
Force and torque production in static multifinger prehension:
biomechanics and control. II. Control

Vladimir M. Zatsiorsky, Robert W. Gregory, and Mark L. Latash
Department of Kinesiology, The Pennsylvania State University, University Park PA 16802, USA

Abstract
The coordination of digits during combined force/torque production tasks was further studied using
the data presented in the companion paper [Zatsiorsky et al. Biol Cybern this issue, Part I].
Optimization was performed using as criteria the cubic norms of (a) finger forces, (b) finger forces
normalized with respect to the maximal forces measured in single-finger tasks, (c) finger forces
normalized with respect to the maximal forces measured in a four-finger task, and (d) finger forces
normalized with respect to the maximal moments that can be generated by the fingers. All four criteria
failed to predict antagonist finger moments when these moments were not imposed by the task
mechanics. Reconstruction of neural commands: The vector of neural commands c was reconstructed
from the equation c = W−1F, where W is the finger interconnection weight matrix and F is the vector
of finger forces. The neural commands ranged from zero (no voluntary force production) to one
(maximal voluntary contraction). For fingers producing moments counteracting the external torque
(‘agonist’ fingers), the intensity of the neural commands was well correlated with the relative finger
forces normalized to the maximal forces in a four-finger task. When fingers produced moments in
the direction of the external torque (‘antagonist’ fingers), the relative finger forces were always larger
than those expected from the intensity of the corresponding neural commands. The individual finger
forces were decomposed into forces due to ‘direct’ commands and forces induced by enslaving
effects. Optimization of the neural commands resulted in the best correspondence between actual
and predicted finger forces. The antagonist moments are, at least in part, due to enslaving effects:
strong commands to agonist fingers also activated antagonist fingers.

1 Introduction
This paper is a sequel to Zatsiorsky et al. (2002); it is based on the data reported in that paper
and consists of three main sections: (i) optimization of finger forces, (ii) reconstruction of
neural commands, and (iii) optimization of neural commands. Sections 3 and 4 are based on
expanding a neural network approach previously developed for studying pressing and gripping
tasks (Zatsiorsky et al. 1998) to precision grip tasks involving torque production.

Pressing and gripping tasks with several fingers have been studied to a much larger extent than
torque-production tasks. In these tasks, however, the fingers act as agonists; i.e., the mechanical
effects of their actions are simply summed up. The following three main phenomena have been
observed: (i) force sharing – the total force is shared among the fingers in a specific manner
(Amis 1987; Radwin et al. 1992; Li et al. 1998); (ii) force deficit – the maximal force produced
by a given finger in a multifinger task is smaller than the force generated by this finger in a
single-finger task (Ohtsuki 1981; Li et al. 1998a, b, 2000; Danion et al. 1999, 2000; Li et al.
2000); and (iii) enslaving – fingers that are not required to produce any force by instruction
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are involuntarily activated (Li et al. 1998a; Latash et al. 1998; Zatsiorsky et al. 1998, 2000).
Enslaving effects reveal the existing biomechanical and neurophysiological interconnections
among the fingers: a neural command to one finger induces activation of other fingers (cf.
Schieber 1991, 1996; Hager-Ross and Schieber 2000).

The interdependence among fingers during force production has been addressed in our previous
research (Zatsiorsky et al. 1998; Li et al. 2002). Subjects were instructed to press as hard as
possible on force sensors with either one, two, three, or four fingers acting in parallel, using
all possible combinations. A neural network model simulating the muscular apparatus of the
hand was developed. During modeling, the input values (neural commands) were set either at
1 if the finger was intended to produce force or 0 if the finger was not intended to produce
force. The neural network yielded a relation between the neural commands and the individual
finger forces (see the Appendix). The relation between the commands and the finger forces
was expressed as a matrix equation:

