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ABSTRACT

Motivation: Three major problems confront the construction of
a human genetic network from heterogeneous genomics data
using kernel-based approaches: definition of a robust gold-standard
negative set, large-scale learning and massive missing data values.
Results: The proposed graph-based approach generates a robust
GSN for the training process of genetic network construction.
The RVM-based ensemble model that combines AdaBoost and
reduced-feature yields improved performance on large-scale learning
problems with massive missing values in comparison to Naïve Bayes.
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1 INTRODUCTION
Biological pathways that organize functional associations between
different genes, proteins and small molecules are central to
understanding cellular function. A variety of high-throughput
experimental data, such as DNA microarray, ChIP-chip technology
and systematic two-hybrid analysis (Lee et al., 2002; Rual et al.,
2005; Stears et al., 2003), have the potential to provide a system-
level perspective of cellular processes and may contribute to
systematic drug discovery (Stoughton and Friend, 2005). Moreover,
the broad availability of indirect biological data sources, such as
Gene Ontology and protein localization information, also contain
information that can be used to understand cellular processes
(Loging et al., 2007). Understanding biological pathways at the
whole-genome level, however, remains a major challenge.

Several computational approaches have been applied to construct
biological networks using different individual data sources (Basso
et al., 2005; Papin et al., 2005). However, the results are often
contradictory and not super imposable in any obvious way due to the
intrinsic error rate of each data set and limited coverage (Zhong and
Sternberg, 2006). This limitation has motivated more recent work
addressing the problems of integrating heterogeneous functional
genomic and proteomic data to construct biological network. Results
from these studies suggest that the combination of multiple sources
can provide a more unified view of prediction with large coverage
and high reliability. Several rigorous statistical models and machine
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learning approaches have been applied to generate reliable integrated
predictions, such as Bayesian modeling, Decision Tree and Random
Forest (Jansen et al., 2003; Lee et al., 2004, Qi et al., 2006).
Bayesian modeling (Naïve Bayes and Fully Connected Bayes)
is the most popular method used to predict protein–protein and
genetic interactions (Jansen et al., 2003; Troyanskaya et al., 2003;
Rhodes et al., 2005). Correlation among data sets, however, can
cause prediction bias in Naïve Bayes models. Fully Connected
Bayes models (Jansen et al., 2003), in contrast, can capture the
interdependence among data sources by directly calculating joint
probabilities; however, it results in higher computational costs and
requires bin size adjustment of each data dimension to obtain
reasonable results, especially for high-dimension data. Moreover,
the model prior is generally arbitrarily set to be the proportion of total
number of positive and negative examples in the chosen benchmarks
(Jansen et al., 2003; Rhodes et al., 2005).

Kernel-based models have demonstrated very competitive
computational performance due to their ability to model non-linear
systems and high-dimension data. The Support Vector Machine
(SVM) has recently been successfully applied to predict protein–
protein interactions and protein complex relationships in Yeast and
Escherichia coli using heterogeneous data (Ben-Hur and Noble,
2005; Qiu and Noble, 2008; Yellaboina et al., 2007). The Relevance
Vector Machine (RVM) approach (Tipping, 2001), another powerful
kernel-based model, uses a Bayesian learning framework to produce
sparse decision models. RVM is similar to SVM in many respects
and has been reported to yield nearly identical performance, but
surpasses SVM in several aspects, including automatic prevention
of over fitting and generation of much sparser models (Bowd
et al., 2005; Tipping, 2001). The RVM has been applied to
several biological tasks including the classification and diagnosis
of cancers (Krishnapuram et al., 2004; Van Holsbeke et al., 2007)
and the identification of non-coding regions in genomes (Down
and Hubbard, 2004). Thus, RVM may be a useful approach for
integrating multiple heterogeneous data for constructing genetic
networks.

