our model
both agree with independent morphological evidence and provide
more accurate prediction of expression profiles for out-of-sample
replicates and genes. Our approach should be generally useful for
reducing uncertainty and improving the quality of inferred profiles
for time-course microarray data, as well as more specific tasks such
as analysis of differential expression in time-course data (Storey
et al., 2005).

Our method is substantially different from work on ‘aligning’
time-course datasets using techniques, such as dynamic time-
warping algorithms (Aach and Church, 2001), continuous-time
modeling of expression data by B-splines (Bar-Joseph et al., 2003;
Kaminski and Bar-Joseph, 2007) and discriminative hidden Markov
models (Lin et al., 2008). Those approaches focus on finding an
optimal matching between two sequences by aligning the time
points, provided that there are enough time points for matching
to occur. Such methods, however, are not directly applicable to
situations where each replicate is measured at only one time
point, as in the aforementioned hair-cycle dataset. In contrast, the
methodology we propose in this article can be applied whether each
replicate is observed at a single time or at many.

Like any method of estimating expression profiles, we assume
that the signals are sufficiently smooth to be estimated from the
measurements. Furthermore, we assume that at least some signals
are smooth compared with the temporal uncertainty, to allow the
direction and magnitude of shifts to be estimated. Finally, we also
assume that all genes are affected jointly by the time shift, which
could be violated if some genes are influenced by external timing
effects; in theory the model could be extended to include such
effects. Our method is most similar to the general framework of
total least squares (TLS) or error-in-variables (EIV) modeling in
regression (Markovsky and Van Huffel, 2007; Van Huffel et al.,
2007), which minimizes the weighted sum of errors on both
dependent and independent variables; our model can be viewed as
a Gaussian process (GP) version of TLS or EIV.

2 METHODS
We used Affymetrix Mouse Genome 430 2.0 DNA microarrays to profile
mRNA expression of 45 101 probe sequences in mouse back skin in the
second hair growth cycle (Lin et al., 2009). Nine representative time points
were selected to measure the gene expression, shown in Figure 1. Two
or three replicates were profiled at each time point, and we restricted our
attention to 6333 genes that had been previously determined to be hair-cycle
regulated (Lin et al., 2004). Expression values were normalized by taking
logarithms and subtracting their mean value across the replicates and time
points.

2.1 GPR
Let ti, for i=1,2,...,n be the collection of time points at which we measure
the expression (Fig. 1). Let yg,m(t) be the expression of the g-th gene from the
m-th replicate at time t. For convenience, we write the data in vector form,
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defining yg,m
j = yg,m(tj), and writing yg =[yg,1

1 ,yg,2
1 ,yg,1

2 ,...,yg,2
n ,yg,3

n ]T and

y=[y1,y2,...,yN ].
Let us first suppose that there is no time shifting in the data. We model

the expression profile yg,m(t) as a GP, so that any finite number of yg,m(ti)
have a jointly Gaussian distribution. Since the expression data of each
gene have been normalized to have mean zero across time, we assume that
the mean of this GP is zero, and the GP is determined by its covariance
function. A common, reasonable choice of covariance function is the squared
exponential (Rasmussen and Williams, 2006)

k(ti,ti′ )=σ2
f exp

[−(ti −ti′ )2

2l2

]
,

where σ2
f is the variance of any particular point yg,m(t), and l is the length

parameter. For two nearby time points, ti ≈ ti′ , we have k(ti,ti′ )≈σ2
f , meaning

the profile values are highly correlated. In contrast, when ti is further
away from ti′ , k(ti,ti′ ) decreases toward zero, making the profile values
uncorrelated. The length parameter l determines how fast the correlation
decays with time.

The microarray data are noisy due to measurement errors and biological
factors—two measurements taken at the same physiological age will not be
exactly equal. We therefore model each observation as a noisy observation
of the underlying expression profile. This is equivalent to modifying the
covariance function to

k(m,ti;m′,ti′ )=σ2
f exp

[
−(ti −ti′ )

2

2l2

]
+σ2

nδ(m,ti; m′,ti′ ), (1)

where δ(·;·) is the Kronecker delta, equal to one if and only if ti = ti′ and
m=m′. Then, the joint distribution of yg is Gaussian,

yg ∼N(0,K) (2)

where the covariance matrix K is given by

K =

⎛
⎜⎜⎜⎝

k(1,t1;1,t1) k(1,t1;2,t1) ··· k(1,t1;3,tn)
k(2,t1;1,t1) k(2,t1;2,t1) ··· k(2,t1;3,tn)

.

