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Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a near 100% mortality because it is generally detected
at an advanced stage and responds poorly to existing therapeutics. This review summarizes current
evidence suggesting important roles of neurotransmitter receptors in the regulation of this
malignancy. Experimental evidence indicates that the α7-nicotinic acetylcholine receptor (α7nAChR)
stimulates PDAC via stress neurotransmitter-mediated activation of β-adrenergic signaling while the
α4β2nAChR inhibits PDAC via GABA-mediated inhibition of adenylyl cyclase activation. In analogy
to molecular mechanisms that govern nicotine addiction, chronic exposure to nicotine or its nitrosated
derivative nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone render the stimulatory
α7nAChR hyperactive while desensitizing the inhibitory α4β2nAChR. Accordingly, PDAC
intervention strategies should include the diagnosis of unphysiological neurotransmitter levels and
aim to restore any imbalance in stimulatory and inhibitory neurotransmitters.
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Pancreatic cancer is one of the most deadly neoplastic diseases because it typically does not
cause any symptoms until it has reached an advanced stage. At the time of diagnosis, most
pancreatic cancers are therefore inoperable and have metastasized to distant organs. In addition,
this malignancy is generally unresponsive to conventional radio- and chemotherapy, resulting
in a mortality rate near 100% within 6 months of diagnosis [1]. Although it only ranks tenth
in incidence among the most common human cancers, pancreatic cancer is therefore the fourth
leading cause of cancer deaths in Western countries [2].
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Pancreatic cancer arises from endocrine or exocrine pancreatic cells, with more than 95% of
all pancreatic cancers demonstrating histological features of pancreatic ductal adenocarcinoma
(PDAC). Smoking, diabetes mellitus and pancreatitis from any etiology, including alcohol
abuse, are risk factors for PDAC [3,4]. However, the reasons for these etiological associations
are poorly understood. Increases in inflammatory mediators observed in diabetes and
pancreatitis are thought to be contributing factors, an interpretation supported by the frequent
overexpression of cyclooxygenase (COX)-2 and members of the lipoxygenase family in PDAC
[5,6]. On the other hand, the nicotine-derived carcinogenic nitrosamine 4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanone (N-nitroso nicotine ketone [NNK]) causes
PDAC in laboratory rodents, thus supporting a causative role of smoking [7,8].

The growth regulation of PDAC and its putative cells of origin, pancreatic duct epithelia, are
poorly understood. The majority of PDACs (approximately 75%) harbor activating point
mutations in K-ras while also overexpressing the EGF receptor (EGFR), leading to the
generally accepted view that EGFR signaling via ras and its downstream effectors, ERK1/2,
play an important role in the regulation of this cancer [9]. Studies in vitro and in mouse
xenografts from human cancer cell lines have demonstrated significant reductions in tumor
growth in response to inhibition of the EGFR pathway by agents such as farnesyltransferase
inhibitors, EGFR tyrosine kinase inhibitors, ERK1/2 cascade inhibitors or inhibitors of COX-2
[10]. In addition, suppression of VEGF has demonstrated promising responses in vitro and in
an orthotopic mouse model of PDAC [11]. However, therapeutics that target the EGFR
pathway by inhibiting tyrosine kinases or ras as well as inhibitors of COX-2, VEGF or the
combination of such agents have disappointed in clinical trials [10], suggesting that the growth
regulation of this malignancy is more complex.

Studies pioneered by our laboratory suggest that neurotransmitter receptors of the nicotinic,
β-adrenergic and GABA families act as central regulators of PDAC and their cells of origin.
This article summarizes evidence in support of the hypothesis that malfunctions of these
receptors create an environment that selectively stimulates the development and progression
of PDAC while inhibiting tumor suppressor functions.

