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ABSTRACT

Motivation: The rapid development of genotyping technology and
extensive cataloguing of single nucleotide polymorphisms (SNPs)
across the human genome have made genetic association studies
the mainstream for gene mapping of complex human diseases. For
many diseases, the most practical approach is the population-based
design with unrelated individuals. Although having the advantages
of easier sample collection and greater power than family-based
designs, unrecognized population stratification in the study samples
can lead to both false-positive and false-negative findings and might
obscure the true association signals if not appropriately corrected.
Methods: We report PHYLOSTRAT, a new method that corrects for
population stratification by combining phylogeny constructed from
SNP genotypes and principal coordinates from multi-dimensional
scaling (MDS) analysis. This hybrid approach efficiently captures both
discrete and admixed population structures.

Results: By extensive simulations, the analysis of a synthetic
genome-wide association dataset created using data from the
Human Genome Diversity Project, and the analysis of a lactase-
height dataset, we show that our method can correct for population
stratification more efficiently than several existing population
stratification correction methods, including EIGENSTRAT, a hybrid
approach based on MDS and clustering, and STRATSCORE, in terms
of requiring fewer random SNPs for inference of population structure.
By combining the flexibility and hierarchical nature of phylogenetic
trees with the advantage of representing admixture using MDS, our
hybrid approach can capture the complex population structures in
human populations effectively.

Software Availability: Codes can be downloaded from
http://people.pcbi.upenn.edu/~Iswang/phylostrat/

Contact: mingyao@Qupenn.edu; iswang@upenn.edu.
Supplementary information: Supplementary data are available at
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1 INTRODUCTION

The rapid development of genotyping technology and extensive
cataloguing of single nucleotide polymorphisms (SNPs) across
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the human genome have made genetic association studies the
mainstream for gene mapping of complex human diseases. For
many diseases, the most practical approach is the population-based
design with unrelated individuals. Although having the advantages
of easier sample collection and greater power than family-based
designs, population-based design is prone to population stratification
(Marchini et al., 2004). Population stratification refers to the
presence of a systematic difference in allele frequencies between
subpopulations in a study due to ancestry difference between study
subjects. Unrecognized population stratification can lead to both
false-positive and false-negative findings and can obscure the true
association signals if not appropriately corrected.

There are three types of population structures that might
be observed in genetic association studies: discrete population
structure consists of populations that are remotely related (such
as Europeans, Africans and Asians) and the population structure
is easy to discern as the individuals are clearly separated. Admixed
population structure consists of subjects of admixed ancestry (such
as African Americans and Hispanic Americans) with different
individuals having different degrees of admixture, and that cannot
be separated into discrete clusters. Intercontinental gradients can
also be considered as admixed, although the degree of admixture
is smaller than African Americans and Hispanic Americans. In
other scenarios, we may see hierarchical population structure
that consists of both discrete and admixed population structures.
Hierarchical population structures may be seen in studies that
involve multi-ethnic cohorts, which are becoming increasingly
common in genetics consortiums (Serre et al., 2008).

Recognizing the issue of population stratification induced by
population structures, various methods have been developed
to control for population stratification. Two early approaches
are genomic control (Devlin and Roeder, 1999) and structured
association (Pritchard et al., 2000). The genomic control method
corrects for stratification by adjusting association statistics with an
overall inflation factor obtained from a set of random markers that
are not associated with the phenotypes of interest. However, some
markers differ in their allele frequencies across ancestral populations
more than others. Thus, the uniform adjustment may be insufficient
at markers having strong differentiation across ancestral populations
and may be superfluous at markers lacking such differentiation.
Structured association uses STRUCTURE program (Pritchard
and Rosenberg, 1999) to assign the study subjects to discrete
subpopulations and then aggregates evidence of association within
each subpopulation. This method is computationally intensive, and
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assignments of subjects to clusters are sensitive to the number of
clusters, which is often ill defined in many real studies.

The current state-of-the-art approach for the correction of
population stratification is EIGENSTRAT (Price e? al., 2006), which
computes principal components for SNPs across the genome to
identify population structure. In this approach, a small number
of ‘top’ principal components will capture the main axes of
genetic variation in the study subjects. Correction for population
stratification is carried out by including these top principal
components as covariates in a regression framework. Although
popular, several studies have demonstrated that EIGENSTRAT
will fail to correct for population stratification in certain scenarios
(Epstein et al., 2007; Kimmel et al., 2007; Luca et al., 2008).

Recently, Li and Yu (2008) proposed an extension of
EIGENSTRAT by incorporating cluster information obtained from
multi-dimensional scaling (MDS) analysis as additional covariates
in the adjustment. This MDS clustering approach tries to identify
both discrete and admixed patterns of genetic variation and correct
for their potential confounding effects by adjusting each position of
subject along identified axes of genetic variation and the cluster
membership simultaneously. This method is a direct extension
of EIGENSTRAT when the metric used by EIGENSTRAT is
adopted for measuring the genetic correlation between two subjects.
Simulation results demonstrate that the MDS clustering method
provides a more appropriate correction for population stratification
than EIGENSTRAT under simulation settings that they considered
(Li and Yu, 2008).