(1)

where F is the (4 × 1) vector of the finger forces, w is the (4 × 4) matrix of weight coefficients
(the matrix models interconnections among the fingers, both peripheral connections – at the
muscle-tendon level – and central), c is the (4 × 1) vector of the dimensionless neural commands
(a single element of the vector represents the intensity of the command sent to a given finger),
v is the (4 × 4) diagonal matrix with gain coefficients that model the input–output relations for
single-digit muscles, and n is the number of fingers that are intended to produce force. For a
given n, (1) can be reduced to

(2)

From (2) it follows that a command ci sent to a finger i (i = 1, 2, 3, 4) activates all other fingers
to a certain extent (enslaving effects). A force exerted by finger i arises from a summation of
the command sent to this finger and commands sent to other fingers. It is not clear whether
these enslaving effects play a role in torque-production tasks.

The goal of the present study was to explore prehension tasks requiring simultaneous exertion
of force and torque on a handheld object.

2 Optimization of finger forces
To test whether the observed force-sharing patterns (see Zatsiorsky et al. 2002) were optimal,
optimization methods have been employed. The norms of the following vectors were used as
cost functions:

1. Finger forces

(3)

2. Finger forces normalized with respect to the maximal forces measured in single-finger
tasks
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(4)

3. Finger forces normalized with respect to the maximal forces measured in a four-finger
(index, middle, ring, and little; IMRL) task

(5)

4. Finger forces normalized with respect to the maximal moments that can be generated
by the fingers while grasping an object with four fingers

(6)

using the following constraints:

(7)

where Ftot is the total of the normal finger forces; Fsl is the minimal grasp force necessary to
prevent an object from slipping out of the hand; Fi is the force produced by an individual finger;
Mtot is the total moment generated by the four normal finger forces; and di is the finger moment
arm, which is the projected distance between the centers of the finger sensor and the thumb
sensor (for the ‘central’ fingers, di = 12.5 mm; for the ‘peripheral’ fingers, di = 37.5 mm).
Because the shear force changes as a function of the external torque (see Fig. 2 in Zatsiorsky
et al. 2002), Fsl is different for each load/torque combination. The slip force Fsl was estimated
as

(8)

where Fshear is the largest shear force – either the thumb or all four fingers combined – for a
given load/torque combination, and μ is the coefficient of friction. The thumb shear force was
measured and the shear forces of the fingers were computed as the difference between the total
weight of the apparatus (the handle/beam apparatus plus the external load) minus the thumb
shear force. The optimization computations were performed in MAT-LAB (Mathworks,
Natick, Mass) using the ‘fmincon’ function, which accomplishes multidimensional constrained
nonlinear optimization. The power value of the cost functions was selected to be p = 3 (values
of p ranging from 1 to 15 have also been employed, but the results will not be presented here).
When p = 3 criteria G2, and G3 are analogous to the minimum fatigue criterion

(9)

suggested by Crowninshield and Brand (1981) for the muscle-sharing problem, which is the
problem of distributing activity among synergistic muscles contributing to a joint moment. In
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(9), Gfatigue is the so-called muscle fatigue function, where PCSAi is the physiological cross-
sectional area of the ith muscle, and the constant p was derived from the experimentally
obtained relationship between muscle stress (F/PCSA) and endurance time of human muscles
(p = 3 on average). Criterion Gfatigue is broadly used for studying the muscle-sharing problem
(for recent reviews see Tsirakos et al. 1997; Prilutsky 2000; Prilutsky and Zatsiorsky 2002).

The optimization results were similar, with some small differences, for all four cost functions.
For zero torque conditions, all four criteria predicted equal involvement of the finger pairs that
produce pronation and supination moments, as should be expected (Fig. 1).

For nonzero torque conditions, none of the cost functions predicted antagonist moments of
force, with the exception of the 2.0 kg/0.375 Nm load/torque combination (Fig. 2). This ‘large
load/small torque’ combination evidently corresponds to zone A of the three-zone model that
was introduced in Zatsiorsky et al. (2002), a zone where antagonist moments are a mechanical
necessity. Hence, criteria based on minimization of finger forces fail to predict the existing
antagonist moments observed in zones B and C, where they are not mechanically necessary.
According to these criteria, the force distribution patterns employed by the subjects were not
optimal.