Three major problems, however, confront the use of RVM
in constructing a human genetic network from diverse genomic
data. First, a robust gold-standard negative (GSN) set is needed
for training. A noisy gold-standard will impair training and
cause prediction bias. Major methods reported in previous protein
interaction studies to define GSN (Ben-Hur and Noble, 2006; Jansen
and Gerstein, 2004; Jansen et al., 2003; Qi et al., 2006) are not
suitable for defining GSN for construction of a functional genetic
network, which is not only composed of physical interactions but
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broader functional gene–gene relationships in pathways. Second,
the size of the training data derived from human KEGG pathways
is large. As with most of the kernel-based approaches, the
computational cost associated with RVM for large-scale problems is
a challenge (Tipping and Faul, 2003). Third, most biological datasets
contain many missing data values and the number will dramatically
increase as more data types are included.

The work reported herein addresses each of the three
aforementioned challenges and is organized as follows. A graph-
based method to define an accurate GSN is first presented to
reduce noise in our negative training set (Section 2.1). Next,
Sections 2.2 and 2.3 present the proposed RVM-based approach
that combines two ensemble models, AdaBoost and reduced-feature
to simultaneously address the other two problems of large-scale
learning and massive missing data values. The data features and
performance evaluation are presented in Section 2.4. Finally, all the
results of experiments for the proposed approach are presented in
Section 3.

2 METHODS

2.1 Gold-standard datasets for training
2.1.1 Gold-standard positive In order to construct a genetic network to
reveal the tendency for genes to operate in the same pathways, we derive
the gold-standard positive (GSP) set from the KEGG pathway, as has been
reported in previous studies (Franke et al., 2006; Lee et al., 2004). Two
genes can be considered to constitute a positive pair if they have at least one
KEGG pathway membership. Using the version of the KEGG pathway on
DEC 2008, 498 989 positive interactions among 4882 genes are generated.

2.1.2 GSN via a graph-based approach Unlike GSP, identification of a
GSN set for training and testing is challenging because of the difficulty in
specifying gene pairs that do not function together in the same pathway. Three
methods have been reported to generate a GSN. In the first method, two genes
are defined as a negative pair if they do not function together in any KEGG
pathway (Franke et al., 2006; Lee et al., 2004). This method will generate
a large number of negative interactions (in our case, 11 415 704 negative
interactions), but most of them represent potentially positive interactions.
For instance, if two genes are defined as a negative pair but share the
same positive interacting partners (i.e. they share same pathway partners),
it is possible that they may function together in some unknown pathway
(Fig. 1a). In the second approach, which is often used to predict protein–
protein interactions, a random set of protein pairs (after filtering the positive
examples) can be defined as the GSN. This method is justified because

(a) (b)

Fig. 1. Two genes are linked together with solid lines if they function
together in the present KEGG pathways (positive examples) while those
connected with dotted lines do not function together. (a) illustrates potential
positive examples. It would be more likely that genes 7 and 2 function
together in some unknown pathways than genes 1 and 2, because the former
pair shares more pathway partners. The width of the dotted line reflects the
probability that a linkage exists. (b) Illustrates ideal negative examples. It
would be less likely for genes 2 and 5 to function together in some unknown
pathways than genes 2 and 3 or genes 2 and 4.

the fraction of the positive pairs in the total set of protein pairs is small
(Ben-Hur and Noble, 2005; Qi et al., 2006). However, this method is not
suitable for defining the GSN for predicting a functional genetic network,
which is not only composed of protein–protein interactions but also broader
functional genetic relationships in pathways. The third approach generates
negative examples based on different cellular compartments (Jansen and
Gerstein, 2004; Jansen et al., 2003). This strategy is also often applied to
predict protein–protein interactions, but is not applicable to construction of
a genetic network because a pathway is composed of proteins located in
different compartments.