The goal of this article is to utilize phylogenetic trees to correct
for population stratification in genetic association studies with
unrelated individuals. Widely used in the study of evolution and
other fields of biology, a phylogeny represents the evolutionary
relationship between species as a tree structure, where each leaf
is an observed species, each internal node corresponds to the
most recent common ancestors of all species below it and each
internal edge represents a bipartition of leaves due to evolutionary
divergence. The use of phylogenetics in the study of human genetic
diversity has a long history dating back to the sixties: the approach
was first proposed by Cavalli-Sforza and Edwards (1967) who
developed likelihood estimation methods using allelic frequencies
in subpopulations. Distance measures that adjust allelic frequencies
are also available (Goldstein et al., 1995; Nei, 1972). The
phylogenetic approach has been used extensively in the analysis of
the Human Genome Diversity Project (HGDP) (http://www.stanford
.edu/group/morrinst/hgdp.html), which genotyped more than 1000
individuals collected at more than 50 geographic locations around
the world. The HGDP dataset has well-defined subpopulations
and complete population identification. The resulting phylogenies,
using microsatellites and SNPs, have been highly consistent and
compatible with the widely accepted pattern of human migration
(Jakobsson et al., 2008; Li et al., 2008; Rosenberg et al., 2002).

We propose a phylogenetics-based approach for correction
of population stratification based on several motivations. First,
widely used and thoroughly tested for decades to study evolution,
phylogenetics is a natural choice for detecting divergence in human
subpopulations. Phylogenetic analysis of the HGDP dataset shows
that this approach is robust and sensitive to subtle population
structures (Jakobsson et al., 2008; Li et al., 2008). Second, thanks
to decades of work by an active research community, many
phylogenetic reconstruction algorithms have been developed, and

efficient and versatile programs are widely available. Third, the
hierarchical characteristic of a phylogeny is easy to interpret and
visualize. Finally, phylogenetic trees are more flexible to represent
highly complex spatial structures than clusters obtained from
clustering-based algorithms (Li and Yu, 2008).

To correct for discrete, admixed and hierarchical population
structures, we propose to combine information from phylogeny
and MDS together with the phylogenetic tree representing discrete
population structure and the principal coordinates of MDS analysis
representing admixed population structure. Given the flexible nature
and the hierarchical characteristic of phylogenetic trees, we expect
this hybrid approach to perform well under complex population
structures, such as those from multi-ethnic studies with some of
the study samples showing admixed population structure, whereas
other study samples showing discrete population structure (Serre
et al., 2008).

2 METHODS

2.1 Construction of a phylogenetic tree

The first step in our method is to construct a phylogenetic tree of subjects from
the genetic marker data. We opt to use the distance-based approach, which
accepts as input a distance matrix, i.e. the pairwise dissimilarities between
every pair of individuals based on SNP genotypes and constructs trees
entirely from the distance matrix (Saitou and Nei, 1987; Studier and Keppler,
1988). In our analysis, we code the SNP genotypes as 0, 1 and 2, representing
the number of minor alleles, and calculate the distance as ‘2—the number of
alleles that are identical by state’ between two individuals. We then built
the phylogenetic tree using the FastME algorithm (Desper and Gascuel,
2002), a very fast distance-based phylogeny reconstruction algorithm that
shows better topological accuracy than the commonly used neighbor joining
algorithm (Saitou and Nei, 1987) in simulation studies. Compared with other
more computationally intensive methods such as maximum likelihood or
maximum parsimony, the distance-based approach is much more tractable,
especially when the number of individuals or the number of markers becomes
large. Note that the leaves of the constructed phylogenetic tree are individual
subjects in the study sample instead of subpopulations.

2.2 Reduced representation for the phylogenetic tree

We reduce the phylogenetic structure into a collection of bipartitions on
subjects in order for us to incorporate information from the phylogeny in the
association tests as covariates in a regression framework. Each bipartition
corresponds to an internal edge in a phylogenetic tree, which divides the
data into two groups: a phylogenetic tree with n leaves (subjects) will have
up to n—3 internal edges; in turn, the entire phylogenetic tree can be fully
recovered by these (n—3) bipartitions. For each bipartition, we can construct
a 0-1 vector indicating the bipartition membership by assigning all members
from one of the two subsets in a bipartition to have value 0, and all members
from the other set to have value 1. We cannot use all of the bipartitions in the
regression analysis, because (i) the degrees of freedom in the regression is
close to the number of observations (subjects) and significance will never be
reached; (ii) most bipartitions, in particular, bipartitions that separate a very
small number of subjects from the rest, are not informative for the purpose of
population stratification correction; and (iii) the bipartitions are not entirely
independent; for example, bipartitions for adjacent edges may only differ by
a small number of subjects. We select a subset of representative bipartitions
based on the following criteria:

(1) The relative size of either side of a selected bipartition is above some
given threshold. We used 2.5% in our analysis.

(2) Filter bipartitions by the correlation threshold so that each remaining
bipartition is correlated with at least one selected bipartition. We used
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Fig. 1. Illustration of the bipartition selection procedure. (A) A phylogeny
with 15 leaves. (B) The matrix of six bipartitions with size threshold of
at least three leaves on either side of the bipartition. (C) The pairwise
absolute correlation matrix. (D) The corresponding instance to the minimum
dominating set problem using correlation threshold 0.7. Black vertices
(1, 2, 3, 6) form the solution returned by the greedy algorithm; bipartitions
corresponding to the four vertices are also emboldened in the phylogeny (A)
and labeled in boldface in the matrix of bipartitions (B). Note that because
each vertex in (D) is adjacent to at least one black vertex, this ensures each
of the six bipartitions is correlated with at least one of the four chosen
bipartitions, so the reduced set of bipartitions still represents the topology of
the original phylogeny well.

0.7 as the correlation threshold for discrete population structures, and
0.1 for admixed population structures in the simulation studies. For the
analysis of the HGDP data and the lactase-height data, we also used
0.7 as the threshold. We discuss the selection of correlation threshold
in Section 4.