.

.
.
.
.

. . .
.
.
.

k(3,tn;1,t1) k(3,tn;2,t1) ··· k(3,tn;3,tn)

⎞
⎟⎟⎟⎠.

Notice that the last term in Equation (1) is non-zero only in the diagonal
of K. This ensures that if σ2

n >0 then K is always non-singular.
We further assume that the expression profiles of different genes yg are

statistically independent, and share the same GP parameters: θ ={l,σf ,σn}.
We can estimate the parameters by maximizing the log likelihood, which is
given by

logp(y|θ )=
∑

g

logp(yg|θ )

=
∑

g

(
− 1

2
ygT K−1yg − 1

2
log|K|− n

2
log2π

)
.

Using GPR, we can estimate the gene expression at any given time point t∗.
For a given t∗, the conditional distribution of yg(t∗), denoted yg∗, given the
observed data yg, is also Gaussian:

yg∗|yg ∼N(K∗K−1y,K∗∗ −K∗K−1KT∗ ),

where K∗∗ =k(yg∗,yg∗) and

K∗ =[k(yg,1
1 ,yg∗),k(yg,2

1 ,yg∗),...,k(yg,3
n ,yg∗)]T .

The minimum mean squared error estimate for yg∗ is the mean of this
conditional distribution ȳg∗, and the estimate uncertainty is given by the
conditional variance:

ȳg∗ =K∗K−1yg, Var(yg∗)=K∗∗ −K∗K−1KT∗ . (3)

2.2 Modeling temporal uncertainty
Now suppose that each replicate has an ideal, physiological age, denoted t̂m

i ,
which corresponds to the degree of physiological development at the time at
which the replicate is measured. Our observed age ti, which is the nominal
or temporal time at which the replicate is measured, can be treated as a noisy
observation of t̂m

i :
ti = t̂m

i +τm
i ,

where τm
i is the time shift associated with the m-th replicate at time ti; for

convenience, we also write the vector τ =[τ1
1 ,τ2

1 ,...,τ3
n ]T .

It is natural to model the τm
i using a Gaussian prior distribution,

τm
i ∼N(0,σ2

τ ).

To incorporate the time shifts into GPR, we still model the expression
values using a GP as in Equation (2), but Equation (1) is replaced by

k(m,ti;m′,ti′ )=σ2
f exp

[
−(t̂m

i − t̂m′
i′ )2

2l2

]
+σ2

nδ(m,i; m′,i′)

=σ2
f exp

[
−(ti −τm

i −ti′ +τm′
i′ )2

2l2

]
+σ2

n δ(m,ti; m′,t′i ).

Thus, the expression profiles are GP with respect to the ideal, physiological
ages t̂m

i , rather than the nominal or observed ages ti.
We employ a MAP approach to estimate the τm

i and θ , by optimizing the
posterior distribution over both. The posterior distribution is given by

logp(τ |y,θ )= logp(y|θ ,τ )+logp(τ |στ )

=
∑

k

(
− 1

2
ygT K−1yg − 1

2
log|K|

)
− τ 2

2σ2
τ

− logστ . (4)

Maximization of Equation (4) was carried out using the large-scale
fminunc algorithm in MATLAB’s non-linear optimization toolbox. This
algorithm uses a trust-region-based Newton method, which iteratively
optimizes a local quadratic approximation to the objective function in a
small neighborhood around the current estimate. For more information, see
the documentation (MathWorks, 2009).

Note that Equation (4) places a prior distribution on τ , but assumes no
(informative) prior information about θ . The former reflects our intent that
biological time be similar to the measurement time, i.e. we should not allow
τ to take on arbitrary values. However, we have no specific prior information
about the GP parameters θ ; if additional information were available it could
be included in Equation (4).

3 RESULTS
We estimate the time shifts and GP parameters by optimizing
Equation (4) for the microarray data described in Section 2.1, and
can compute the estimated profiles for each gene using Equation (3).
When referring to the data, we use the notation ‘ti-m’ to represent
the m-th replicate measured at the i-th time point, ti. For example,
‘23-1’ denotes the first replicate measured on the 23rd day.

