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Abstract
Targeted deletion of membrane guanylyl cyclases (GCs) has yielded new information concerning
their function. Here, we summarize briefly recent results of laboratory generated non-photoreceptor
GC knockouts characterized by complex phenotypes affecting the vasculature, heart, brain, kidney
and other tissues. The main emphasis of the review, however, addresses the two GCs expressed in
retinal photoreceptors, termed GC-E and GC-F. Naturally occurring GC-E (GUCY2D) null alleles
in human and chicken are associated with an early onset blinding disorder, termed ‘Leber Congenital
Amaurosis type 1’ (LCA-1), characterized by extinguished scotopic and photopic ERGs, and retina
degeneration. In mouse, a GC-E null genotype produces a recessive cone dystrophy, while rods
remain functional. Rod function is supported by the presence of GC-F (Gucy2f), a close relative of
GC-E. Deletion of Gucy2f has very little effect on rod and cone physiology and survival. However,
a GC-E/GC-F double knockout (GCdko) phenotypically resembles human LCA-1 with extinguished
ERGs and rod/cone degneration. In GCdko rods, PDE6 and GCAPs are absent in outer segments. In
contrast, GC-E-/- cones lack proteins of the entire phototransduction cascade. These results suggest
that GC-E may participate in transport of peripheral membrane proteins from the endoplasmic
reticulum (ER) to the outer segments.
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Soluble and membrane guanylate cyclases
Guanylate cyclases (GCs) synthesize cyclic GMP (cGMP), a secondary messenger in many
pathways, in response to diverse signals, such as nitric oxide (NO), peptide ligands (hormones),
and fluxes in intracellular Ca2+ mediated by Ca2+-binding proteins ([Ca2+]i) [1,2]. These
signals use specific guanylate cyclase receptors and cofactors to initiate the conversion of
cytosolic GTP to cGMP. Intracellular cGMP regulates cellular physiology by activating protein
kinases, directly gating specific ion channels, or altering intracellular cyclic nucleotide
concentrations through regulation of phosphodiesterases (PDEs). Guanylate cyclases are
classified as either soluble or membrane (particulate), based on both their cellular distribution
and structural domains [2,3]. Soluble guanylate cyclases are heterodimeric proteins consisting
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of α- and β-subunits, and are activated by nitric oxide, another secondary messenger. Soluble
guanylate cyclases are present in various cells in vertebrate retina, and maybe involved in signal
transmission/modulation between cells [4]. A role in photoreceptor physiology was envisioned
earlier for soluble GCs [5,6], but no biochemical or genetic evidences are available for a role
in modulation of cGMP in phototransduction. Based on phenotypes of photoreceptor GC
double knockouts, a specific role for soluble GCs in phototransduction can safely be excluded.

Membrane GC isozymes (GC-A to GC-G, Table 1) exhibit highly conserved domain structures,
an extracellular domain (ECD) which comprises a large part of the N-terminal part of the
molecule, a single transmembrane (TM) region, an intracellular protein kinase-like homology
domain (KHD), a dimerization (hinge) domain (DD), and a C-terminal catalytic domain (CAT).
Based on their ligand specificities, membrane GCs have been subdivided into natriuretic
peptide receptors (GC-A, GC-B), intestinal peptide-binding receptors (GC-C), olfactory
uroguanylin- and guanylin-sensitive receptors (GC-D) and so-called ‘orphan’ receptors (GC-
E/GC-F present in photoreceptors, and GC-G in testis). GC-E and GC-F have no known
extracellular ligand (hence the term ‘orphan’), but are stimulated by intracellular ligands, the
GC-activating proteins (GCAPs). Thus, currently the only real ‘orphan’ receptor is GC-G, a
receptor of largely unknown distribution and function.

Non-photoreceptor GCs and cGMP-signaling have been reviewed extensively [1-3,7].
However, within the last ten years, the generation of membrane GC knockouts have lead to
important insights concerning their precise function (recent review: [8]). The following
paragraphs attempt to briefly summarize the phenotypes of non-photoreceptor membrane GC
knockouts and of naturally occurring null alleles in human.