PDAC stimulating roles of nicotinic & β-adrenergic receptors
Nicotinic acetylcholine receptors (nAChRs) are located in the plasma membrane of cells and
are comprised of five subunits (pentamers) that enclose a central ion channel [12]. They can
either be comprised of five identical α-subunits (homomeric nAChRs) or a combination of α-
subunits with β-, γ- or δ-subunits (heteromeric nAChRs). Binding of an agonist to an nAChR
causes conformational changes that open its ion channel, leading to the influx of ions into the
cell. In turn, this leads to a host of cellular responses, including the synthesis and release of
neurotransmitters, growth factors and angiogenic factors, as well as the activation of diverse
intracellular signaling cascades [13]. It was initially widely believed that nAChRs are restricted
to the nervous system and neuromuscular junctions. However, more recent studies have
identified homomeric and heteromeric nAChRs in a large variety of non-neuronal cells where
they serve diverse functions [14].

The homomeric α7nAChR and the heteromeric α4β2nAChR predominate in neurons of humans
and other mammals and most of our current knowledge on the biology of nAChRs is derived
from studies of these receptors in the brain. It has thus been demonstrated that the α7nAChR
acts as the ‘accelerator’ in the brain (Figure 1) by stimulating the synthesis and release of
excitatory neurotransmitters such as noradrenaline, dopamine, serotonin and glutamate [13,
15,16]. By contrast, the α4β2nAChR acts as the ‘brake’ by regulating the synthesis and release
of the most important inhibitory neurotransmitter, GABA [16]. The neurotransmitter
acetylcholine is the physiological agonist for all cholinergic receptors, including nAChRs, and
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muscarinic acetylcholine receptors. By contrast, nicotine is a selective agonist for nAChRs to
which it binds with significantly higher affinity than acetylcholine [12]. Studies in brain cells
have demonstrated that chronic exposure to nicotine upregulates the protein expression of all
nAChRs via post-transcriptional events that do not require an increase in receptor subunit RNA
[17,18]. However, there are important differences in functional changes associated with
nicotine-induced protein upregulation among nAChRs. While the heteromeric receptors,
including the α4β2nAChR, increase their protein expression as a reaction to long-term
desensitization caused by nicotine, no long-term desensitization is observed in the homomeric
α7nAChR [12]. As a result, the production of inhibitory GABA is greatly reduced whereas the
production of excitatory neurotransmitters increases (Figure 2). Symptoms of nicotine
addiction and craving are generally thought to be caused by this imbalance in excitatory and
inhibitory neurotransmitters [16,19].

β-adrenergic receptors (βARs) consist of β1-, β2-, and β3-receptors and are members of the
heptahelical G-protein-coupled cell membrane receptor family. The β3ARs are almost
exclusively found in adipose tissue, whereas β1- and β2ARs are expressed in the majority of
mammalian cells. The stress neurotransmitters adrenaline and noradrenaline are the
physiological agonists for all βARs, with adrenaline preferentially binding to β2ARs while
noradrenaline binds with higher affinity to β1ARs [20]. Owing to the fact that the synthesis
and release of noradrenaline and adrenaline are stimulated by nAChRs, the βARs represent
indirect downstream effectors of nAChRs (Figure 1–3). In addition to the pharmacological
activation of nAChRs by nicotinic receptor agonists contained in tobacco products, the
synthesis and release of noradrenaline and adrenaline are also stimulated by psychological
stress via acetylcholine-induced activation of the α7nAChR in the nervous system as well as
the heteromeric nAChRs containing the α3- and α5-subunits in the adrenal medulla. Binding
of an agonist to βARs activates the adenylyl cyclase-stimulating G-protein, Gαs, resulting in
the formation of cAMP and activation of protein kinase A (PKA), leading to phosphorylation
of the transcription factor cAMP response element binding protein (CREB). It has been
demonstrated that β1- and β2-adrenoreceptor stimulation can additionally transactivate the
EGFR pathway in a PKA-dependent manner [21]. We have demonstrated that such
transactivation occurs in immortalized human pancreatic duct epithelial cells [22] and in cell
lines derived from human lung adenocarcinomas and immortalized small airway epithelial cells
[23]. In addition to these direct effects on cancer cells, βARs stimulate the release of EGF
[24,25] and VEGF [25–27] in a cAMP-dependent manner, thus indirectly contributing to the
development and progression of numerous cancers, including PDAC. Indirect stimulation of
cell proliferation in response to the release of arachidonic acid [28] and IL-6 [29] caused by
noradrenaline or other β-adrenergic agonists in pancreatic cancer cells and pancreatic duct
epithelial cells has also been reported.