3 Reconstruction of neural commands
Due to finger enslaving (Zatsiorsky et al. 1998,2000), a flexion command sent to a finger causes
force production by other fingers. Equation (2) represents this fact.

3.1 Method of reconstruction and results
If the vector of finger forces F and weight matrix W are known, the vector of the neural
commands can be determined by inverting (2):

(10)

The vector F was measured in this study. The weight matrix W was taken from our previous
study on neural network modeling of force production by several fingers (Zatsiorsky et al.
1998); please refer to (A3) in the Appendix.

In the study by Zatsiorsky et al. (1998), the group average of the sum of the individual maximal
finger forces was 141.8 N. In the present study, the subjects were stronger on average; the sum
of the individual finger forces was 178.2 N. Therefore, a correction coefficient of 178.2/141.8
=1.2566 was introduced and the weight matrix W was multiplied by this coefficient. The
adjusted matrix aW is

(11)

The elements of the matrix are the finger forces induced by neural commands of maximal
intensity (cj 1). In particular: (i) any element on the main diagonal is equal to the force produced
by finger i (i = 1, 2, 3, 4) induced by a command of unit intensity to this finger; for instance,
a command to the index finger cindex = 1 results in a force of 31.5 N; (ii) the rows of the matrix
represent the force of a given finger induced by commands to all the fingers; for example, when
commands of unit intensity are sent to all of the fingers the little finger generates a force of
2.765 + 2.388 + 14.451 = 24.63 N, of which only 14.5 N comes from the command sent to this
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finger and the remaining 2.765 + 2.388 + 5.026 = 10.179 N are due enslaving; and (iii) the
columns of the matrix correspond to the effect of a command ci = 1 on all four fingers. For
instance, the second column represents the finger forces induced by a command of unit intensity
sent to the middle finger. Such a command results in forces of 2.859 N, 21.802 N, 6.346 N and
2.388 N being produced by the index, middle, ring, and little fingers, respectively. Any element
ij of the matrix is equal to the force of finger i in response to a maximal command sent to finger
j (cj = 1).

The inverse of the weight matrix is

(12)

The neural commands computed from (10) are presented in Table 1.

The obtained commands, as was expected, generally ranged from 0 to 1. In one case, a
command to the little finger during a supination effort somewhat exceeded one (1.037). For
the large supination moments, the commands to the index finger were slightly below zero,
which may represent a small extension command, or simply be a result of inaccuracies in the
modeling. Taking into account that the neural command intensities were computed by
combining the results of three experiments: (i) the study of Zatsiorsky et al. (1998), (ii) force
measurements during torque production tasks, and (iii) maximal force measurements
(Zatsiorsky et al. 2002), the accuracy of the reconstruction can be considered to be reasonable.
Commands to individual fingers changed systematically with the magnitude and direction of
the external torques. During the largest pronation efforts (counterbalancing an external
clockwise torque of −1.5 Nm), the commands to the index finger varied from 0.658 to 0.694,
i.e. the index finger was never maximally activated. However, during the largest supination
efforts (counterbalancing an external counterclockwise torque of 1.5 Nm) the little finger was
activated close to maximum, ci = 0.948–1.037.

3.2 Neural commands and finger forces
The relationship between neural command intensities and finger forces (expressed as a
percentage of the maximal force in a single-finger task) are presented in Fig. 3. When fingers
produced agonist moments, the intensity of the commands was larger than the relative force
while the opposite was true for the production of antagonist moments. The point at which the
curves intersected was close to, but not exactly at, zero torque.

When finger forces were expressed as a percentage of the maximal forces measured in a four-
finger task, the correspondence between the command intensity and the relative finger forces
improved (Fig. 4).