The bipartition selection problem can be formulated as the NP-hard minimum
dominating set problem in graph theory as follows (Garey and Johnson,
1979): let G=(V, E) be a graph where each vertex in the vertex set V
corresponds to a bipartition passing the size threshold. We add an edge
between any two vertices (u, v) to the edge set E if the absolute value
of the correlation between bipartitions associated with # and v is above
the threshold. The minimum dominating set problem finds a smallest set of
vertices V/ C V such that for every vertex u € V' —V, there exists a vertex v
in V’such that (u,v) € E. Our problem can then be solved by finding such a
minimum dominating set for G; then every bipartition is correlated with at
least one bipartition associated with a vertex in the dominating set. To select
bipartitions, we implemented a simple approximation algorithm [where the
size of the solution is at most 1 + In the size of the optimal solution (Garey and
Johnson, 1979)] by iteratively (i) selecting a vertex with largest degree and
add to the cover, then (ii) removing all adjacent vertices and their incident
edges from the graph. The selection step is repeated until all vertices are
removed. Figure 1 illustrates the bipartition selection procedure.

2.3 MDS analysis

MDS is a statistical technique that aims at displaying the similarity of
members of a set of objects. This technique starts with a matrix of similarities
or dissimilarities between a set of observations, and embeds the observations
as points in a low-dimensional Euclidean space so that Euclidean distances
between points in the plot are close to the original dissimilarities. Suppose
that T is a (n x n) positive-semidefinite symmetric matrix of similarities
among a set of n observations. From the spectral decomposition of T, we
have

T:‘[lblbll +T2b2b/2+"'+fnb,1b:1,
where 71 > 17 > ... > 1, are the eigen values of T and by, ba, ..., b, are the
corresponding eigen vectors. Alternatively, this may be written as

T=cic]+e2¢)+---+¢,¢),

where ¢;=t; / b;,j=1,2,...,n. Now consider the n observations as points in n
dimensional space with the j-th coordinate for the i-th observation equal to ¢;;,

1/2
)

the i-th element of ¢;. With this geometric interpretation of the n observations,
the Euclidean distance between the h-th and i-th observations is

2 n 2
Ahi :Zj=1 (Chj —C,‘j) .

MDS analysis attempts to find the optional ¢ dimensional (g <n)
approximation to the n dimensional representation so that the distance is
preserved.

2.4 Association test with adjustment of phylogenetic
bipartitions and principal coordinates from MDS
analysis

The phylogenetic bipartitions can effectively capture the population structure
information in a dataset when the structure is discrete or hierarchical. On
the other hand, some of the populations, such as admixed populations,
may contain continuous patterns of genetic variation. To incorporate both
types of population structures, similar to MDS clustering, a hybrid approach
proposed by Li and Yu (2008), we adjust for the population structure by the
phylogenetic bipartitions and the principal coordinates from MDS analysis.
This is done by representing the population structure as a collection of
selected bipartitions and principal coordinates from the MDS analysis and
introducing them together with the genotypes of the SNP as independent
variables, and the binary phenotype as the dependent variable in a regression
framework. To test for genetic association for case—control studies, we
conduct logistic regression with the following model:

logit[P(Y =1|g,X)]=a+Bg+y W+yT,

where Y represents disease status (1: affected; 0: unaffected), W represents
the selected phylogenetic bipartitions, I' represents the selected principal
coordinates from the MDS analysis, X represents a set of random markers
that are used for inference of population structure and g is the genotype score
for the testing SNP, with (0, 1, 2) for a multiplicative model, (0, 1, 1) for a
dominant model and (0, 0, 1) for a recessive model. To test for association
between the SNP and the disease status, either a likelihood ratio test, a score
test, or a Wald test can be carried out. For continuous phenotypes, we can
conduct linear regression with similar adjustments. We note that principal
components analysis (PCA) can be used instead of MDS and the computation
for PCA is faster than similarity matrix. We choose to use MDS because the
similarity matrix is already calculated when constructing the phylogenetic
tree; moreover, the results of MDS and PCA are generally similar.

Note that the selected phylogenetic bipartitions and principal coordinates
might be correlated because both of them represent population structure in
the data, although with emphasis on different types of variation. To avoid
the issue of multi-collinearity, when the correlation between a phylogenetic
bipartition and a principal coordinate is greater than 0.7, we will keep only
the principal coordinate in the regression model. It is worth noting that multi-
collinearity is also a concern for the MDS clustering approach. Similar to
what we did for PHYLOSTRAT, when testing the MDS clustering method
by Li and Yu (2008), we also used 0.7 as the correlation cut-off point to
remove a correlated cluster dummy variable.

2.5 Simulation set up

We conducted extensive simulations under various settings to compare
the performance of PHYLOSTRAT with four other methods, including
the standard Cochran—Armitage trend test without corrections (Armitage,
1955), the EIGENSTRAT approach (Price et al., 2006), the MDS clustering
approach (Li and Yu, 2008) and the STRATSCORE approach (Epstein et al.,
2007). We designed three sets of simulations, one for discrete population
structures, one for admixed populations and the other based on genotype
data from the HGDP samples (Li et al., 2008). In all scenarios, we coded the
genotype score for the testing SNP assuming a multiplicative model. In the
four methods we tested, either top 10 principal components (EIGENSTRAT
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Table 1. Population stratification configurations for discrete population
structure

Table 2. Population stratification configuration in the synthetic HGDP case—
control dataset