Consequences of non-photoreceptor GC deletions
GC-A (natriuretic peptide receptor A, gene symbol Npr1, see Table 1) is expressed in the
vasculature, heart, brain, testis and other tissues, and is stimulated by atrial natriuretic peptides
secreted by heart muscles. Mice lacking the Npr1 gene, produced by placing a neo cassette in
exon 4 [9] (Fig. 1), mimic many of the features of hypertensive heart disease in human patients.
Npr1-/- mice showed multiple phenotypes, including elevated blood pressure, salt-resistant
hypertension, progressive cardiac hypertrophy and sudden death, thereby demonstrating that
GC-A is essential for the maintenance of normal blood pressure [9,10].

GC-B (natriuretic peptide receptor B, gene Npr2) is expressed in many different tissues, and
its function had been unclear until a knockout was generated [11]. To generate the knockouts,
exons 3-7 encoding a portion of the ECD and the transmembrane domain, were replaced by a
neo cassette [11] (Fig. 1). Npr2-/- mice showed a dramatic impairment of endochondral
ossification and an attenuation of longitudinal vertebra or limb-bone growth [11]. Female
Npr2-/- mice were infertile, but male mice were not, due to the failure of the female reproductive
tract to develop. Null mutations in the NPR2 gene in humans are associated with autosomal
recessive skeletal dysplasia known as “acromesomelic dysplasia, type Maroteaux” (AMDM),
characterized by reduced body height. In addition, heterozygous NPR2 mutations were found
associated with short stature in humans [12]. Further, mutations in the Npr2 gene are
responsible for dwarfism, short limbs and tail in the cn/cn and slw (short-limbed dwarfism)
mouse [13,14].

Heat-stable enterotoxins activate GC-C (gene symbol Gucy2c) in intestines and increase levels
of cGMP that activate downstream targets causing acute diarrhea. The Gucy2c deletion was
generated by inserting a neo cassette into exon 1; the knockout mice developed normally and
were resistant to enterotoxin-induced diarrhea [15]. GC-C is the major guanylate cyclase in
the mammalian intestines, has been the focus of a link to colon cancer. However, Gucy2c null
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mice show reduced polyp formation and increased apoptosis, the opposite of proliferation
[16].

A small subpopulation of olfactory neurons in the main olfactory epithelium express GC-D,
together with CNGA3 (cGMP-gated channel α-subunit first identified in cones) and cGMP-
specific PDE2 [17,18]. A Gucy2d knockout was generated by replacing exons 2 and 3 with a
reporter cassette fused to a floxed neo gene [18] (Fig. 1). The knockout permitted the
identification of uroguanylin and guanylin as extracellular ligands suggesting that GC-D
expressing olfactory neurons may detect cues related to hunger and thirst [18,19]. The ‘orphan
receptor’ GC-G is expressed in mouse testes [20] and kidneys [21], but its distribution in other
tissues and possible function are largely unknown. A Gucy2g knockout suggested that in
kidneys, GC-G may promote apoptotic and inflammatory responses in ischemia-reperfusion
induced renal injury [21]. Interestingly, the primate GUCY2E gene (encoding GC-D) and the
human GUCY2G gene (encoding GC-G) contain multiple inactivating sequence changes and
are non-functional pseudogenes [22]. These data suggest that GC-D has been lost in primates,
prior to the divergence of Old World monkeys from New World monkeys (more than 40 million
years ago) [22].

These gene targeting experiments clearly demonstrate the power of gene knockouts in
pinpointing the exact functions of membrane GCs in-vivo. Below, we will discuss the
photoreceptor GCs (GC-E and GC-F) expressed in rods and cones, with particular focus on
gene knockouts and their consequences for photoreceptor physiology, membrane protein
transport and photoreceptor survival.

Photoreceptor Guanylate cyclases (GC-E and GC-F)
Membrane GCs are key components responsible for the production of cGMP, an essential
secondary messenger of phototransduction. During phototransduction, cGMP is rapidly
hydrolyzed by a membrane-associated PDE6 located on rod outer segment disk membranes,
i.e., coin-like stacks of membranes unconnected to the plasma membrane. Disappearance of
the ‘messenger’ closes cGMP-gated cation channels residing in the cell membrane, effectively
hyperpolarizing the cell. In the dark-adapted photoreceptor, the basal GC activity (inhibited
by Ca2+-bound GC-activating proteins, termed GCAPs) is balanced by the low basal activity
of PDE6, adjusting cytoplasmic cGMP to about 1-10 μM. When the intracellular calcium ions
decrease from about 500 nM (dark) to <50 nM in light, the GCs are activated by the Ca2+-free
GCAPs, increasing the catalytic GC activity about 10-fold. Provided that all components of
phototransduction (R*, G*, PDE*) are ‘silenced’ by returning to the inactive dark state, GC
stimulation leads to restoration of dark cGMP levels [23-26].