The obtained improvement is evidently due to enslaving effects that are neglected in criteria
G1, G2, G3, and G4 but are accounted for in the neural command approach. The relative
contribution of the enslaving effects into the finger forces is relatively larger when a finger
serves as a torque antagonist and produces a smaller force.

3.3 Decomposition of finger forces: exploration of enslaving effects
The force generated by a finger arises from the command sent to this finger (‘direct’ finger
force) as well as from the commands sent to other fingers (enslaved force). The direct finger
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forces can be computed as the product wiici (i = 1, 2, 3, 4), where wii is a diagonal element of
the weight matrix (Fig. 5).

The difference between the actual and ‘direct’ forces represents enslaving effects; i.e., the force
generated by a finger due to the commands sent to other fingers. The enslaved forces are
presented in Fig. 6.

For the middle, ring, and little fingers, the minimum enslaved force occurs at zero torque or
close to it. It is interesting to note that a rather irregular behavior of the middle finger forces
(Fig. 5) is associated with a smooth, regular dependence of the enslaved forces resulting from
the external torque (Fig. 6). The method allows for partitioning the effects on individual fingers
due to the commands sent to each of the fingers. An example of such a decomposition for the
middle finger forces is presented in Fig. 7. The summed effects from the index, ring, and little
fingers are equal to the enslaved force (r = 998).

4 Optimization of central commands
The following objective function was optimized:

(13)

where the constraint c = aW−1 F was used in addition to the previously mentioned constraints
(7). Root-meansquare (RMS) error was used as a measure of performance of this and other
criteria. Overall, the G5 criterion worked much better than the four criteria based on
minimization of finger forces; in all 32 load/torque combinations with nonzero external
torques, the RMS values were smaller for the neural command optimization (Table 2). On
average, the RMS values for the cost function based on the neural commands equaled only 34–
57% of the RMS for the other four criteria. In addition, criterion G5 always predicted antagonist
moments while the other criteria, with a few exceptions, failed to predict them (see Fig. 2). An
evident reason for the better performance of the criterion based on neural commands is that
the G5 criterion accounts for enslaving effects while the other criteria do not.

5 Discussion
This study has demonstrated that phenomena such as force deficit and enslaving originally
discovered in maximal pressing tasks also exist in submaximal precision grip tasks involving
torque production. In this context, we imply during force deficit the necessity to use a larger
command to a digit in order to produce a fixed level of force when another digit is recruited,
as compared to force production by the first digit alone. The interfinger weight matrices serve
as quantitative estimates of the force deficit and enslaving. The force deficit is accounted for
by a coefficient 1/n, where n is the number of fingers involved in the task (see Eqs. 1 and 2)
and enslaving is represented by the elements of the matrix. The inter-connection matrices relate
neural commands with finger forces and allow for reconstruction of the neural commands from
known values of the finger forces.

5.1 The reasons behind antagonists moments
Zatsiorsky et al. (2002) introduced a three-zone model for prehension. Antagonist moments in
zone A are mechanically necessary; the reasons for their existence in zones B and C are less
evident. One of the possible mechanisms causing antagonist moments in zones B and C is
enslaving; antagonist fingers are activated because strong commands are sent to agonist fingers
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and antagonist fingers are enslaved by these commands. The computation of the neural
commands and their effects (Figs. 4–7) supports this hypothesis. The neural commands to
antagonist fingers produced in response to large external torques are close to zero or even
negative; for example, the neural commands to the index finger are negative in the 1.125 Nm
and 1.5 Nm conditions. Nevertheless, the antagonist fingers are active and generate force due
to enslaving.

A second mechanism – purely hypothetical at this point – may also contribute to the generation
of antagonist moments. The experimental tasks used in this study required a high degree of
accuracy; subjects were asked to maintain the vertical orientation of the handle. Antagonist
muscles are usually active during static precision tasks (Flanders and Soechting 1990;
Buchanan and Lloyd 1995). The coactivation of the muscles that serve the opposite movements
at a joint (e.g., flexion–extension) increases the apparent joint stiffness, i.e., the resistance of
the joint to the perturbation (however, see Burnett et al. 2000). It seems reasonable to assume
that antagonist moments are generated because of similar reasons, namely to improve the
accuracy of the system and increase its resistance to perturbations. This hypothesis can be
tested by changing the accuracy requirements of the task, e.g., allow deviation of the handle
up to 10° from vertical and/or by changing the moment of inertia of the apparatus.