Figure 3 shows example curves fit with and without time shifts.
In general, the overall curve shapes are similar when estimated
with and without time shifting, since the τ remain small. However,
time shifts can refine the pattern, decrease random fluctuation and
reduce uncertainty. Figure 3a–c shows three genes fit using GPR
without time shifting. The curves display considerable random
fluctuation and fitting errors. It is hard to discern meaningful
patterns. Figure 3d–f fits the same genes, but including time shifts.
The small fluctuations in Figure 3a–c are interpreted as arising from
the time shifts; the estimated curves are smoother, highlighting the
underlying patterns, and the estimated noise σn is decreased.
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Fig. 3. Examples of curve fitting using GPR with time shifts. The dots represent the gene expression of the replicates at their nominal time. Their time shifts
are shown by arrows, whose end points indicate the shifted data. Curves show the estimated gene expression profiles, with pointwise 95% confidence intervals
shaded. Here, we use στ =1. (a–c), Curves fit to genes Ggt1, Pixna1 and S100a9 using GPR without time shifts. The estimated GP parameters are l=2.15,
σn =0.41, σf =0.75. (d–f), The same genes as (a–c), including time shifts. The estimated GP parameters are l=2.50, σn =0.33, σf =0.86. Replicate 34-1 is
circled for emphasis; its time shift in (e) and (f) greatly improves the apparent fit.

(a) (b) (c)

Fig. 4. The estimated values of θ =[l,σn,σf ]T when using different values of στ are plotted. The length scale l increases when στ increases, and the value of
θ changes little when στ is sufficiently large. This suggests again that the result of the algorithm is insensitive to στ .

The changes in estimated parameters are quantified in Figure 4,
which shows the estimated values of θ as στ is increased. For στ

near zero, little or no time shifting occurs. As στ increases, the length
scale l also increases, suggesting that the random fluctuations are
decreased in the shifted data. The noise σn decreases, indicating a
better fit to the data, and σf increases, as we explain the variations
within each time point as variation across time. Although this could
indicate overfitting, we show later that time shifted profiles improve
the predictive accuracy in cross-validation, suggesting that these
changes do in fact reflect the underlying structure of the data. We
also see that the parameter estimates are fairly stable across a wide
range of στ .

We can also characterize the stability of our estimate using
the Laplacian approximation to the posterior, characterized by a
covariance matrix around the MAP estimate. We find that the
primary direction of uncertainty is an equal shift of all τ (which

yields the same expression profiles and is thus unobservable from the
data); the second allows for an equal shift of replicates in days 23–29,
which yields very similar profiles due to the large gap between day
29 and day 34. Ignoring these two directions, the estimates of τ are
highly certain, each with a residual posterior standard deviation (SD)
between 0.01 and 0.07 (compared with a minimum 2-day separation
between measurement times).

It is important to note that the time shifts are optimized using
the entire set of genes, i.e. they are not optimized individually for
each gene. For example, 34-1 (the circled point in Fig. 3d–f ) is
not strongly encouraged to shift by the profile in Figure 3d, since
the expression profile is relatively flat during that period. Similarly,
there is only a slight improvement obtained by the large time shift
indicated by the arrow at datum 34-1 in Figure 3d. However, if we
look at the gene in Figure 3e and f, the rightward time shift of 34-
1 greatly reduces its distance from the profile, strongly suggesting
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Table 1. The within-group orders of the estimated time shifts from each of
the expert and algorithm, and the rank correlation between the two orders

ti 23 25 27 29 34 37 39 41 44

Expert
Orders

1,2 1,2 2,3,1 1,2,3 2,1 1,3,2 3,2,1 1,3,2 1,2,3

Algorithm
Orders

1,2 1,2 3,1,2 1,2,3 2,1 3,1,2 2,3,1 1,3,2 1,3,2

ρi 1 1 −0.5 1 1 0.5 0.5 1 0.5

that the time shift of 34-1 is preferred by these and similarly shaped
genes. The time shifts integrate the information across all the genes,
and can thus reflect the relative development stage of the entire
system.

3.1 Comparing with observed morphology
To verify that the time shifts we learn correspond to actual
differences in the developmental rates among the replicates, we
can compare to estimates of the physiological age based on
morphological observations. We had a domain expert independently
estimate the developmental stage and rank the replicates in order of
degree of development using only images from histological sections
of the replicates taken at the time of measurement. We then compared
this ranking with the replicate order predicted by our algorithm’s
estimates of biological time t̂i, based solely on the gene expression
measurements.