To overcome these limitations, we present a graph-based approach to
define the GSN. The central concept is to find the most distant functional
relationship between any two genes based on the defined GSP. A network
is first derived based on the GSP, in which any two genes which share at
least one KEGG pathway are linked together. It is then further assumed
that two genes are increasingly less likely to function together in the same
pathway as the topological distance between them increases in this network
(Fig. 1b). Here, Dijkstra’s algorithm (Dijkstra, 1959) is used to calculate the
shortest topological distance between any gene pair in the network. The
topological distance between a gene pair is then used to represent their
functional relationship in the KEGG pathways. The N most distant gene
pairs in the network (excluding an infinite relationship) can be defined as
our robust GSN. For a balanced learning process, N is taken equal to the
size of the GSP. Some newly discovered pathways are now isolated (i.e.
genes in these pathways are infinite-distant from other genes in the KEGG
network), but these could be potentially found to connect to other existing
pathways in the future (the result in the Section 3.1 illustrates this point).
Therefore, infinite-distant gene pairs are excluded from the GSN.

2.2 RVM and kernels
2.2.1 RVM Assume that a genetic network is developed based on a
set of N training examples, {xn,tn}N

n=1, where xn ∈Rd (d is the number of
features, Table 1) represents a vector of gene pair scores for the nth training
example, and tn ∈{0,1} is a label vector indicating the classes to which the
nth example belongs (1 and 0 denote interacting and non-interacting pairs).
Correspondingly, X ={xn}N

n=1 and T ={tn}N
n=1 denote the training and label

set. A RVM classification model can take the form of a linear combination of
basis functions, formed by a kernel function centered at the different training
points.

Y (X )=
N∑

n=1

wnk (X,xn )=W ′K, (1)

where W =[w1,w2 ,...,wN ] is a vector consisting of the linear combination
weights, and K is a design matrix whose i-th column is formed with the

Table 1. Data features

Data type No. of genes Data source

Literature 26 475 Entrez gene
Functional annotation 14 667 Ashburner et al. (2000)

16 015
16 507

Protein domain 15 565 Ng et al. (2003)
Protein–protein

interaction and
genetic interaction

8787 Entrez Gene
2166 Vastrik et al. (2007)
6982 Gary et al. (2003)
9295 Keshava Prasad et al. (2009)
6279 Shannon et al. (2003)

Gene context 11 303 Bowers et al. (2004)
Protein phosphorylation 5490 Linding et al. (2008)
Gene expression profile 19 777 Obayashi et al. (2008)
Transcription regulation 937 Ferretti et al. (2007)
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value of the kernel function, k(xi,xn), at the nth training point. Moreover,
Y ={yn}N

n=1 is the output prediction vector corresponded to the label vector T .
Given an input xi, a gene pair is assigned as interacting (i.e. t∗i =1) if
yi(xi)≥0 and as non-interacting (i.e. t∗i = 0) otherwise. Then, RVM uses a
sparse Bayesian learning framework in which an a priori parameter structure
is based on the automatic relevance determination theory for removing
irrelevant data points. Hence, the number of kernel linear combinations in
Equation (1) will be reduced to M (M � N) and a sparse model for decision
is produced. This advantage of RVM (Bowd et al., 2005; Tipping, 2001) can
greatly reduce the prediction time of the proposed ensemble framework in
Section 2.3. A more extensive explanation of RVM is provided in the work of
Tipping (Tipping, 2001), and its MATLAB implementation is also available
from http://www.relevancevector.com.

2.2.2 Kernel used The radial basis kernel, denoted KRB, is used as a
pair wise kernel to present the similarity between any gene pair and any
other gene pair, given a dataset that has been assigned a measure between
any two genes (such as Pearson correlation of gene expression and co-
citation score). However, for graph-structure datasets (genetic interaction,
protein–protein interactions and protein phosphorylation), we first employ
the diffusion kernel (Kondor and Lafferty, 2002), denoted KD, to capture
in-directed gene–gene relationships before applying the radial basis kernel
to calculate pair–pair similarities (Qiu and Noble, 2008).