5.2 What are neural commands?
In Zatsiorsky et al. (1998), as well as in this study, neural commands were introduced in a
purely operational way, by describing the techniques employed for computing the commands.
The commands are sets of neural parameters (something that we do not know) that assume a
maximal value (one) when maximal voluntary contraction is required and a minimal value
(zero) when voluntary force is not exerted. Because matrix methods are used for describing
the relationship between commands and forces, the relationships are also implicitly assumed
to be linear. The methods used in this study do not provide a means for establishing the actual
physiological mechanisms behind these abstract concepts.

Neural commands, however, may have real physiological meaning. Tax and Denier van der
Gon (1991) suggest that muscle force may linearly depend on neural control signals without
violating such known phenomena as the size principle (Henneman et al. 1965) and nonlinear
twitch summation (Burke et al. 1976). Consider a motoneuron pool that receives input from a
nerve bundle. A weighted sum of activities in a nerve bundle is

(14)

where I is the control signal of the motoneuron pool, ei is the firing frequency of action
potentials traveling along each nerve fiber in the bundle, and ui is the synaptic weight of a
nerve fiber i projecting to a motoneuron (in the model, it is assumed that synaptic weights for
all motoneurons are equal). When some commonly accepted physiological facts were
incorporated into the model (i.e., different recruitment density of small and large motor units)
a linear relationship between a control signal I and the force produced by a muscle was
established. Hence, the control signal I is proportional to the muscle force and can be interpreted
as an internal representation of muscle force. While the neurophysiological mechanisms of the
neural commands analyzed in this study remain unclear, there is a certain similarity between
these commands and the control signals to the motoneuron pools (14).
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5.3 Interfinger weight matrices
The interfinger weight matrix W worked remarkably well in this study; in particular the neural
commands were determined with sufficient accuracy. This performance deserves to be pointed
out because, as previously mentioned, the computation of the neural commands was based on
empirical data from three separate experiments performed on two groups of subjects
(Zatsiorsky et al. 1998 and this study). This implies that the matrix is robust and, after a
necessary adjustment for differences in the strength of the subject groups, may be used for
different populations. Obviously, this claim needs to be tested experimentally. In the future, it
seems reasonable to use normalized weight matrices (per 1 N of total finger force measured in
single-finger tasks):

(15)

The interfinger weight matrix W introduced in (2) models enslaving effects, while (1) models
both enslaving and force deficit. It seems reasonable to use for analyzing these effects the set
theory (Venn diagrams). For instance, let I and M be anatomical objects affecting the magnitude
of the forces produced by the index and middle fingers, respectively. The objects can be muscle
bundles, individual muscles, motoneuron pools, or populations of supra-spinal neurons. The
I ∩ M intersection represents an overlap of the anatomical objects serving two fingers, for
instance the muscle bundles in the extrinsic hand muscles that serve both fingers. Then, if the
intersection of the sets I and M is not empty (I ∩ M ≠ 0), the union of I and M contains a smaller
number of elements than I and M combined; i.e., Card (I ∪ M) < [Card (I) + Card (M)], where
Card is the cardinality of a set. While it seems logical to assume that the intersection I ∩ M
specifies the amount of enslaving and the difference [Card (I) + Card (M)] – Card(I ∪ M)
specifies the amount of deficit, the situation is more complex: no correlation between the
magnitude of force enslaving and force deficit in various tasks has been observed (F. Danion,
personal communication, 2001).