The first reports that implicated nAChRs in the regulation of cancer demonstrated that nicotine
and the nicotine-derived carcinogenic nitrosamine NNK stimulated the proliferation of human
small-cell lung cancer (SCLC) cells in vitro and that this response was blocked by the nAChR
antagonist hexamethonium [30,31]. These experiments also demonstrated that the carcinogenic
nitrosamine N-nitroso-diethylamine that is formed in numerous foods, beverages and cosmetics
had similar effects as nicotine on SCLC cells. Studies by another laboratory additionally
reported a year later that nicotine inhibited apoptosis in SCLC cells [32]. It was later discovered
that NNK and N-nitroso-diethylamine are nAChR agonists that bind with high affinity to these
receptors [33–35], thus explaining the nAChR-mediated effects on cancer cells. Since these
early reports, numerous publications have described nAChR-mediated stimulatory effects via
the activation of intracellular signaling pathways in a host of different cancers [13]. However,
few investigators have explored a potential role of nAChRs and their effectors in the regulation
of PDAC. It has thus been demonstrated that βARs, which are activated by noradrenaline and
adrenaline in response to the nAChR-mediated synthesis and release of these neurotransmitters,
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cause a pronounced stimulation of cell proliferation and migration of human PDAC cells in
vitro [36,37]. It was further demonstrated that the β2AR predominates in PDAC and
immortalized pancreatic duct epithelial cells [22,36] and activates a signaling cascade that
includes cAMP, PKA and the transcription factor CREB in these cells while also stimulating
the release of arachidonic acid [36]. In addition, activated PKA transactivated the EGFR and
its downstream effectors, the ras-dependent mitogen-activated protein kinases MEKK and
ERK1/2 [22]. Interestingly, it was discovered that the tobacco carcinogen NNK is also a βAR
agonist [38] that stimulates the proliferation of PDAC cells and pancreatic duct epithelial cells
directly by binding to these receptors [22,36]. Treatment of pancreatic duct epithelial cells in
vitro with ethanol additionally increased the levels of intra-cellular cAMP, thus enhancing cell
proliferation in response to β-adrenergic activation of these signaling cascades [39]. These
findings suggest that alcohol consumption may increase the risk for PDAC not only via alcohol-
induced pancreatitis but additionally by enhancing PDAC stimulating cAMP-dependent
signaling.

Investigations in hamsters have demonstrated that animals with ethanol-induced pancreatitis
developed a high incidence of PDAC when additionally treated with NNK [8]. Studies in this
animal model also demonstrated that the cyclooxygenase inhibitor ibuprofen significantly
reduced the incidence of PDAC [40], while the β-blocker propranolol completely blocked the
development of pancreatic tumors [41]. Moreover, the hamsters treated with NNK had
significantly elevated serum levels of noradrenaline and adrenaline associated with increased
cAMP levels in the cellular fraction of blood [41,42]. Western blots from pancreatic duct
epithelia and PDACs harvested by laser capture microscopy revealed significant upregulation
in PDAC cells of the α7nAChR that regulates the synthesis and release of these
neurotransmitters [41,42]. At the same time, cAMP, phosphorylated (p)-CREB, p-ERK1/2,
EGF and VEGF were all overexpressed in the PDAC cells. The observed overexpression
α7nAChR protein as well as that of p-CREB, p-ERK1/2, EGF and VEGF were all inhibited by
treatment of the hamsters with the βAR antagonist propranolol [41]. Collectively, these
findings suggest an important regulatory role of α7nAChR-stimulated stress neurotransmitter
production and the resulting βAR-activated cAMP-dependent signaling cascade (Figure 3).
This interpretation was further corroborated by a study in nude mouse xenografts from a human
PDAC cell line. This experiment demonstrated that xenografts of mice receiving nicotine in
the drinking water for 30 days progressed significantly faster than the tumors in control animals,
a response accompanied by elevated systemic levels of noradrenaline, adrenaline and cAMP
as well as overexpression of cAMP, p-CREB and p-ERK1/2 in the xenograft tissues [43].