2.2.3 Kernel combinations Heterogeneous datasets, {D1,D2, ...,Dn}, are
to be integrated and m datasets among them are graph-structure data features,
while the remaining n–m are from other heterogeneous data. In this work,
we consider four kernel combinations in the RVM-based model, denoted
KC1–KC4. In KC1, the graph-structure data features are first pre-computed
using the diffusion kernel, and then the pairwise kernel values of each data
set are calculated using the radial basis kernel separately before they are
added together. The final summed kernel matrix, which is the input to the
RVM model, is as follows:

KKC1 =
m∑

i=1

KRB
[
KD

(
Di

)]+
n∑

j=m+1

KRB
[
Dj

]
(2)

KC2 concatenates all the data sets together to form a single data matrix
after applying the diffusion kernel to the graph structure data. The pairwise
kernel values are later directly computed based on the data matrix.

KKC2 =KRB
[
KD

(
D1

) :KD
(
D2

)··· :KD
(
Dm

) :Dm+2 ··· :Dn
]
. (3)

In KC3, the kernel matrix of each data feature is used to train an individual
model, and the resulting values from all the models are averaged to generate
a final result. Finally, to evaluate the performance of diffusion kernel in
RVM-based model, we also consider a KC4 scenario, in which the diffusion
kernel is not applied to the graph-structure data features. The gene pairwise
kernel values of all data are directly calculated using the radial basis kernel
separately before summing.

KKC4 =
n∑

i=1

KRB [Di] (4)

In Section 3.3, the performance of all combination approaches using the
RVM-based model is evaluated.

2.3 The RVM-based ensemble framework
Ensemble methods that attempt to build up highly accurate models by
combining many diverse base models represent a major development in
machine learning in the past decade (Opitz et al., 1999; Polikar, 2006). A
diversity of base models is typically achieved by using different training
data sets, which allows each base model to be able to generate different
discriminant boundaries. The combination of these base models is expected
to improve the learning performance and the generalization performance.
More recently, numerous ensemble-based approaches have been proposed
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Fig. 2. (a) RVM-AdaBoost. (b) RVM-based double ensemble model.

to address missing value and large-scale problems (Polikar, 2006). We now
focus on how the ensemble framework can address the two remaining
problems for prediction of human genetic networks.

2.3.1 AadaBoost for large-scale learning AdaBoost (Freund and
Schapire, 1999), a popular ensemble method, is first combined with RVM
to address the problem of large-scale learning. The main concept of RVM-
AdaBoost (as detailed in the Supplementary Data S3) is to sample many small
training sets from the original large training set (Fig. 2a). Each RVM base
model, which is trained from each small training set with low computational
cost, is much weaker than it would be if it were trained with the whole data
set. As a sufficient number of base models are generated, most of the distinct
aspects of the complete training set can be captured and represented in the
final combined model.

2.3.2 Reduced-feature model for missing values There are two major
causes for missing values in our data. First, no individual dataset covers
all gene pairs since different types of data contain complementary pathway
information (Table 1). Second, most biological datasets are corrupted and
noisy, as is the case with gene expression data. Therefore, missing values
are common in heterogeneous biological data, and more gene pairs will
have missing data as more datasets are integrated. When using RVM to
build a prediction system, proper treatment of biological datasets with a
large number of missing values is a critical issue for classification learning
since missing data values in both training and testing set can affect prediction
accuracy. Missing data problems have been well-studied in machine learning.
Widely used approaches such as data deletion, which results in information
lose, and simple imputation methods, which are problematic for large-scale
missing data sets, would not be appropriate for our application. An alternative
method, namely the reduced-feature model, is an ensemble based approach
that combines many base models corresponding to various patterns of data
features. These base models are trained only using a subset of all the
data features. This reduced-feature modeling has been shown to be more
robust to missing data than other imputation approaches (Saar-Tsechansky
and Provost, 2007), and it also reduces computational costs because of its
lower-dimensional learning than the complete modeling. Thus, we will adopt
reduce-feature modeling for the problem of massive missing values in our
application. Additional investigation of missing values problems will be
illustrated in the Section 3.4.