Recent research shows that muscle bundles as well as individual muscles are not very good
candidates for explaining enslaving effects. This conclusion follows from experiments in which
the site of finger force application was varied and the forces were exerted either at the distal
or proximal phalanges (Li et al. 2001). When the point of force application is at the distal
phalanx, the extrinsic flexor muscles are the major contributors to finger force production;
however, when the force of application is at the proximal phalanx the intrinsic muscle group
is the major contributor. In spite of different muscle involvement, enslaving does not depend
on the site of force application and is approximately the same when the forces are exerted at
the distal or proximal phalanges (Zatsiorsky et al. 2000). It seems that it is not the
musculotendinous interconnections, but rather higher-order interactions that define enslaving
effects.

In the human primary somatosensory cortex, cortical digit representations are arranged from
the lateral inferior to the medial superior aspect in anatomical order: the thumb, index finger,
middle finger, ring finger, and little finger (Baumgartner et al. 1991). However, the volumes
representing individual fingers overlap extensively (Krause et al. 2001). In the primary motor
cortex of monkeys, neuronal populations activated by movements of different fingers also
overlap in their spatial locations (Schieber and Hibbard 1993). The control of any finger
movement utilizes a distributed population of neurons and the entire neuronal population
activity specifies particular finger movements (Georgopoulos et al. 1999). It appears that force
deficit and enslaving have their origin at this level, rather than being completely defined by
musculotendinous connections at the peripheral level. It would be interesting to trace the
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relationship – if it exists – between the interfinger connection matrices and the overlapping
volumes of population neurons.

5.4 Finger redundancy and muscle redundancy
There is a certain similarity between finger coordination in multifinger manipulative tasks and
muscle coordination in joint moment production (Li et al. 1998a). Both fingers and muscles
work in parallel (Mussa-Ivaldi 1986; Zatsiorsky 2002). In statics, parallel systems are
redundant and described by underdetermined sets of equations: the number of unknowns is
larger than the number of available equations. For instance, the number of muscles typically
exceeds the number of degrees of freedom at a joint. In kinematics, parallel systems are
overconstrained and described by overdetermined sets of equations: the number of equations
exceeds the number of unknowns. For instance, if the length of one singlejoint muscle is known,
the joint angle and lengths of the other muscles spanning that joint can be determined. In a
similar way, for a given grasp, the same force and torque can be exerted on the object by a
different combination of digit forces while the position of a digit is uniquely defined by the
position of the other fingers.

The evident similarities between the two systems inspire one to question whether or not the
central nervous system controls these mechanically similar systems in a similar way. Note that
studying finger coordination is an advantageous method for studying the force-sharing
problem; contrary to the direct measurement of muscle forces, finger forces can be measured
without difficulty. In particular, the question arises whether enslaving exists at the level of
muscles. In other words, can the central controller activate one muscle in isolation without
activating other muscles? Note that in numerous publications on the so-called muscle-sharing
problem (for reviews, see Tsirakos et al. 1997; Prilutsky 2000), possible enslaving is
completely neglected when different optimization methods are used. Our results question this
approach.
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Appendix: Neural network modeling of finger forces: interfinger connection
matrices (from Zatsiorsky et al. 1998; Li et al. 2002)

The model (Fig. A1) consists of three layers: (i) the input layer that models a central neural
drive, (ii) the hidden layer that simulates transformation of the central drive into an input signal
to the muscles serving several fingers simultaneously (e.g., multidigit muscles), and (iii) the
output layer representing finger force output. The output of the hidden layer is set inversely
proportional to the number of fingers involved. The network also features direct connections
between the input and output layers that represent signals to the hand muscles serving
individual fingers (e.g., single-digit muscles). During modeling, the input values (central
commands) were set either at 1 if the finger was intended to produce force or 0 if the finger
was not intended to produce force.