Configuration Group  Population I Population 2 Population 3  Population 4 Population Continent Case (n=452) Control (n=543)
Cl Case 200 300 1 Africa Central African
Control 300 200 Republic (n=29), Namibia (n=5)
C2 Case 250 250 Congo (n=15) Nigeria (n=23)
Control 0 500 Kenya (n=12) Senegal (n=23)
C3 Case 225 175 100
control 175 100 225 2 Middle Algeria-Mzab (n=29), France (n=48)
C4 Case 165 335 0 East/Europe Israel-Carmel (n=45), Italy (n=35)
Control 0 165 335 Israel-Central (n=49) Italy-Bergamo (n=12)
C5 Case 175 150 100 50 Israel-Negev (n=47) Orkney Islands (n=16)
Control 75 100 150 175 Russia (n=25)
C6 Case 125 125 250 0 Russia-Caucasus (n=17)
Control 0 250 125 125
3 Central South China (n=10) Cambodia (n=11)
Configurations C1 and C2 contain two subpopulations; configurations C3 and Asia/Oceania/  Pakistan (n=182) China (n=169)
C4 contain three subpopulations; and configurations C5 and C6 contain four East Asia/ Bougainville (n=18) Japan (n=27)
subpopulations. America New Guinea (n=16) Siberia (n=25)

and STRATSCORE) or top 10 principal coordinates (MDS clustering and
PHYLOSTRAT) were included in the analysis.

Setting I: Discrete population structures were simulated in a similar
method as Price er al. (2006) and Li and Yu (2008). We considered six
configurations (Table 1), representing two, three and four subpopulations.
In each setting, we generated simulated datasets each consisting of 500
cases and 500 controls, with varying numbers of random SNPs carrying
information capable of differentiating among populations. To generate
genotypes for the random SNPs, we followed the algorithm of Price
et al. (2006). Specifically, for each subpopulation, the allele frequency for
each SNP was generated using the Balding—Nichols model (Balding and
Nichols, 1995) using Fs7 =0.01. For each SNP, an ancestral population allele
frequency p was drawn from the uniform distribution on (0.1, 0.9). The
allele frequencies for each subpopulation were drawn from S-distribution
with parameters p(1 — Fs7)/Fsr and (1 — p)(1 — Fsr)/Fsr. This distribution
has mean p and variance Fgrp(1 — p).

To evaluate the performance of different population stratification
correction methods, we considered four categories of testing SNPs: (i) the
first category (random SNPs without association with disease) was generated
the same way as those SNPs chosen for detecting population structure,
i.e. Fs7=0.01. (ii) For the second category (differentiated SNPs without
association with disease), we assumed a large allele frequency difference
between the subpopulations. More specifically, for C1 and C2, we chose
allele frequencies of 0.2 for population 1 and 0.8 for population 2; for C3
and C4, the allele frequencies are 0.8, 0.8 and 0.2, respectively, for the three
subpopulations; and for C5 and C6, the allele frequencies are 0.2, 0.8, 0.2
and 0.8, respectively, for the four subpopulations. (iii) The third category
of SNPs (random causal SNPs with association with disease) was for power
evaluation in which the allele frequency was generated the same way as those
random SNPs, i.e. Fs7 =0.01; we then assumed a multiplicative model with
a genotype relative risk of 1.5 for the causal allele to generate genotypes for
the causal SNPs conditioned on the disease status. (iv) The fourth category
of SNPs (differentiated causal SNPs with association with disease) was
generated in a similar fashion as category (iii) except that the marker allele
frequency was generated the same way as those from category (ii). Testing
SNPs in categories (i) and (ii) allow us to evaluate type I error rates of
different methods, whereas testing SNPs in categories (iii) and (iv) allow us
to evaluate the power when modest or extreme population stratifications are
present.

To evaluate the type I error and power under each population structure,
we generated 100 datasets of 500 cases and 500 controls with each
dataset consisting of 1000 testing SNPs for each of the above-mentioned
four SNP categories. Moreover, for each of the 100 datasets, we also
simulated m =100, 300 or 500 random SNPs with Fgy=0.01 to infer

Brazil (n=45)
Colombia (n=13)
Mexico (n=49)

population structure. Type I error and power were estimated based on 100
(datasets) x 1000 (testing SNPs) =100 000 tests.

Setting 2: Cases and controls from an admixed population were simulated
similar to that as described by Price er al. (2006). Disease status for
individuals with ancestry proportions a from population 1 and (1 —a) from
population 2 were simulated using disease risk proportional to r¢, where r is
the ancestry risk and a is uniformly distributed on (0, 1). To insure an average
value of 0.5 across possible values of a, the probability of being affected was
set to 0.5 log(r)r¢/(r — 1). The risk model with a genotype relative risk of 1.5
for the disease allele was implemented the same way as discrete populations,
with allele frequency ap; + (1 —a)p». Similar to the simulations for discrete
populations, we also considered two categories of SNPs to evaluate the type I
errors and two categories of SNPs to evaluate the power.

Setting 3: A case—control dataset of hierarchical population structure
was simulated based on individuals genotyped in HGDP (Li et al., 2008),
an international project for studying the diversity and unity of the entire
human population. A total of 1064 individuals in this project, representing
individuals from 51 populations from sub-Saharan Africa, North Africa,
Europe, the Middle East, South/Central Asia, East Asia, Oceania and the
Americas, were genotyped by the Illumina HumanHap 650K SNP array,
which includes 650 000 SNPs. We downloaded the genotype data and sample
description information from http://hagsc.org/hgdp/files.html.