GC-E and GC-F each possess the structural features characteristic of membrane GCs - a signal
sequence preceding a large amino-terminal ECD, a single membrane-spanning region, a
kinase-like homology domain and a carboxy-terminal catalytic domain. While the
nomenclature of the GCs in various species is somewhat confusing (Table 1), generally
accepted abbreviations are retGC-1 and retGC-2 in human [27,28], ROS-GC1 and ROS-GC2
in bovine [29,30], and GC1 and GC2 in mouse [31]. Quantitative determination of GC-E and
GC-F in outer segment preparations by mass spectrometry showed a ratio of GC-E/GC-F of
3.5/1 [32], but biochemical quantization showed a much higher ratio of GC-E/GC-F of 25/1
[33].

Human GC-E (retGC-1) [34] and human GC-F (retGC-2) [35] show regional localization in
the photoreceptor cell bodies and inner segments by in situ hybridization with antisense probes
[27,36]. Human and monkey GC-E was associated with outer segments of rods and cones, but
also to a lesser extent with IS and other cells [34,37]. The mouse GC-E and GC-F polypeptides
were shown to be present in rod outer segments, likely as homomers [38]. Mouse GC-E is
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prominently immunolocalized in outer segments of rods and cones [39], whereas GC-F is
detectable only in outer segments of rods (Fig. 2, and [31]). Neither GC-E nor GC-F is detected
elsewhere in the mouse retina, at least under the conditions of figure 2 [31].However, GC-E
was also detected in the synaptic terminals of bovine photoreceptors [40,41]. Outside the retina,
GC-E was detected in the pineal gland [38,42], an organ developmentally related to the retina,
in the olfactory bulb [43], spermatogenic cells of bovine testes [44], as well as the cochlear
nerve and the organ of Corti [45]. Interestingly, GC-F was identified in several human cancer
cell lines [46] where its function is unknown.

None of the membrane GCs has an affinity for Ca2+ ions, or conventional Ca2+-binding motifs.
The activities of photoreceptor cyclases, however, are Ca2+-sensitive, a sensitivity that is
mediated by guanylate cyclase-activating proteins (GCAPs) at low free Ca2+, as well as by
S100B and neurocalcin at high free Ca2+. GCAPs are Ca2+-binding proteins with three high-
affinity Ca2+-binding sites (EF hands) stimulating GC-E and GC-F by binding to cytoplasmic
sites [47-50]. S100B and neurocalcin stimulate GC-E at 17-20 μM Ca2+ [51,52], a
concentration which is too high for a physiological role in outer segments. The peptide ligands
of non-photoreceptor GC receptors failed to activate either GC-E or GC-F [53]. GC
enzymology, biochemistry, and history of cloning, is reviewed in detail in [29].

GUCY2D null alleles in human: Leber Congenital Amaurosis type 1 (LCA-1)
Leber Congenital Amaurosis type 1 (LCA-1), an autosomal recessive, early onset dystrophy
defined as a “congenital stationary cone-rod dystrophy with high hypermetropia, panretinal
degeneration and highly reduced visual acuity,” is a rare disease (prevalence approximately
1:100,000) [62]. Null mutations in the human GC-E gene (GUCY2D, on chromosome 17) are
relatively frequent and distributed throughout the ECD, KHD, DIM and CAT domains
(references in (Table 2)). Mutations in the GC-F gene (GUCY2F, on Xq22) [63] have not been
linked to a retina disease phenotype. Since GUCY2F gene is located on X, only males would
be affected by disease-causing mutations. Interestingly, several missense mutations in the
peptide leader sequence, the KHD and CAT domains of GC-F have been identified in panels
of colon, lung and breast cancer [64]. LCA is one of the most severe forms of inherited retinal
dystrophies, accounting for approximately 5% of all inherited retinal dystrophies [55,65].
Children with LCA have greatly impaired vision and extinguished electroretinograms (ERG),
despite seemingly normal fundi at birth or during the first months of life [66].
Immunofluorescent images of human GUCY2D-LCA retinas showed that all cones and rods
lacked outer segments, as evidenced by the absence of labeling with anti-opsins and antirds/
peripherin [59].