The neural network yielded a relation between the central commands and the individual finger
forces. The relation between the central commands and the finger forces was expressed as a
matrix equation:

(A1)
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where F is a (4 × 1) vector of the finger forces, w is a (4 × 4) matrix of weight coefficients (the
matrix models the multidigit muscles), c is a (4 × 1) vector of the dimensionless central
commands, v is a (4 × 4) diagonal matrix with the gain coefficients that models the input–
output relations for the single-digit muscles, and n is the number of fingers that are intended
to produce force (for these fingers, central commands = 1). The values of w and v were found
to be equal:

(A2)

For n = 4, (A1) can be reduced to

(A3)

where W is the (4 × 4) matrix of weight coefficients (interfinger connection matrix).

Fig. A1.
Neural network and associated mathematical formulations. The index, middle, ring, and little
finger correspond to 1, 2, 3, and 4, respectively. The mathematical background of the network
is explained in Zatsiorsky et al. (1998) and Li et al. (2002). The network was validated using
three different training sets and worked remarkably well. In all cases, the predicted values were
in the range of ± 1 SD
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Fig. 1.
Actual and predicted (optimal) finger forces for the zero torque conditions with a 1.0 kg load.
All four criteria (G1, G2, G3, and G4) predicted equal activation of the index–middle (I–M) and
ring–little (R–L) pairs of fingers. Optimization of neural commands are explained and
discussed in the text. Note the large difference between the actual and predicted forces; there
is an unusually large safety margin
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Fig. 2.
Comparison of actual force data with force patterns predicted by different optimization criteria.
Criteria G1, G2, G3, and G4 predict antagonist moments only for the 2.0 kg/0.375 Nm load/
torque combination
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Fig. 3.
Command intensity and relative finger forces (Fi/Fimax ratio: finger force/maximal force in a
single-finger task) for the 2.0 kg load conditions. Representative examples
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Fig. 4.
Central commands and relative finger forces (expressed as a percentage of the maximal force
in a four-finger grip task) for the 2.0 kg load conditions
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Fig. 5.
Actual and ‘direct’ finger forces at different external torques for a 2.0 kg load. The direct forces
were computed as the products of the diagonal elements of the matrix of the connection weights
wii (i = 1, 2, 3, 4) times the corresponding finger commands
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Fig. 6.
Enslaved forces (in Newtons) for a 2.0 kg load
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Fig. 7.
Decomposition of enslaving effects due to activation of the middle finger for a 2.0 kg load
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Table 1

The neural commands to the individual fingers for the various load and torque conditions (maximal intensity =
1)

Torque,
Nm

Load
0.5 kg

Load
1.0 kg

Load
1.5 kg

Load
2.0 kg

Index finger

−1.5 −0.035 −0.028 −0.036 −0.024

−1.125 −0.006 −0.010 −0.015 −0.009

−0.750 0.006 0.002 0.004 0.015

−0.375 0.023 0.027 0.029 0.055

0 0.074 0.094 0.117 0.121

0.375 0.215 0.21 0.231 0.248

0.750 0.375 0.378 0.385 0.388

1.125 0.490 0.531 0.516 0.556

1.5 0.689 0.661 0.658 0.694

Middle finger

−1.5 0.030 0.064 0.085 0.130

−1.125 0.016 0.035 0.089 0.083

−0.750 0.014 0.026 0.046 0.102

−0.375 0.023 0.043 0.074 0.109

0 0.042 0.067 0.123 0.173

0.375 0.056 0.079 0.110 0.164

0.750 0.082 0.087 0.139 0.182

1.125 0.110 0.117 0.171 0.211

1.5 0.140 0.206 0.238 0.209

Ring finger

−1.5 0.601 0.584 0.665 0.686

−1.125 0.415 0.449 0.470 0.553

−0.750 0.311 0.324 0.376 0.425

−0.375 0.192 0.233 0.297 0.333

0 0.105 0.158 0.201 0.262

0.375 0.077 0.110 0.155 0.203

0.750 0.067 0.127 0.131 0.187

1.125 0.055 0.082 0.142 0.161

1.5 0.044 0.093 0.129 0.045

Little finger

−1.5 0.948 1.037 0.959 0.997

−1.125 0.830 0.857 0.828 0.778

−0.750 0.580 0.581 0.601 0.621

−0.375 0.326 0.308 0.335 0.395

0 0.102 0.124 0.181 0.238

0.375 0.061 0.129 0.084 0.146

0.750 0.050 0.056 0.086 0.101
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Torque,
Nm