2.3.3 The RVM-based double ensemble In this work, AdaBoost and
reduced-feature are combined as outlined below and illustrated in Figure 2:
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(1) Generate M feature sets by sampling m features M times from the
complete set of data features without replacement.

(2) Train M base models (SF models in Fig. 2b) with these M feature sets
using RVM-AdaBoost, which is the first level ensemble.

(3) An ensemble of all base models is then generated through averaging
of the outputs from all base models. This is the second level ensemble.

2.4 The data features and performance evaluation
Fourteen datasets, as summarized in Table 1, are integrated in our
study. Overall, these data sets can be divided into eight categories. The
Supplementary Data S1 describes the source of these data sets and presents
preprocessing details. As shown in the Table 1, different data features contain
significantly varying degrees of coverage. These biological datasets present
different types of pathway information and thus yield massive missing values
in our training and prediction phase.

Ten-fold cross-validation testing is used to access performance of models
to be presented in Sections 3.2 and 3.3 based on precision–recall curve and the
area under ROC curve (AUC). Other measures of prediction performance,
including classification error, F-measure and G-mean, are detailed in the
Supplementary Data S2. However, the gold-standard set in our work consists
of many replicated data points (i.e. many interactions with same data feature
scores). This produces dependence between testing and training data in cross-
validation. Cross-validation testing is not able to reveal much difference in
the generalization performance of different models. Therefore, two curated
pathway datasets, Biocarta and NCI-nature pathways are used to serve as
independent testing examples. Biocarta and NCI-nature pathway contain
18 574 and 69 123 interactions different from the KEGG pathways. The
classification errors of the two independent testing sets are calculated for
all cases to evaluate the generalization performance. Finally, average values
and standard derivations of all the performance measures are reported.

3 RESULTS

3.1 Performance of the graph-based GSN approach
The negative gold-standards generated by existing methods (Franke
et al., 2006; Lee et al., 2004) for genetic network prediction contains
a significant portion of potential positive interactions. To illustrate
this, an old version of the KEGG pathways (downloaded on July,
2007) is compared with the new KEGG pathways (downloaded on
Dec, 2008). We first define a GSP and GSN based on the old KEGG
pathways; that is, the GSP is composed of gene pairs that share at
least one old KEGG pathway, and the GSN is composed of any two
genes that do not share any old KEGG pathways but both of them are
involved in at least one KEGG pathways. The result is that 19 285
gene pairs included in the GSN are found to appear in some new
KEGG pathways.

In order to determine if the graph-based approach presented in the
Section 2.1 can define a more robust GSN, a network composed of all
interactions in the old KEGG pathway is derived first. The shortest
topological distance of those gene pairs without any linkage between
them in the network is determined using Dijkstra’s algorithm
(Dijkstra, 1959). Then, we calculate the portion of gene pairs with
specific topologic distances (≤2) that do not function together in
the old KEGG pathways, but are found to function together in the
new KEGG pathways. The results presented in Figure 3a show that
more gene pairs with lower topological distances in the network
are included in new KEGG pathways. Genes in isolated pathways
(newly discovered pathways) are indicated as having an infinite-
distant from other genes in the KEGG network, but these newly
discovered pathways may be found to connect to other pathways in
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Fig. 3. (a) Proportion of gene pairs with specific topologic distances in
the old KEGG network that function together in the new KEGG pathways.
(b) GO scores of gene pairs with specific topologic distances in the old
KEGG network.

the future. Therefore, infinite-distant gene pairs would have a little
higher probability to be positive than others with high distance (≥5).
This approach was also evaluated using the two independent data
sets, the NCI-nature pathways and Biocarta pathways, with similar
results to those shown in Figure 3a.