A number of nonsense and frameshift mutations in the GUCY2D gene have been identified in
LCA1 patients (Table 2). Missense mutations in the catalytic domain (e.g., R976L, R995W,
M1009L, H1019P and Q1036Z) result in the total abolition of cyclase activity. Conversely,
some missense mutations in the extracellular domain (e.g., W21R, L41F, N129K, R313C) do
not affect cyclase activity in-vitro. Truncation mutations, e.g., (S448ter) remove the CAT
domain, and prevent synthesis of cGMP. Some missense mutations in the extracellular domain
(C105Y, L325P) have resulted in 50% decreased cyclase activity. L325 is highly conserved
and C105 has been suggested to participate in intramolecular disulfide bond formation and
oligomerization of the protein. Thus, GC mutations may alter the enzyme structure and stability
[56], and may affect post-biosynthetic folding or retrograde transport of peripheral membrane-
associated proteins along microtubules to the cilium (Figure 8).

Cone-rod dystrophy (CORD6)
Dominant cone-rod dystrophy (CORD6) also maps to the GC1 locus [67,68]. Mutations
causing dominant cone-rod dystrophy are restricted to the dimerization domain. Cone-rod
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dystrophy is a progressive disorder, characterized by the initial degeneration of cone
photoreceptor cells, causing early loss of visual acuity and color vision, followed by the
degeneration of rods leading to progressive night blindness and peripheral visual field loss
[67]. Some of the important missense mutations of the dimerization domain are E837D, R838A,
R838H, R838C, T839M [69-71]. The three disease mutations at residue 838 are non-
equivalent. They exhibit GC activity equal or superior to WT GC at low free [Ca]free in the
order R838C< R838H< R838A and showed a higher affinity for GCAP1 than WT GC [71].
Interestingly, when expressed in HEK 293 cells, (R838C)GC1 showed a decreased response
to GCAP2 suggesting distinct binding sites for the GCAPs [72]. Structural studies have shown
that the residue at position at 838 is a key residue that determines the extent of coiled-coil
structure responsible for maintaining the retGC1 dimer. Molecular dynamics-based modeling
of RetGC1 coiled-coil suggests that Arg838 forms salt bridges which maintain the
configuration of the helices producing repulsion between the polypeptide chains. This causes
the coils to spread apart as they extend towards the catalytic domain which then determines
the dimerization [73].

A naturally occurring GC-E knockout: the retinal degeneration (rd) chicken
The rd (GUCY1*B) chicken is a naturally occurring blind mutant discovered in a Rhode Island
Red flock about 30 years ago (reviewed in [74]). Photoreceptors in predegenerate rd/rd retina
appeared normal at the ultrastructural level. Degeneration of rods and cones begins
approximately 7 days post-hatch, and progresses relatively slowly over many months. The
rd chicken carries a null mutation in the gene encoding photoreceptor GC-E exhibiting a disease
phenotype resembling LCA [75,76]. The gene defect is described best as a deletion/insertion
event in which a gene fragment containing exons 4-7 was replaced by an inverted portion of
exon 9 without interruption of the open reading frame (Fig. 3). Deletion of exon 5, encoding
the transmembrane region, is predicted to result in a soluble polypeptide that, if stably
expressed, would fail to traffic to the outer segments. Consistent with the deletion of the GC-
E gene, levels of cGMP in the mutant retina were very low, unable to sustain phototransduction,
presumably leading to permanent closure of the cGMP-gated cation channels and elimination
of the dark current (constitutive hyperpolarization). In chicken, as in human LCA type 1
(Gucy2e null alleles) [61], only GC-E appears to contribute to the pool of cGMP essential to
support phototransduction. It is unclear whether a GC-F ortholog is expressed in chicken retina.
A lentivirus-based gene transfer vector carrying a bovine GUCY2D cDNA, injected into early-
stage GUCY1*B embryos, rescued retinal degeneration to a large part demonstrating
convincingly that the rd chicken phenotype is caused by deletion of GC-E [77].

Transcription of several genes involved in the phototransduction cascade, including iodopsin
and cone PDEα′, was shown to be normal [78,79]. However, protein levels of GCAP1 were
reduced by more than 90% in predegenerate rd/rd retinas compared to age-matched control
retinas, while GCAP2 levels were less affected [80], similarly as seen in GC-E/GC-F double
knockouts (see below, and [31]). A regulatory mechanism at the gene level was excluded
because transcript levels of both GCAP genes were near normal in the predegenerate rd retina
[81]. The observed downregulation of GCAP1 was likely caused by mistrafficking of
membrane-associated proteins which relies in part on the presence of GC-E (see below).