After merging genotype data and sample description and data cleaning,
995 individuals remained for analysis. To obtain case—control data
with population structure, we created three artificial subpopulations:
(i) subpopulation 1 consists of 107 individuals from Africa, (ii) subpopulation
2 consists of 170 individuals from Middle East and 153 individuals from
Europe; and (iii) subpopulation 3 consists of 107 individuals from America,
192 individuals from Central South Asia, 232 individuals from East Asia
and 34 individuals from Oceania. For each of the three subpopulations,
we selected cases and controls based on the numbers specified in Table 2.
To infer population structure, we randomly selected 10 000 autosomal SNPs
that have no missing genotypes and are in linkage equilibrium with each
other (at 2 <0.05). We then tested for association with the case—control
status using 515710 autosomal SNPs that satisfy the following quality
control criteria: (i) minor allele frequency >1% in both cases and controls,
(ii) Hardy—Weinberg equilibrium test P-value > 1 x 107 and (iii) fraction
of missingness <5%. For each method, we estimated the type I error rate at
various levels (¢ =0.01, 0.005, 0.001 and 0.0005 level) and calculated the
genomic control inflation factor (Devlin and Roeder, 1999).
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2.6 Application to lactase-height data

A classic way to test the performance of a population stratification correction
method is to examine whether the method is able to remove the effect
of population stratification between the lactase (LCT) gene and height
(Campbell et al., 2005). As we do not have access to the original data
reported by Campbell er al. (2005), we created a lactase-height dataset using
data from PennCAC, an ongoing candidate-gene study on coronary artery
classification that we are working on. PennCAC includes 1361 Caucasians
with phenotypes on height. These individuals were genotyped using the
ITMAT/Broad/CARe (IBC) 50K SNP array (Keating et al., 2008), which
includes 1755 autosomal ancestry informative markers (AIMs) and 21 LCT
SNPs. The originally reported LCT SNP, rs4988235, is not included in the
IBC array, but two other LCT SNPs, rs3769005 and rs7579771, have strong
LD with rs4988235 (+>=0.72 in HapMap CEU samples). We, therefore,
tested association between height and these two SNPs. For all population
stratification correction methods that we considered for comparison, we
inferred population structure using 100, 200, 250, 300, 500, 700, 1000 and
1755 autosomal AIMs.

3 RESULTS

To evaluate our proposed method, we carried out extensive
simulations, including discrete population structure, admixed
population structure and a synthetic case—control GWAS dataset
generated from the HGDP data, which represents hierarchical
population structure. We assessed whether the proposed method
can appropriately correct for population stratification by estimating
type I error rate, and also assessed its power in detecting
disease association. We compared PHYLOSTRAT with four other
methods, including (i) the conventional Cochran—Armitage trend
test (Armitage, 1955), which does not control for population
stratification, (ii) the EIGENSTRAT approach (Price et al., 2006),
(iii) the MDS clustering approach (Li and Yu, 2008); and (iv) the
STRATSCORE approach (Epstein ez al., 2007). For STRATSCORE,
as suggested by the authors (Dr Michael Epstein, personal
communication), we adjusted the continuous stratification scores
(obtained from principal components) rather than the quartiles of the
stratification scores because this modified version of STRATSCORE
generally leads to smaller type I errors than the original method
under the simulation settings we considered. We did not compare
with the genomic control approach because Price et al. (2006) and
Li and Yu (2008) have demonstrated its unsatisfactory performance.
For type I error and power estimation, significance was evaluated at
the 1% level.

3.1 Setting 1: discrete population structure

Tables 3—4 display the results for discrete population structures
with two and four subpopulations, respectively. Results for three
subpopulations are similar (Supplementary Table 1). In all situations
we considered, PHYLOSTRAT has type I error rates that are close
to the nominal level. The MDS clustering approach performs well
when there are two discrete subpopulations; but when the number
of discrete subpopulations is three or four and the population
stratification is extreme, its type I error rates can be greater than the
nominal level, especially when the number of random SNPs is small.
For example, when there are four discrete subpopulations and when
the degree of population stratification is extreme (i.e. configuration
C6 in Table 4), the type I error rate of the MDS clustering approach
can be as high as 10.19% with 100 random SNPs, 2.06% with 300
random SNPs, even with 500 random SNPs, the type I error rate is

Table 3. Empirical type I error rates (%) and power (%) under two discrete
populations at 1% significance level

Configuration M  Trend ES PS MC SS

Non-causal SNPs: C1 100 4561 104 108 1.01 085

random (category 1) 300 4541 098 106 1.13 093
500 4553 1.03 1.04 095 08

Cc2 100 76.82 1.72 1.09 1.01 248

300 77.01 1.11 111 1.06 1.23

500 77.17 1 1.08 1.08 1.29

Non-causal SNPs: Cl 100 99.84 1.18 1.1 1.05  0.59
highly differentiated 300 99.87 1.02 1.08 1.03 0.5

(category 2) 500 99.87 1 1 095 0.49

C2 100 100 343 1.08 106 485

300 100 129 1.09 1.02 143
500 100 1.08 105 096 1.23

Causal SNPs: random  Cl1 100 68.16 87.11 87.48 87.61 84.83
(category 3) 300 67.8 8759 87.72 87.77 85.46
500 67.9 8759 87.44 87.72 8521

c2 100 79.62 69.09 70.19 70.17 69.62

300 79.67 6944 7032 70.15 70.05
500 79.6  69.25 70.09 7047 70.01

Causal SNPs: highly ~ Cl 100 23.56 7527 823 8256 67.44
differentiated 300 23.6 80.81 82.18 82.53 72.98
(category 4) 500 2391 81 81.99 82.05 73.72

C2 100 100  22.15 5517 55.15 21.29

300 100 399 55.08 55.06 40.08
500 100 4449 55.14 55.14 45.06

m is the number of random SNPs used for inference of population structure. ES:
EIGENSTRAT; PS: PYLOSTRAT; MC: MDS clustering; SS: STRATSCORE.

still slightly inflated. Similar results are observed for EIGENSTRAT,
which also yields inflated type I errors. In contrast, for this extreme
situation, the type I error rate of PHYLOSTRAT is close to the
nominal level even with only 100 random SNPs, much less than the
number of random SNPs required by other methods to achieve the
same level of type I error rate. This implies that PHYLOSTRAT
uses the ancestry information contained in the random SNPs more
efficiently. We observed that STRATSCORE can yield either inflated
or conservative type I errors. As suggested by the authors (Dr Glen
Satten, personal communication), we also implemented a modified
version of STRATSCORE with 20 strata. This modified version
yields appropriate type I errors when there are two underlying
subpopulations; however, when the number of subpopulations is
greater than 2, e.g. configurations C4 and C6, the type I errors are
still inflated even with 500 random SNPs. It is possible that more
strata are needed to appropriately control the type I errors when
the number of subpopulations is more than two and the degree of
population stratification is extreme.