To evaluate whether any two genes with a more distant KEGG
relationship have a lower functional relationship, the Gene Ontology
functional information was mapped to each gene pair. The GO
functional relationship score of a gene pair is determined by
identifying the shared GO process or function term as described
in the Supplemental Data S1. A higher score represents a closer
functional relationship. Figure 3b confirms that the greater distance
between any two genes in this network, the lower the functional
relationship between them (they have a lower chance to function
together in the same pathway). It should be emphasized that the
Gene Ontology was not used to determine the GSN.

3.2 Combining heterogeneous data
The RVM-Adaboost (Fig. 2a) is the first level ensemble model
embedded in our framework (Fig. 2b) for training the gold-standard
set (GSP and GSN defined in the Section 2.1) with the size of
almost 1 million. Based on analysis of synthetic data (Supplementary
Tables S1 and S2), RVM-AdaBoost is able to reduce the run-time
relative to RVM alone. At a data set size of 1000, the computation
time for RVM-AdaBoost is ∼2.5-fold less than that of RVM alone.
As the data set size is increased to 3000, the runtime of RVM-
AdaBoost is ∼20-fold less than RVM alone. Based on these synthetic
data results, therefore, we expect the reduction in computation time
of RVM-AdaBoost relative to RVM alone to become greater as N
increases. RVM-AdaBoost can approach the result achieved from
the complete data set with reduced computation cost both in the
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Fig. 4. Precision–recall curves of models with different kernel combinations
based on 10-fold cross-validation testing.

Table 2. Performances of models with different kernel combinations using
independent testing sets

Combination Number of
vectors

Biocarta error (%) NCI_nature
error (%)

KC1 121.±39.2 23.6±2.44 24.6±2.83
KC2 981.±153. 47.2±3.47 53.7±2.16
KC3 40.6±5.19 15.2±9.73 16.0±10.8
KC4 92.8±20.35 33.3±2.15 35.4±2.40

training and prediction phase (i.e. fewer vectors will be included in
the final model) by choosing a moderate sampling size. We selected
a sampling size of 500 and a maximum number of boosting iterations
of 20 for the RVM-AdaBoost models as sufficient for genetic
network construction in this work (details in the Supplementary
Data S4).

To evaluate the performance of RVM-AdaBoost in the
construction of a genetic network, it is necessary to first
determine which of the kernel combination approaches introduced
in the Section 2.2 should be incorporated. Hence, the prediction
performance of models with several different kernel combinations
has been evaluated. To accommodate missing values in data features
in kernel combination methods KC1, KC3 and KC4, the element
values of each kernel matrix are replaced with zeros corresponding to
row or column with missing values to indicate no similarity measure
among them. In KC2, the missing values in each dataset have to be
first imputed with the average value of each data feature before
concatenating all the data sets to form a single data matrix. The
pairwise kernel values are later directly computed based the imputed
data matrix before the training process.

The work of Pavlidis (Pavlidis et al., 2001) investigated the
kernel combination approaches denoted here as KC1–KC3 for use
with SVM models, while the following presents our evaluation of
the methods for use with RVM-based models. Figure 4 presents
the performance based on 10-fold cross validation of the three
kernel combination methods using precision–recall curves, while
Table 2 lists the classification errors for the two independent
testing sets for the models. Based on the 10-fold cross-validation
testing, the results indicate that the KC1 combination method