Photoreceptor GC knockouts
The genes encoding GC-E (Gucy2e, on mouse chromosome 11) and the GC-F (Gucy2f, on the
X chromosome) genes [63] are closely related in structure, each consisting of 19 exons and
featuring an untranslated exon 1. The GC-E knockout mouse was generated by the group of
David Garbers at UT Southwestern [82]. His group deleted the Gucy2e gene by targeted
recombination replacing exon 5, encoding the transmembrane domain, with a neo cassette. The
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neo cassette effectively disrupted translation in all reading frames, preserving the extracellular
domain, but deleting cytoplasmic regions including the catalytic domain so no functional
cyclase can be formed. It is unknown whether an extracellular polypeptide (encoded by exons
1-4) is formed in the Gucy2e-/- photoreceptor. At one month of age, mouse cone responses
were undetectable while rods continued to function albeit with reduced a- and b-wave
amplitudes suggesting a substantial loss of rod function ([82] and (Fig. 4)). The phenotype of
the Gucy2e-/- mice therefore resembled a recessive cone dystrophy [82,83] while in human
patients, GUCY2E null alleles are associated with rod/cone dystrophy (LCA-1).

In Gucy2e-/- mouse rods, a second cyclase, GC-F, is obviously able to substitute to some extent
for the loss of GC-E. To identify the precise function of GC-F in rods, we generated
Gucy2f-/- by replacing exon 2 of the Gucy2f gene containing the translation start codon and the
leader peptide with a neo cassette. Therefore, a functional GC-F cannot be expressed. The
phenotype of Gucy2f-/- mice was very similar to WT mice (Table 3), but showed slower
recovery from intense illumination (Fig. 3 in [31]). In scotopic ERG analyses, the Gucy2f-/- a-
wave amplitude reflecting rod photoreceptor function was identical to WT, while the b-wave
amplitude was reduced (Fig. 4). The photopic ERG responses in the Gucy2f-/- mice were very
similar to those of WT mice. We proceeded to generate GC double knockout mice (GCdko)
by breeding Gucy2f-/- mice with Gucy2e-/- mice. Both full-field ERG (Fig. 4) and rod single-
cell recordings (Fig. 4 in [31]) showed that GCdko photoreceptors were insensitive to light.

Consequence of GC-E /GC-F double knockout (GCdko) in rods
At one month, the GCdko photoreceptors are relatively stable but outer segments are slightly
reduced in length. Immunolabeling patterns of rhodopsin (Fig. 5B), arrestin (Fig. 5D), Tα (Fig.
5F) and Tγ (Fig. 5H) were apparently normal and similar to WT, but the labeling pattern of
rod outer segments was ‘patchy’, consistent with alternating bands of tubules and dense
membranes observed by electron microscopy [31]. However, expression levels of several
phototransduction polypeptides were reduced severely, including those of PDE6 subunits (Fig.
5J), GCAP1 (Fig. 5L) and GCAP2 (Fig. 5N). GCAPs activate GCs in low free Ca2+, are closely
associated with GCs, and may be unstable in the absence of GCs. A similar downregulation of
GCAP1 (but not GCAP2) was observed in the rd chicken carrying a GUCY2D null allele
[81]. The diminished expression levels of GCAP1 and GCAP2 were confined mostly to the
inner segments where biosynthesis occurs (Fig. 5L,N).

We were most surprised by absence of PDE6αβγ subunits in GCdko ROS (Fig. 5J). PDE6 is
a peripheral membrane protein stably attached to the disk membrane surface by farnesyl and
geranylgeranyl anchors. PDEα is known to be farnesylated and PDEβ geranylgeranylated at
the C-terminal cysteines [84,85]. PDEαβ subunits are prenylated by cytosolic
prenyltransferases and then dock to the ER. Once docked, they are insoluble and most likely
require vesicular transport to reach their outer segment destination. In contrast to PDE6,
transmembrane GCs are synthesized by ER-associated ribosomes, integrate in the ER
membrane, and follow the secretory pathway from the ER to the plasma membrane, mediatedby
IFT through the connecting cilium to the outer segments.