The rank correlation coefficient between these two global
orderings was found to be 0.98, showing that they are in close
correspondence. However, it is not immediately obvious how to
measure the significance of this number. Both rankings rely on
the nominal ordering of measurements indicated by their respective
days, e.g. that measurements on day 23 are almost certainly earlier
than measurements from day 34. It is difficult to know how much
influence this implied ordering has on the rankings.

However, we can control for the implied ordering and assess the
significance of our ranking quantitatively by comparing only the
within-group orders, i.e. the relative ordering of replicates measured
at the same time. These relative orders are listed in Table 1. For
example, for day 23, both our expert and the algorithm ranked 23-1
as being at an earlier developmental stage than 23-2, so the order for
both is [23-1, 23-2], abbreviated as [1, 2] on day 23. We can then
compute the rank correlation coefficient ρi between the orderings at
each time point, also shown in Table 1. We score the full ranking
by simply taking the average score (correlation coefficient) at each
time point, yielding ρ̄= 1

n
∑

ρi =0.6667.
It is then possible to assess the significance of ρ̄, compared with

the plausible null hypothesis that the ordering of replicates measured
at the same day is uniformly random. We compute the P-value, or
probability under the null hypothesis of obtaining a score as high
or higher than the observed correlation, to be 0.0037. This shows
that the expert ranking based on histology and the algorithm ranking
based on expression are in fact in close correspondence.

However, this P-value may underestimate the quality of the
algorithm ranking. We have controlled for the information from the
measurement day by using within-group rankings, but this ignores
any reordering of replicates across days. Both rankings occasionally

replicate ID

Fig. 5. The estimated time shifts τ by maximizing Equation (4) when στ =1.
The x-axis represents the replicates and their measured time points; the y-
axis represents the physiological ages t̂m

i . Longer lines show measurement
times without shifting, whereas short lines show the estimated physiological
ages of the replicates, with error bars indicating the maximal and minimal
time shift values when στ is varied from 0.025 to 2.

reversed the ordering implied by the measurement day, ranking a
replicate at an earlier day as being developmentally later than some
replicate at the next time point. Quantifying the significance of these
reversals is difficult, but we can discuss them anecdotally.

In the morphologically based ordering, there were only two
instances in which replicates at successive time points appeared
to be in reversed order of morphological development. These are
replicates 25-1 and 23-2, in which the latter appears to be further
developed in theAnagen stage of the hair cycle, and the pair 39-3 and
37-2, in which the latter appears to be in a later stage of the Catagen
stage, as shown in Figure 2. Both of these order reversals were
correctly predicted by the model, as shown in Figure 5. However, the
model also predicts two other reversals (also at time points 37–39),
which were not predicted by our expert. Without ground truth, the
accuracy and significance of these reversals is difficult to quantify.

Finally, we test the sensitivity of the algorithm’s ordering to the
choice of the parameter στ , which controls how easy it is to shift each
time away from its nominal value. Figure 5 shows the time shifts
found using several different values of στ . Although the values of τi
do change with the variance στ , the relative differences among the
τi do not change significantly, especially among replicates measured
at the same time point. This makes the rank correlation relatively
stable and insensitive to στ .

3.2 Predictive accuracy in cross-validation
Another way to measure whether the learned time shifts correspond
to real developmental phenomena is to check whether they improve
our ability to predict the expression levels of data not used in the
learning process. We use cross-validation to maximize the amount
of data on which we can make predictive measurements.

Specifically, we subdivide the data into two sets, training and
test, in which the test set is made up of the intersection of a subset
of genes and a subset of the replicates (Fig. 6a). Only the training
dataset is used for learning the expression patterns of the genes and
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Fig. 6. (a) Data partitioning for cross-validation. The testing data consists of the intersection of a subset of genes and of replicates; this allows us to predict
the profile shape for all genes and time shift for all replicates while withholding unused data for testing. (b) Percent reduction in the average MSE when
time shifts are included in the model. Results are grouped by replicate and found using cross-validation; see text. Most replicates have lower MSE (positive
reduction) after introducing time shifts. (c) An example curve fit during cross-validation. The curve and time shifts are predicted using only the training data
(data not shown); dots show the expression levels of the nine withheld test replicates (one at each time point) at their nominal times, and arrows show the
estimated time shifts.

time shifts of the replicates, maximizing Equation (4) on the training
set to obtain an estimate of θ and τ . Since the training set includes
some genes for every replicate, we obtain an estimate of its time
shift τi and thus its estimated biological time t̂i. Similarly, since the
training data include some replicate measurements for every gene in
the training data, we can compute an estimate of the gene’s profile
and predicted expression level at the held-out replicates’ times ti
using Equation (3). We then measure the mean squared error (MSE)
between the predicted values and the measured expression levels for
the test replicates and genes, to see if the time shifts improve our
predictive accuracy.