outperforms the other methods. Pavlidis (Pavlidis et al., 2001) also
concluded that the KC1 method (their intermediate combination
approach) when incorporated in a SVM model perform better than
the other two combination methods in predicting yeast protein
function. The KC2 and KC3 methods can not preserve the different
semantic associations within data type as well as KC1, and hence
produce inferior prediction performance. Moreover, the imputation
implemented in KC2 may cause biased results (the effect of
imputation will be illustrated in Section 3.3). In contrast, the
KC1 method can subsequently sum up the kernel values of each
data feature to represent different semantic association, and hence
improve the performance progressively. However, we also find
that KC3 has better generalization performance based on the
classification error of the two independent sets. This latter point
is not discussed in the work by Pavlidis (Pavlidis et al., 2001).
The KC3 method is a type of reduced-feature ensemble model (the
number of sub feature set is 1) that trains a base model using a
subset of all the data features. The reduced-feature ensemble model
can generate better generalization performance than models trained
by whole data features. The reduced-feature models are investigated
further in Section 3.3.

Next, to demonstrate the performance of the diffusion kernel in
RVM-based model, we also compare results of KC1 to those of KC4,
which does not employ a diffusion kernel to the graph-structure data
features. The results in Table 2 and Figure 4 taken together show
that KC1 outperforms KC4, indicating that the diffusion kernel can
capture indirect gene–gene relationships from graph structure-data
features to improve the prediction of pathway relationship.

Therefore, the KC1 kernel combination approach incorporated in
the RVM-based model will be used in all the results shown below.
With this method, the model performance increases progressively
as more datasets are integrated, thus allowing the model to include
complementary pathway information, such as protein–protein
interactions, protein phophorylation and transcription regulation
(Supplementary Figure S3).

3.3 Performance of RVM-based double ensemble
model with missing values

Several additional approaches for dealing with missing values
using RVM-based models are considered here using the kernel
combination method KC1 (see Section 2.2). In the first scenario,
denoted M1, the element values of kernel matrices are replaced
with zeros corresponding to a row or column with missing values to
indicate no similarity measure among them (methods denoted KC1
in Section 3.3). This scenario attempts to keep the data structure of
complementary pathway information, but does not impute a value
on the original missing data feature. In the second scenario (denoted
M2), the missing values in each dataset are first imputed with the
average value of each data feature. The kernel matrices are then
computed based on the imputed data features. In the M1 and M2
model scenarios, RVM-AdaBoost (Fig. 2a) is applied to generate the
discriminant result. The third scenario (M3) is the double ensemble
model (Fig. 2b) that combines RVM, AdaBoost and the reduced-
feature approach. The method of dealing missing values in the base
model of M3 is same as the M1. The number of reduced-feature
models in the M3 ensemble structure is set at 14, equal to the
number of total data features, in order to allow comparison with the
M1 model. The number of randomly chosen features in each base
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Table 3. Performances of different models with missing values using
independent testing sets

Model Number of vectors Biocarta error (%) NCI_nature error (%)

NB – 41.5±0.08 48.6±0.08
M1 121.±39.2 23.6±2.44 24.6±2.83
M2 104.±19.7 34.7±2.22 38.1±2.53
M3 366.±34.2 14.3±4.01 13.9±4.54

Fig. 5. Precision–recall curves of models with different ways for dealing
with missing values based 10-fold cross-validation testing.

model is set to m= log2(k+1)≈4 as in Random Forest (a three-
based ensemble approach) (Breiman, 2001), where k = 14 is the
total number of our data features. (The results in the Supplementary
Data S6 show that this rule is also applicable to the RVM-based
model.) To further evaluate the performances of the RVM-based
models in all the scenarios, we compare them with the baseline
model, Naïve Bayes (denoted as NB in the Table 3), which is also
the most popular approach used in prediction of genetic and protein
interactions (Franke et al., 2006; Jansen et al., 2003; Rhodes et al.,
2005; Troyanskaya et al., 2003). The prior odds of the Naïve Bayes
model is set to one, which is determined based on the proportion of
total number of positive and negative examples in the benchmarks
(Jansen et al., 2003; Rhodes et al., 2005).