The posttranslational downregulation of PDE and GCAPs, observed by immunoblots [31], and
the absence of photoreceptor immunoreactivity for GC-E and GC-F in GCdko retinas suggested
a role in protein trafficking, comparable that of rhodopsin-beraring vesicles [86,87]. but in this
case involving association of PDE6 and GCAPs with GC-bearing vesicles. Based on GC
knockout results, enforced by PrBP/δ knockouts [88,89], we developed a model describing
transport of GCs in vesicles to which PDE subunits are attached peripherally (Fig. 6A).

Like other integral membrane proteins, GC-bearing vesicles are thought to traffic from the ER
to the Golgi and emerge from the trans-Golgi network (TGN) (Fig. 6A). We previously
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observed that when the prenyl-binding protein PrBP/δ was deleted in rods, traffic of GRK1
and PDE6 to the outer segments was impeded while GC-E trafficked normally. We therefore
propose that the GC-bearing vesicles are loaded with PDE6 subunits, aided by PrBP/δ (and
possibly additional prenyl binding proteins) that transfer PDE6 from the ER to vesicles. For
simplicity, in Figure 7 GC vesicles are charged with PDE post-TGN, but a pre-Golgi loading
of the vesicles cannot be excluded. Results with either GC-E or GC-F knockouts indicate that
one GC is sufficient for PDE6 (and GCAP) transport. GC-bearing vesicles loaded with
peripheral membrane proteins continue retrograde transport along microtubules toward the
minus end, powered by molecular motors (e.g., cytoplasmic dynein). Vesicles likely fuse with
the plasma membrane at the base of the cilium where cargo is assembled for intraflagellar
transport through the cilium. Heterotrimeric kinesin-2 was suggested to be the molecular motor
for IFT in rods based on the observation that rhodopsin accumulated in the distal inner segment
when KIF3A, the motor subunit of kinesin-2, was deleted. Intriguingly, GC-E was suggested
to be mislocalized in mice expressing a hypomorphic mutation in IFT88, a protein associated
with the axoneme and IFT complexes, but the fate of PDE6 was not investigated [90,91].

Knockout of both GCs (Fig. 6B) prevents formation of GC-bearing vesicles at the ER and
coordinately prevents transport of PDE6 and GCAPs. Since GC-deletion does not affect
rhodopsin and transducin transport to the rod outer segment. GC transport and rhodopsin
transport may occur independently. PDE docked and retained in the ER due to the absence of
GC carriers, likely presents prolonged cellular stress leading to PDE6 degradation by eliciting
the unfolded protein response (UPR) with removal by the proteasome/ubiquitination pathway.

Effect of GC-E deletion in cones
It was shown that Gucy2e-/- cone photoreceptors degenerate gradually [82,92]. Figure 7L
shows that at one month of age, Gucy2e-/- cone outer segments are still present and of near-
normal length, but S-opsin and M/L-opsin were present at reduced levels and mislocalized
throughout the mutant cone cell. Further, acylated cone Tα (Fig. 7F), farnesylated cone Tγ
(Fig. 7H), geranylgeranylated cone PDEα′ (Fig. 7J), and farnesylated GRK1 (Fig. 7P) were
undetectable in Gucy2e-/- COSs. These results show that essential cone phototransduction
proteins are either absent or below the threshold of detection in Gucy2e-/- COSs. At 6 months
of age, cone cell remnants, particularly synaptic pedicles and somata, can be identified, but
outer segments are absent. This finding is consistent with a postmortem study of an 11-year
old LCA patient with a null mutation in the GUCY2D gene. The macula and peripheral retina
of this patient revealed a substantial number of cones and rods, but both photoreceptor types
lacked outer segments [59].