We use a cross-validation strategy for evaluating the predictions.
First, we randomly partition the genes into 10 subsets. In each
round of cross-validation, one of these subsets is used to define
the testing set, and the other nine subsets are assigned to the training
set. Similarly, we randomly select one replicate at each time point to
define the test set; recall that the test set is defined as the intersection
of the test genes and test replicates. We select 100 such groups for
each subset of genes; each round of cross-validation consists of
leaving out the all the data corresponding to the randomly selected
replicates for the current partition of genes.

In each round of cross-validation, we predict the time shift and
expression profile of each gene/replicate pair, and measure the error
from the observed expression value. We compute the MSE for each
replicate by averaging over all rounds in which that replicate was left
out, and compare with the MSE for a prediction made without time
shifts. The percentage reduction in MSE is shown for each replicate
in Figure 6b. We can see that most replicates improve their MSE with
time shifts; only two (25-1 and 41-1) show any increase, and these
increases are relatively small. The average MSE over all replicates is
0.2042 with time shifts as compared with 0.2515 without, resulting
in a 20% reduction of average MSE. Figure 6c shows an anecdotal
example of the held-out measurements and their estimated time
shifts compared with the profile learned on the training data.

Finally, to test whether the predictive accuracy is sensitive to the
variance in time, we performed the same cross-validation study at
various values of στ . The results are shown in Figure 7. For very low
στ , time shifting is essentially disallowed and the MSE matches that
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Fig. 7. The average MSE found using cross-validation, as a function of the
time-shift variance parameter στ . Beyond very low values, the predictive
performance is fairly insensitive to this parameter.

of the model without time shifts. However, as στ increases, the MSE
drops rapidly, and is relatively stable over the rest of the interval.
We conclude that beyond very low values (empirically στ >0.1), the
choice of στ does not greatly influence the predictive accuracy.

4 DISCUSSION AND CONCLUSION
We have argued that due to biological variation, time-course
microarray data suffer from noise not only in the observed
expression values, but also in the axis corresponding to the time
of observation. Typical estimates of the expression profile assign
all the uncertainty to the observation value, providing less accuracy
and lower confidence in the resulting shapes. By introducing a model
with uncertainty in the time axis, we can accurately infer the relative
degree of development in each replicate and improve our estimates
of the temporal expression profile.

The predictions of our GPR model show high consistency with
human-generated estimates based on morphological observation
(Table 1). Differences between the two estimation methods could
be due to a number of factors. The expert ranking involves some
subjective uncertainty, which can be hard to gauge; for example,
the orientations of the histological sections are not always ideal,
making morphological estimates more difficult. There is also always
the possibility of human error in the data collection and processing.
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As an example, we examined the three replicates on the 27th
day, in which the ordering of the estimated time shifts from the
model differs significantly from the expert’s ordering based on
morphological results (Table 1). We find that the keratin-associated
protein expressions, an excellent marker for anagen progression,
supports the hypothesis that replicate 27-4 is in fact more delayed
in development as predicted by the algorithm.

In addition to not requiring histological sections, one advantage to
the regression approach to estimating time shifts is that it provides
a quantitative estimate of the amount of relative development, as
compared with a subjective ordering. For the purposes of improving
the estimated shapes of expression profiles, the proposed method
also has the advantage that it works directly with the relevant
measurements. While this carries some risk of overfitting, the
predictive improvement seen in cross-validation suggests that the
phenomena being identified are real effects in the expression data.

In terms of further improvements, in the general approach
presented here, we modeled different gene expression profiles as
independent GP sharing the same GP parameters and time shifts.
While these assumptions give results that justify the inclusion of
time shifts, there is still room to further refine and improve upon the
model. For example, since different genes promote or inhibit one
another in a regulation network and often share similar basic shapes,
the assumption of independence is overly simple. One possible way
to address this issue would be to group the genes into clusters, where
each cluster shares an underlying shape or parameters. The grouping
could be estimated simultaneously with the GP parameters, by
modeling the data as a mixture model and using statistical estimation
techniques such as the expectation–maximization method. There
may also be temporal effects that are not shared by all genes or
are unrelated to development, such as external effects, which would
require further extension of the model.
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