In Figure 5, the performance based on 10-fold cross-validation
of all the models is also presented using precision–recall curves.
Table 3 lists the average values and standard derivations of
the performance measures of independent testing for all three
approaches. Performances of the RVM-based models all surpass
Naïve Bayes in the 10-fold validation testing. This indicates
that RVM-based ensemble model can yield significant learning
performance even as the data contain massive missing vales. Among
the three scenarios, M2 is inferior to the other scenarios, especially
based on its poor independent testing error. M2 differs from M1 and
M3 mainly due to its imputation of missing values. Most imputation
methods are based on the assumption of missing at random and
missing completely at random, however, the assumption is not
applicable to genetic network construction. Many missing values
are actually caused by data complementariness due to different

molecular relationships in pathways. For this reason, imputation may
cause bias in the result.

The M1 method shows comparable performance to M3 in 10-fold
cross-validation testing, but results in a higher independent testing
error. Both of M1 and M3 use the same method for handling the
missing values. However, the reduce-feature structure of M3 can
include base-models corresponding to training data with different
patterns of missing values, and thus generate better performance. In
addition, M3 may benefit from its double ensemble structure. The
model diversity in M3 not only comes from sampling subsets of
data points, but also from sampling subsets of data features. The
higher variety of base models in M3 can help yield much lower
generalization errors (details are in the Supplementary Data S6).

We also find the number of vectors increases when applying the
reduced-feature model (M3). However, the reduced-feature model
has an important advantage: it is a lower-dimensional learning
problem compared to the complete-feature learning, and thus can
reduce computation costs both in the training and testing phases.
Although more base models are included in the M3 ensemble
structure, the number of vectors is still small compared to the total
number of the training data points. The sparseness of RVM plays an
important role on the reduction of the number of vectors.

4 CONCLUSION
In this work, a graph-based approach is first presented to construct
a more robust GSN than previous methods. Through validations
using old and new KEGG pathways as well as the Gene Ontology, it
has been shown that a robust GSN can be constructed by choosing
the N most distant KEGG pathway relationships. The high values
of F-measure and G-Mean (supplementary material S5) in all our
results also indicate that our models can yield good classification
performance on both positive and negative examples. This suggests
that the proposed graph-based GSN is sufficiently robust that the
overlap between GSP and GSN is small.

With moderate sampling size, the RVM-based model with only
a few vectors is able to significantly reduce both training and
prediction time. It will be of interest to compare the performance
of RVM-AdaBoost with SVM-AdaBoost (Do and Fekete, 2007;
Li et al., 2005) in future applications, especially with respect to
prediction time that is dominated by the number of vectors in the
final assembled model. This can clarify the advantage of RVM-
based ensemble models on sparseness. The KC1 kernel combination
approach in Section 2.2 has been shown to be an effective kernel
integration approach in RVM-based model, which can retain the
semantic association within each dataset and subsequently sum
up kernel values of each dataset to improve the performance
progressively. Through this method, it is observed that the model
performance increases progressively as more datasets are integrated
(Supplementary Data S5), thus allowing the model to predict
complementary pathway information.

We have also addressed the ability of the RVM-based models
to classify the biological dataset with a large number of missing
values. We find that the RVM-based model can yield significant
performance even with massive missing data values, as shown by
comparison with the Naïve Bayes baseline model. Among the three
model scenarios, the double ensemble model (M3) can generate a
much lower generalization error than the others because it includes
base-models corresponding to training data with different patterns
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of missing values. Our results also indicate that naïve imputation
may not be suitable for complementary pathway data since each
gene pair is only able to be presented in some types of genomic and
proteomic data.

In summary, the graph-based approach presented can generate
robust GSN for the training process of genetic network construction.
The RVM-based ensemble model also yields significant performance
improvement even if it does not achieve the optimal results generated
by the RVM model trained from the complete dataset. Finally,
based on the results presented, the RVM-based ensemble model is a
computationally practical and effective approach that can be used on
large-scale and high-dimension problems even with massive missing
data values..
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