For causal SNPs in category (iii), PHYLOSTRAT, MDS
clustering and EIGENSTRAT yield similar power, but the power
for STRATSCORE is generally lower than the other three methods.
For causal SNPs in category (iv), PHYLOSTRAT is more powerful
than the other three methods under several settings. For example, for
configuration C6 in Table 4, with 300 random SNPs, the power for
PHYLOSTRAT is 51.27%, whereas the powers for EIGENSTRAT,
MDS clustering and STRATSCORE are 39.06, 39.49 and 20.77%,
respectively. This is because EIGENSTRAT and MDS clustering
cannot completely remove the confounding effect due to population
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Table 4. Empirical type I error rates (%) and power (%) under four discrete
populations at 1% significance level

Table 5. Empirical type I error rates (%) and power (%) under admixed
populations at 1% significance level

Configuration m Trend ES PS MC SS r m Trend  ES PS MC SS
Non-causal SNPs: C5 100 4622 1.3 1.09 122 053 Non-causal SNPs: 2 100 21.62 1.11 1.14 1.18 1.04
random (category 1) 300 466 1.04 106 1.04 041 random (category 1) 300 2145 1.03 1.03 1.07 1.01
500 46.17 1.02 1.05 1.02 022 500  21.68 1.03 1.04 1.05 0.92
C6 100 6421 331 1.19 352 219 3 100 41.14 1.44 1.44 1.43 1.31

300 64.09 1.18 1.06 142 0.87
500 64.11 1.11 105 115 0.75

Non-causal SNPs: C5 100 3456 1.14 107 1.16 0.97
highly differentiated 300 3441 096 1.04 1.03 093
(category 2) 500 3439 1.02 098 1.04 092

Co6 100 100 1345 1.21 10.19 6.67

300 100 22 1.09 2.06 0.68
500 100 .55 111 145 039

Causal SNPs: random  C5 100 6442 86.82 8642 85.67 7442
(category 3) 300 6424 86.06 86.33 86.28 74.73
500 64.02 86.34 86.46 86.49 7491

C6 100 70.54 70.14 71.86 71.11 62.16

300 7033 71.58 7198 72.06 63.86
500 70.18 714 719 7226 642

Causal SNPs: highly ~ C5 100 0.04 73.09 77.64 77.77 35.05

differentiated 300 0.05 7632 7791 79.37 374

(category 4) 500 0.05 787 78.6 79.88 38.59
C6 100 100 11.52  40.03 25.55 4.61

300 100 39.06 51.27 39.49 20.77
500 100  46.78 5245 52.18 28.08

300 41.23 1.15 1.14 1.15 0.99
500  41.06 0.97 0.99 0.98 0.91

Non-causal SNPs: 2 100 62.79 1.43 1.42 1.46 1.2
highly differentiated 300 62.71 1.09 1.11 1.12 0.83
(category 2) 500  62.92 1.06 1.05 1.02 0.83
3 100 97.99 2.01 2.04 2.07 1.89
300 98.91 1.21 1.19 1.18 1.05
500  98.16 0.99 1.01 1 0.94

Causal SNPs: random 2 100 74.02 90.72  90.62  90.75  90.36
(category 3) 300  74.46 9125 91.19 9131 90.77
500  74.37 9122  91.14 91.24  90.77

3 100 68.21 88.62 8845  88.61 88.27

300  68.41 89.49 8949  89.57  89.15

500  67.92 89.09  89.01 89.18  89.03

Causal SNPs: highly 2 100 497 8796 8754  88.1 86.8
differentiated 300 445 9236 9223 9243  91.19
(category 4) 500 532 9274  92.64 927 91.77

3 100 2.78 80.88  80.44  80.89  79.67
300  3.06 88.83  88.56  88.82  87.89
500  2.83 90.63 9047  90.63  89.6

m is the number of random SNPs used for inference of population structure. ES:
EIGENSTRAT; PS: PHYLOSTRAT; MC: MDS clustering; SS: STRATSCORE.

stratification, which obscures the true association signal, whereas
STRATSCORE has conservative type I error rate. For causal SNPs in
category (iv), we observed noticeable power change for each method
as the number of random SNPs, m, increases, and such power change
is also due to difference in ability to remove the confounding effect
of population stratification.

3.2 Setting 2: admixed population structure

Table 5 shows the results for admixed populations. We
observed similar patterns for PHYLOSTRAT, MDS clustering,
EIGENSTRAT and STRATSCORE. All these methods yield type
I error rates that are close to the nominal level with STRATSCORE
being slightly conservative. The power for detecting causal SNPs is
similar for all methods.