Inhibitory role of the GABA-B receptor in PDAC
The biological effects of the amino acid neurotransmitter GABA in the brain are mediated by
GABA-A receptors, a family of ion channels, and by the GABA-B receptor (GABA-B-R), a
receptor coupled to the inhibitory G-protein [44]. While GABA production was initially Gi
believed to be restricted to the brain, more recent studies have demonstrated that GABA and
its receptors are also expressed in numerous peripheral tissues and organs [45].

Inhibitory actions of GABA on certain cancers were first suggested by the observation that this
neurotransmitter inhibited the noradrenaline-induced migration of colon cancer cells [46] and
breast cancer cells in vitro [47]. Tumor suppressor function of the GABA-B-R for PDAC and
lung adenocarcinomas under positive growth control by cAMP signaling was suggested by
several recent publications. These investigations demonstrated that GABA reduced β-
adrenergic agonist-induced DNA synthesis and migration of human pancreatic cancer cells in
vitro below base levels observed in unstimulated cells [37]. The inhibitory effects of GABA
were enhanced by transient transfection with the GABA-B-R and abolished by gene
knockdown of this receptor, indicating an important role of this receptor in the observed effects
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of GABA. In support of this interpretation, the selective GABA-B-R agonist baclophen had
similar inhibitory effects. GABA and baclophen also significantly reduced intracellular cAMP
and the phosphorylation of ERK1/2 and CREB, the downstream effectors of β-adrenergic
signaling. These findings are in accord with the GABA-B-R-mediated reduction in cAMP
signaling via Gi-mediated inhibition of adenylyl cyclase reported in the brain [48].
Furthermore, immunohistochemical analysis of human tissue microarrays revealed
overexpression of noradrenaline and activated PKA in the majority of investigated PDACs
while GABA and its synthesizing enzyme GAD65 were suppressed [37]. Similarly, PDACs
induced in hamsters by NNK and ethanol demonstrated suppressed GAD and GABA while p-
CREB and p-ERK1/2 were overexpressed [42]. In addition, these animals had significantly
elevated blood levels of noradrenaline, adrenaline and cAMP. Interestingly, protein expression
of the α4β2nAChR that regulates the synthesis and release of GABA was overexpressed in the
PDAC cells. In conjunction with the observed suppression of its effectors GAD and GABA,
these findings suggest that the observed upregulation in receptor protein was a reaction to
desensitization of the receptor. This interpretation is in accord with the nicotine-induced
modulation of the α4β2nAChR and the GABA system reported in the brain that have been
associated with nicotine addiction [16,18,19]. However, unlike the behavioral responses
caused by nAChR and GABA neurotransmission in the brain, such changes in PDAC cells are
associated with a significant stimulation of DNA synthesis and metastatic potential in the
cancer cells. An experiment with PDAC xenografts in nude mice provided additional support
for this hypothesis [43]. This study demonstrated that treatment of the mice for 30 days with
nicotine in the drinking water significantly reduced the expression levels of GAD65, GAD67
and GABA. In addition, the noradrenaline-driven progression of the xenografts and associated
upregulation of signaling proteins described in the previous section of this review was
completely reversed by treatment of the animals with GABA [43], while GABA also
significantly reduced xenograft growth in unstimulated mice.