Load
0.5 kg

Load
1.0 kg

Load
1.5 kg

Load
2.0 kg

1.125 0.046 0.045 0.058 0.045

1.5 0.037 −0.034 0.025 0.045

Biol Cybern. Author manuscript; available in PMC 2010 March 5.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zatsiorsky et al. Page 22

Ta
bl

e 
2

O
pt

im
iz

at
io

n 
re

su
lts

 R
M

S 
er

ro
r v

al
ue

s (
Su

p,
 su

pi
na

tio
n;

 P
ro

, p
ro

na
tio

n)

L
oa

d
(k

g)
T

or
qu

e
(N

m
)

G
1

G
2

G
3

G
4

G
5 n

eu
ra

l c
om

m
an

ds

Su
p

Pr
o

Su
p

Pr
o

Su
p

Pr
o

Su
p

Pr
o

Su
p

Pr
o

0.
5

0.
37

5
1.

33
2.

23
1.

23
2.

22
1.

29
2.

25
1.

82
2.

12
0.

53
1.

55

0.
5

0.
75

0
1.

83
2.

78
1.

64
2.

56
1.

89
2.

89
2.

88
2.

67
0.

66
1.

37

0.
5

1.
12

5
1.

93
3.

39
1.

72
2.

81
2.

47
3.

62
3.

58
2.

97
1.

39
1.

39

0.
5

1.
50

0
2.

61
3.

94
1.

93
3.

11
2.

48
4.

28
5.

17
3.

39
1.

74
1.

53

1.
0

0.
37

5
1.

99
2.

91
1.

82
2.

95
1.

68
2.

92
2.

53
2.

54
0.

93
2.

27

1.
0

0.
75

0
1.

90
3.

20
1.

66
3.

09
1.

84
3.

29
2.

99
3.

22
0.

55
1.

78

1.
0

1.
12

5
2.

66
3.

50
2.

39
3.

10
2.

79
3.

70
4.

20
3.

31
1.

01
1.

40

1.
0

1.
50

0
3.

17
3.

69
2.

76
3.

44
3.

33
3.

95
5.

34
3.

95
1.

49
0.

94

1.
5

0.
37

5
2.

94
3.

13
2.

77
3.

00
2.

57
3.

19
3.

19
2.

63
1.

87
2.

62

1.
5

0.
75

0
2.

74
3.

62
2.

47
3.

71
2.

41
3.

66
3.

76
3.

90
0.

89
2.

27

1.
5

1.
12

5
3.

21
3.

89
2.

89
3.

82
3.

07
4.

02
4.

72
4.

11
1.

01
1.

77

1.
5

1.
50

0
3.

87
4.

19
3.

22
4.

23
3.

19
4.

37
6.

21
4.

76
1.

09
1.

36

2.
0

0.
37

5
3.

69
4.

01
3.

62
3.

95
3.

64
4.

04
3.

89
3.

68
2.

97
3.

97

2.
0

0.
75

0
5.

49
5.

08
3.

34
4.

58
3.

11
4.

36
4.

63
4.

50
1.

67
3.

09

2.
0

1.
12

5
3.

68
4.

67
3.

21
4.

82
3.

02
4.

74
5.

40
5.

14
0.

88
2.

62

2.
0

1.
50

0
4.

37
4.

84
3.

75
4.

73
3.

62
5.

03
6.

61
5.

14
0.

94
1.

97

A
ve

ra
ge

2.
96

3.
69

2.
53

3.
50

2.
65

3.
77

4.
18

3.
63

1.
22

1.
99

Biol Cybern. Author manuscript; available in PMC 2010 March 5.