3.3 Setting 3: HGDP data

We applied our method to a dataset of 955 individuals from the
HGDP data genotyped on the Illumina HumanHap 650 SNP array
(Li et al., 2008). To simulate a dataset with population structure,
we artificially created three populations (Table 2). The phylogenetic
tree built from 10 000 randomly selected autosomal SNPs is shown
in Figure 2. With the same 10 000 random SNPs, we also conducted
MDS analysis and plotted the first two principal coordinates
(Supplementary Fig. 1). As shown in both figures, this synthetic
GWAS dataset contains both discrete and admixed population
structures. The genomic control inflation factor for unadjusted
trend test with 515710 autosomal SNPs is 17.3, indicating strong

m is the number of random SNPs used for inference of population structure. r is
the ancestry risk between the two ancestral populations. ES: EIGENSTRAT; PS:
PHYLOSTRAT; MC: MDS-clustering; SS: STRATSCORE.

population stratification in the data. Such a complex population
structure poses a challenge to genetic association analysis, but also
offers an opportunity to evaluate various methods.

We analyzed the 515710 autosomal SNPs using EIGENSTRAT,
MDS clustering, STRATSCORE and PHYLOSTRAT, and then
estimated type I error rate for each method based on the
515710 tests as none of the SNPs are associated with case—
control status by design. At o =0.01 significance level, the type
I error rates of EIGENSTRAT, MDS clustering, STRATSCORE
and PHYLOSTRAT are 0.0428, 0.0290, 0.0373 and 0.0232,
respectively; when o =0.001, the type I error rates of the four
methods are 0.0087, 0.0047, 0.0067 and 0.0016, respectively; when
a=0.0005, the corresponding type I error rates are 0.0054, 0.0026,
0.0039 and 0.00048, respectively. We also estimated the genomic
control inflation factor for each of the four methods: 1.66 for
EIGENSTRAT, 1.45 for MDS clustering, 1.59 for STRATSCORE
and 1.35 for PHYLOSTRAT. We also investigated the performance
of these three methods with larger number of random SNPs
(m=30000, 50000 and 70000), and obtained similar results.
As the continent information is known for each individual, one
might consider controlling population stratification by adjusting
continent; however, the genomic control inflation factor for this
simple approach is 2.67, much higher than the other three methods,
suggesting that simply adjusting for continent is not sufficient.
We also explored a hybrid approach by adjusting MDS principal
coordinates and continent; the genomic control inflation factor for
this approach is 1.45, similar to that of MDS clustering. Although
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Fig. 2. HGDP phylogenetic tree based on 10000 randomly selected
autosomal SNPs.

none of the methods we considered completely corrected for
population stratification for this complex synthetic GWAS dataset,
PHYLOSTRAT did show more encouraging result than the other
methods.

3.4 Analysis of lactase-height data

Using the naive Armitage trend test, we observed significant
associations between the LCT SNPs and height after adjusting
sex (rs3769005: P-value=1.8 x 10_6; rs7579771: P-value=2.1 x
1079), suggesting the presence of population stratification. We then
analyzed this dataset with various population stratification correction
methods with different numbers of AIMs (Table 6). We adjusted sex
in all analyses.

Our results indicate that PHYLOSTRAT performs favorably
against the other methods. For example, with 250 AIMs, among the
four methods we considered for comparison, only PHYLOSTRAT
yields P-values >0.05 for both SNPs; whereas the other three
methods require more AIMs to remove the effect of population
stratification. Our results are consistent with Price et al. (2006) and
Epstein er al. (2007), who also observed that EIGENSTRAT cannot
completely resolve the confounding issue between LCT and height
when only a small number of AIMs were used in the analysis.

4 DISCUSSION

We have developed a new method to correct for population
stratification in genetic association analysis by combining
information obtained from phylogenetic trees and MDS analysis.
Our method represents relations between individual’s genetic
background using a set of phylogenetic bipartitions and principal
coordinates from MDS analysis, and incorporates them as covariates
in a regression framework to adjust for the confounding effect due
to hidden population stratification.

Table 6. P-values for analysis of the lactase-height dataset

No. of AIMs LCT SNP ES PS MC SS
100 rs3769005 0.0007 0.0006 0.0006 0.0001
1s7579771 0.0008 0.0007 0.0008 0.0002
200 rs3769005 0.0007 0.0016 0.0009 0.0002
1s7579771 0.0009 0.0019 0.0011 0.0002
250 rs3769005 0.0358 0.0506 0.045 0.0445
1s7579771 0.0523 0.0676 0.0656 0.0506
300 rs3769005 0.1331 0.2612 0.1732 0.063
1s7579771 0.1637 0.329 0.217 0.0707
500 rs3769005 0.0957 0.1726 0.2141 0.0798
1s7579771 0.0843 0.1932 0.2487 0.0874
700 rs3769005 0.2278 0.3994 0.2437 0.0649
rs7579771 0.2485 0.4021 0.2647 0.0699
1000 rs3769005 0.5407 0.3835 0.6098 0.1101
rs7579771 0.5845 0.4075 0.647 0.1229
1755 rs3769005 0.3952 0.3739 0.3085 0.4807
rs7579771 0.4261 0.4032 0.3279 0.4516

ES: EIGENSTRAT; PS: PHYLOSTRAT; MC: MDS clustering; SS: STRATSCORE.

As shown in our simulations, this hybrid approach effectively
captures both discrete and admixed population structures. It yields
a more appropriate correction for population stratification than
EIGENSTRAT (Price et al., 2006), MDS clustering (Li and Yu,
2008) and STRATSCORE (Epstein et al., 2007) under discrete
population structures; its performance is similar to these three
approaches under admixed population structures. To evaluate
the performance of our method when the population structure
is hierarchical, we applied our method to the HGDP dataset,
which contains real genetic variation patterns. Although none of
the methods could completely remove the confounding effect of
population stratification, PHYLOSTRAT performs favorably against
the other methods and yields type I error rates that are closer to
the nominal level. To test the performance of our method in real
genetic association studies, we applied our method to a lactase-
height dataset and found that PHYLOSTRAT is able to correct
for population stratification with only 250 AIMs, smaller than the
number of AIMs required by the other methods. Our results suggest
that phylogenetics is a robust and useful tool for inferring complex
population structures, and appropriate utilization of information
captured by phylogenetics trees can help correct for population
stratification in genetic association analysis, especially when the
number of random SNPs is small.