While the discussed findings suggest that signaling of GABA via the GABA-B-R may be a
promising target for the prevention and adjuvant therapy of PDAC, reports on the expression
levels of GABA and its receptors in human PDAC tissues are controversial. By contrast to our
immunohistochemical observation of suppressed GAD and GABA in PDAC tissue
microarrays [37], another laboratory reported that GABA and the π-subunit of the GABA-A
receptor (GABA-A-R) were overexpressed in the majority of investigated human PDAC cell
lines and in surgical samples from PDACs [49]. In addition, these investigators reported a
significant GABA-induced stimulation of PDAC cell proliferation in the cell lines that
overexpressed the π-subunit of the GABA-A-R. These findings are contradicted by yet another
publication that described a significant GABA deficiency in patients with pancreatitis and
PDAC [50]. Differences in the smoking history of the investigated cell lines and PDAC patients
may account for these discrepancies. Studies by proton magnetic resonance of the brain have
thus demonstrated that smoking significantly reduced tissue GABA levels [51], a finding
supported by our observation that chronic nicotine reduced GABA levels in PDAC xenografts
[43].

Conclusion
Pancreatic cancer research has mostly focused on the study of gene mutations and signal
transduction pathways in PDAC cells, whereas the potential role of neurotransmitters and their
receptors in the development and progression of this deadly neoplastic disease has been largely
ignored. While it is well established that a host of different cancers are significantly influenced
by hormones and their receptors, the concept of neurotransmitters and their receptors as central
regulators of the most common human cancers, including PDAC, was only recently suggested
[13,52]. However, similar to other cancers, PDAC is not a uniform disease and demonstrates
instead considerable interindividual variations in environmental, lifestyle and genetic factors.
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There is therefore no ‘magic bullet’ that will prevent and/or cure PDAC. Instead, custom-
tailored highly individualized approaches have to be pursued as PDAC intervention strategies.
As is evident from the data summarized in this review, such approaches should include the
monitoring of neurotransmitters, their receptors and downstream effectors, and attempt to
restore and maintain a balance between stimulatory and inhibitory neurotransmission. Not only
smoking but also numerous environmental and lifestyle factors, as well as psychological stress,
can significantly modulate the systemic levels of stress neurotransmitters and GABA, resulting
in modulations of their associated receptors. In light of the fact that patients diagnosed with
pancreatic cancer demonstrated the highest levels of psychological disturbance and anxiety
among 14 investigated cancer types [53], the potential negative impact of stress on the outcome
of pancreatic cancer therapy may significantly contribute to the extremely poor prognosis of
this malignancy. The appalling disconnect between the dismal clinical failure of most anti-
PDAC agents that were highly effective in preclinical studies may be in part caused by the fact
that preclinical studies are conducted in a carefully controlled stress-free environment. Neither
the commonly used in vitro systems nor laboratory animal studies allow for the detection of
neurotransmitter effects unless the neurotransmitters are deliberately added to the experimental
environment. For example, when studying the signaling cascades that regulate PDAC (Figure
3), it is immediately apparent that agents that block EGFR signaling will be considerably less
effective in the presence of high levels of noradrenaline, which stimulates multiple targets in
addition to the EGFR. Similarly, antiangiogenesis therapy will be less effective in an individual
whose angiogenesis is continually hyperstimulated by a hyperactive α7nAChR and/or
hyperactive stress neurotransmitters and their receptors. On the other hand, PDAC intervention
with GABA as suggested by data generated in our laboratory would obviously be
contraindicated in individuals with upregulated π-subunits of the GABA-A-R that respond with
PDAC stimulation to GABA treatment.

Future perspective
Neurotransmitters and their receptors are central regulators of all involuntary functions in the
mammalian organism. Similar to numerous other cellular entities, the neurotransmitter
receptors adapt to changes in their environment, thus altering their responsiveness to agonists.
The fine-tuning of this intricate neurotransmission network enables all cells and organs in the
mammalian organism to function in concert. Cancer is a disease characterized by the
uncontrolled growth of cancer cells at the expense of healthy cells and tissues. The concept of
malfunctioning neurotransmitter receptors as an important driving force in the development
and progression of pancreatic cancer summarized in this review therefore applies to the disease
complex ‘cancer’ in general. In support of this hypothesis, emerging research has identified an
important stimulatory role of the stress neurotransmitter noradrenaline in cancer of the colon
[46,54], prostate [55], mammary gland [47] and ovary [26]. While research on the role of
neurotransmission in these cancers is centered on studies of nicotinic acetylcholine receptors,
stress neurotransmitters and their receptors, as well as GABA and its receptors [13], additional
neurotransmitters and their effectors may be involved in the regulation of other types of cancers.
It is thus envisioned that efforts aimed to restore the distorted balance between stimulatory and
inhibitory neurotransmitters and their receptors will become a focal point of future strategies
for the development of more effective cancer intervention.