In contrast to GCdko rods where only GCAPs and PDE mistraffic, proteins of the entire
phototransduction cascade are absent in Gucy2e-/- outer segments. Therefore the GC-E
polypeptide, or its enzyme activity, must play a key role in retrograde trafficking of peripheral
membrane proteins to the base of the cilium. An identical phenotype was observed in Lrat-/-
and Rpe65-/- cones in which the retinoid cycle is blocked [93,94]. In these mutants, the 11-cis-
retinal chromophore cannot be recycled and opsins are synthesized as apoproteins. Central
Lrat-/- cones degenerate rapidly between 2 and 4 weeks postnatally, and immunocytochemistry
showed that proteins of the entire phototransduction cascade, including GC-E, GCAPs, and
R9AP, are absent in mutant cones. Thus, cone pigments require 11-cis-retinal as a cofactor to
be competent for post-synthesis trafficking to the outer segments. The interdependence of GC-
E, visual pigments, and peripheral membrane proteins supports the idea that a large cargo is
assembled at the post-ER or post-TGN levels for co-transport and trafficking to cone outer
segments. Further, we recently observed that cone-specific deletion of KIF3A, the obligatory
motor subunit of heterotrimeric kinesin-2, prevents intraflagellar transport of visual pigments,
GC1, R9AP, and peripheral membrane proteins through the cone cilium [95]. Thus, a common
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phenotype, i.e. absence of peripheral membrane protein transport, was replicated in four
independent deletion models (Gucy2e-/-, cone Kif3a-/-, Lrat-/- and Rpe65-/- mice); this result
argues for the coordinated insertion/assembly of several phototransduction-associated proteins
into vesicular membrane for transport from the cone inner segment.

Our working model for cone transport is predicated on the interpretation that cone pigments
and GC-E apparently traffic to the Golgi together (Fig. 8). That cone opsins and GC-E co-
transport is supported by mislocalization of pigments in the GC-E knockout, and by
mislocalization of GC-E in the LRAT/RPE65 knockouts. Emerging from the TGN, vesicles
may be formed and loaded with peripheral membrane phototransduction polypeptides, which
have been extracted from the ER by prenyl binding proteins. This mechanism is supported by
a PrBP/δ knockout in which cone PDE and GRK1 are unable to traffic (they are permanently
docked to the ER), while cone transducin traffics unimpeded. In WT cones, GC-E and pigment-
bearing vesicles are then transported along microtubules to the cilium, where IFT-cargo is
assembled. Intraflagellar transport through the cone cilium is powered by the heterotrimeric
kinesin-2, an anterograde motor moving towards the distal end of the outer segment (the plus
end of microtubules) [95]. Knockout of the motor subunit KIF3A specifically in cones leads
to a phenotype mimicking the GC-E and LRAT/RPE65 knockout, thereby preventing integral
membrane proteins and membrane-associated proteins of the phototransduction cascade from
trafficking to the cone outer segment.

Conclusion
Deletion of one or both retinal GCs has very different effects on the physiology of rod and
cone photoreceptors. Particularly, the cone phenotype argues that GC-E is essential for
trafficking several transmembrane and peripheral membrane proteins to the outer segment. We
postulate that absence of GC-E in GUCY2D-LCA accounts for weakening of the outer segment
membrane structure and secondarily, that accumulation of peripherally-associated proteins at
the ER (mistrafficked) constitutes stress that initiates apoptotic pathways mediated by UPR
[96].
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Abbreviations