We note that as the number of random SNPs used for inference
of population structure increases (e.g. when m =50 000), the type I
errors of PHYLOSTRAT, EIGENSTRAT and MDS clustering
are all close to the nominal level under simulation settings we
considered, but the type I errors of STRATSCORE are conservative
with the patterns similar to those seen in Tables 3—4 and
Supplementary Table 1. These results suggest that when only a small
number of random SNPs are available, one might consider using
PHYLOSTRAT to control for population stratification, but when
the number of random SNPs is large, EIGENSTRAT would be a
preferable approach as it is computationally faster. It is worth noting
that the bipartitions obtained from the phylogenetics tree can be
used together with principal components as basis functions to build
the stratification scores (Dr Glen Satten, personal communication),
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and such a modified version may improve the performance of
STRATSCORE.

Our method shares similarity with another hybrid approach
MDS clustering (Li and Yu, 2008) in that both methods use the
principal coordinates from the MDS analysis to capture admixed
population structure. To capture discrete population structure, the
MBDS clustering method assigns each individual a group membership
based on clustering of the MDS principal coordinates, where the
number of clusters is determined by the gap statistic (Tibshirani
et al., 2001). However, the problem of estimating the number of
clusters can be difficult, because in many situations there is no clear
definition of a ‘cluster’. Moreover, for data that are not clearly
separated into groups, e.g. when there are overlapping classes,
determining the number of distinct clusters can be highly subjective.
In contrast, the use of phylogenies in our method circumvents this
problem because our method does not require such parameter to
be predefined. It is worth noting that clustering is a degenerate or
a simplified version of phylogenetic tree. Unlike clustering, which
can only handle simple population structures, phylogenetic trees
are suitable for handling more complex, hierarchical population
structures as demonstrated in our analysis of the HGDP data.

Compared with existing methods for population stratification
correction, our method has two distinct advantages. First, the
phylogenetic approach allows better interpretation and visualization
of the population structure in the study sample, especially when
the data contain a hierarchical structure. Many tools have been
developed for molecular phylogenetic studies since the fifties, and
it will be an important research direction to find how these methods
can be applied for the population stratification problem. Second, as
shown in our simulations and the analysis of the lactase-height data,
our method requires fewer markers to infer population structure than
other existing methods; therefore our method is ideal for candidate
gene studies or replication study of GWAS, in which a large number
of random SNPs may not be available. Although we considered a
small number of random SNPs in our simulations, our method can
be applied to GWAS as demonstrated by the analysis of the HGDP
dataset.

Our method has to make a decision on how a set of bipartitions
is selected without losing too much information for subsequent
association analysis. If the population has a small number of
subpopulations, most bipartitions will be similar to one of the
bipartitions selected by our bipartition reduction algorithm. Having
too many bipartitions retained in the stratification correction
procedure will introduce many partially correlated covariates in
logistic regression, and can have an adverse effect on the numerical
regression procedure; on the contrary, over-reduction of bipartitions
may lead to loss of important information on the population
structure. Both scenarios can hurt the performance of our algorithm.
In our analysis, we tried various thresholds for bipartition selection.
We found that using 2.5% as the threshold for the number of leaves
and 0.7 as the threshold for the correlation coefficient generally
leads to stable results for discrete population structures, and the
corresponding thresholds are 2.5% and 0.1 for admixed population
structures. In general, we recommend the users to try multiple
sets of thresholds and select the threshold that gives the smallest
genomic control inflation factor. We recognize that there are other
methods such as bootstrapping that can reduce bipartitions in the
phylogeny (Felsenstein, 1985); however, we expect these methods
are very sensitive to any leaves (individuals) in the tree that cannot

be properly placed, which we expect to happen very often in human
genetic data. What methods best reduce correlated bipartitions and
how the bipartition reduction step affects the stratification correction
is an important future research direction.

For PHYLOSTRAT, the running time is dominated by the
pairwise distance computation as FastME is a very fast algorithm
with sub-quadratic asymptotic running time in practice. Because
pairwise distance computation is more time-consuming than PCA-
based approaches, the running time of PHYLOSTRAT is longer
than EIGENSTRAT and STRATSCORE. For example, for a dataset
consisting of 500 cases and 500 controls with 500 random SNPs and
1000 testing SNPs, using an Intel Xeon CPU (2.66 GHz, 8 GB RAM,
linux), it took 9s for EIGENTRAT, 14 s for STRATSCORE, 19s
for PHYLOSTRAT and 40s for MDS clustering. However, given
that high-performance and low-cost computational capabilities are
easily accessible, the required computing time for pairwise distance
matrix calculation in PHYLOSTRAT would be a small overhead.
One possible approach to reduce the running time is to limit the
number of markers by LD pruning. Our experience with the analysis
of the HGDP data and several other GWAS datasets suggests that
this approach generally works well in GWAS.

In summary, we have proposed a new method that combines
information from phylogenetic tree and MDS together. Given
the flexible nature and the hierarchical characteristic, this hybrid
approach is expected to perform well under complex population
structures. We expect our method will provide a useful tool in the
analysis of both candidate gene and GWAS studies.
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