Executive summary

• Inhibitors of established EGF-associated regulatory pathways in pancreatic ductal
adenocarcinoma (PDAC) have failed in the therapy of this cancer although they
were highly effective in preclinical tests. These findings suggest a lack of factor
(s) in the preclinical testing systems that counteract the anticancer effects of these
inhibitors in the patient.
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PDAC stimulating roles of nicotinic & β-adrenergic receptors

• Emerging research suggests that, analogous to molecular changes in the brain of
nicotine addicts, an upregulated α7-nicotinic acetylcholine receptor causes
increased levels of noradrenaline and adrenaline, resulting in hyperactivity of
pancreatic cancer-stimulating signaling via β-adrenergic receptor-dependent
activation of adenylyl cyclase.

Inhibitory role of the GABA-B receptor in PDAC

• Simultaneous desensitization of the α7-nicotinic acetylcholine receptor results in
a significant reduction of pancreatic cancer inhibiting GABA production.

Conclusion

• Strategies for the prevention and therapy of pancreatic cancer should include the
assessment of systemic noradrenaline and GABA levels and attempt to restore any
detected imbalance among these stimulatory and inhibitory neurotransmitters.
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Figure 1. Regulatory functions of the α7nAChR and the α4β2nAChR in the brain
The α7nAChR acts as an ‘accelerator by stimulating the synthesis and release of the excitatory
neurotransmitters noradrenaline (from which adrenaline is formed), dopamine, glutamate and
serotonin. Most effects of these neurotransmitters are mediated by GPCRs that activate the
enzyme anenylyl cyclase. The α4β2nAChR acts as the ‘brake’ by stimulating the synthesis and
release of the inhibitory neurotransmitter GABA, which blocks GPCR-mediated activation of
adenylyl cyclase by Gi-mediated activity of the GABA-B-R.
GABA-B-R: GABA-B receptor; GPCR: G-protein-coupled receptor; nAChR: Nicotinic
acetylcholine receptor.

Schuller and Al-Wadei Page 11

Future Oncol. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Working model of changes in nAChR functions in the brain associated with nicotine
addiction
Chronic exposure to nicotine upregulates the stimulatory α7nAChR without concomittant
receptor desensitization, whereas the inhibitory α4β2nAChR undergoes long-term
desensitization accompanied by upregulation. The resulting predominance of excitatory
neurotransmitters and relative deficiency in inhibitory GABA lead to symptoms associated
with nicotine addiction and craving.
GABA-B-R: GABA-B receptor; GPCR: G-protein-coupled receptor; nAChR: Nicotinic
acetylcholine receptor.
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Figure 3. Working model of the regulation of pancreatic ductal adenocarcinoma by
neurotransmitters, their receptors and downstream effectors
Chronic exposure to nicotinic agonists in tobacco products and in the human environment cause
nAChR changes analogous to those in the nicotine-addicted brain (compare with Figure 2).
The resulting predominance of stimulatory adenylyl cylase-dependent signaling and relative
deficiency in inhibitory GABA leads to the selective activation of cell proliferation, migration
and angiogenesis while inhibiting apoptosis. In addition, psychological stress activates this
cancer-stimulating cascade by causing the release of acetylcholine that activates α7nAChRs in
the nervous system and nAChRs containing the α3-or α5-subunits in the hypothalamus and
adrenal medulla, resulting in the release of noradrenaline and adrenaline into the bloodstream.
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AA: Arachidonic acid; AKT: Serine threonine protein kinase B;
βAR: β-adrenergic receptor; CREB: cAMP response element binding;
EGFR: EGF receptor; GABA-B-R: GABA-B receptor; nAChR: Nicotinic acetylcholine
receptor; NNK: 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone;
PKA: Protein kinase A.
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