ER endoplasmic reticulum

GC guanylate cyclase

GCdko GC-E/GC-F double knockout

GCAP guanylate cyclase-activating protein

LCA Leber congenital amaurosis

PDE6 cGMP-specific photoreceptor phosphodiesterase

TGN trans-Golgi network

WT wild-type
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Figure 1.
Membrane guanylate cyclase knockout representations. White boxes, noncoding exons; black
boxes or vertical lines, coding exons. TM, transmembrane domain. Neo cassettes indicate
strategies for knockout constructs. References for knockout mice are: Npr1 [9]; Npr2 [11];
Gucy2c [97]; Gucy2d [18]; Gucy2e [82]; Gucy2f [31]; Gucy2g [21].
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Figure 2.
Distribution of GC1 and GC2 in WT (A,C) and GC knockout (B,D) mouse retina. Cryosections
A,B were probed with anti-GC1, and C,D with anti-GC2 antibodies. GC1 is present in rod
(intense green staining in the OS area) and cone (arrows) outer segments (A). GC2 is only
detectable in WT rod outer segments (C). GC1 and GC2 are undetectable in the ONL or OPL
(synaptic terminals). Faint immunofluorescence in the INL is nonspecific.
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Figure 3.
The rd chicken gene defect. Top, digram of the mutant gene in which exons 4-7 are replaced
by an inverted fragment of exon 9 (shaded). Bottom, predicted WT gene representing exons
3-8. Exon 7a is an additional exon not present in mammalian GC-E genes. Adapted from
[75].
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Figure 4.
Scotopic and photopic ERGs of WT, Gucy2e-/-, Gucy2f-/- and GCdko mice at 2.8 log cd s
m-2. Note lack of response in GCdko scotopic ERGs and in Gucy2e-/- and GCdko photopic
ERGs.
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Figure 5.
Distribution of phototransduction polypeptides in WT (A,C,E,G,I,K,M,O) and GCdko
(B,D,F,H,J,L,N,P) mutant outer and inner segments. Antigens targeted by antibodies (green)
are indicated top right in the GCdko panels. Nuclei of the ONL are counterstained with
propidium iodide (red). The ‘patchy’ appearance of ROS indicates disorganization of the
membrane structure [31].
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Figure 6.
Putative model of GC and rhodopsin transport following synthesis at the ER. A, WT rod
photoreceptor. B, GCdko photoreceptor. In A, integral membrane proteins traffic from the ER
to the Golgi/TGN by retrograde transport. Vesicles emerge from the TGN and are charged with
the peripheral membrane proteins PDE and GCAPs. Retrograde transport continues to the base
of the cilium. In B, since GC-E and GC-F are not produced, GCAPs and PDE cannot traffic,
and are degraded. Rhodopsin, transducin, and GRK1 transport is not affected. For details, see
text.
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Figure 7.
Distribution of cone phototransduction polypeptides in WT (A,C,E,G,I,K,M,O) and GC1-/-
(B,D,F,H,J,L,N,P) mutant outer and inner segments. Antigens targeted by antibodies (green)
are indicated top right in the GCdko panels. Arrows (B,D) indicate disconnected membrane
packets containing pigments. Visual pigments, cone transducin, cone PDE, GCAP1 and GRK1
are undetectable in mutant COS.
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Figure 8.
Putative model for transport of peripheral membrane proteins in cones. A, WT cone
photoreceptor. B, GC-E knockout cone photoreceptor. In A, visual pigments and GC-E traffic
from the ER to the Golgi/TGN by retrograde transport along microtubules. Vesicles emerge
from the TGN and are charged with the peripheral membrane proteins PDEα′, cone T, GRK1,
and GCAPs. Retrograde transport continues to the base of the cilium, followed by IFT to the
outer segment. In B, GC-E is not produced. Peripheral proteins remain in the ER owing the
absence of GC-E and are degraded.
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Table 2

GC null alleles in human LCA-1 patients. Shaded mutations produce truncations. ECD, extracellular domain;
KHD, kinase homology domain; DIM, dimerization domain; CAT, catalytic domain.

Exon Amino acid change Domain Enzyme activity References

2 M1I ECD reduced [54]

2 W21R ECD yes [54]

2 L41F ECD yes [55]

2 C105Y ECD [56]

2 H109P ECD [54]

2 N129K ECD yes [55]

3 R313C ECD yes [55]

3 L325P ECD [56]

4 Y351C ECD [57]

4 S448ter ECD no [54]

7 R540C KHD [54]

8 F565S KHD reduced [58]

10 R660Q KHD [59]

12 R768W DIM [57]

13 Q855ter DIM no [60]

13 P858S DIM [56]

15 A934P CAT [61]

15 L954P CAT [56]

15 R976L CAT [54]

16 R995W CAT no [54]

16 M1009L CAT no [61]

17 H1019P CAT no [54]

17 Q1036ter CAT no [62]

18 R1040ter CAT no [61]
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Table 3

Effect of GC-E deletion, GC-F deletion, and deletion of both GCs on photoreceptor physiology and outer segment
constituents.

Rod physiology Cone physiology ROS proteins COS proteins

Gucy2e-/- Functional; ERG
responses
attenuated.

No response; cones
degenerate slowly
(autosomal
recessive cone
dystrophy)

GCAP1, GCAP2
downregulated; GC-
F levels not affected

cone Tα, cone Tγ, GRK1, cone
PDEα′ undetectable; COS
unstable; very little

No degeneration cone pigment present

Gucy2f-/- Slower recovery
from intense
illumination

normal normal Normal GC-E levels not
affected.

GCdko No response Rods
degenerate
(recessive LCA)

No response Cones
degenerate
(recessive LCA)

PDEα, PDEβ, PDEγ,
GCAP1, GCAP2
undetectable; Tα, Tγ,
arrestin, rhodopsin
not affected

cone Tα, cone Tγ, GRK1, cone
PDEα′ undetectable; very little
cone pigment present
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