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Purpose: A nonlinear system reconstruction can theoretically provide timely system reconstruction
when designing a real-time image-guided adaptive control for multisource heating for hyperther-
mia. This clinical need motivates an analysis of the essential mathematical characteristics and
constraints of such an approach.
Methods: The implicit function theorem �IFT�, the Karush–Kuhn–Tucker �KKT� necessary condi-
tion of optimality, and the Tikhonov–Phillips regularization �TPR� were used to analyze and deter-
mine the requirements of the optimal system reconstruction. Two mutually exclusive generic ap-
proaches were analyzed to reconstruct the physical system: The traditional full reconstruction and
the recently suggested partial reconstruction. Rigorous mathematical analysis based on IFT, KKT,
and TPR was provided for all four possible nonlinear reconstructions: �1� Nonlinear noiseless full
reconstruction, �2� nonlinear noisy full reconstruction, �3� nonlinear noiseless partial reconstruction,
and �4� nonlinear noisy partial reconstruction, when a class of nonlinear formulations of system
reconstruction is employed.
Results: Effective numerical algorithms for solving each of the aforementioned four nonlinear
reconstructions were introduced and formal derivations and analyses were provided. The analyses
revealed the necessity of adding regularization when partial reconstruction is used. Regularization
provides the theoretical support for one to uniquely reconstruct the optimal system. It also helps
alleviate the negative influences of unavoidable measurement noise. Both theoretical analysis and
numerical examples showed the importance of having a good initial guess for accomplishing non-
linear system reconstruction.
Conclusions: Regularization is mandatory for partial reconstruction to make it well posed. The
Tikhonov–Phillips regularized Gauss–Newton algorithm has nice theoretical performance for par-
tial reconstruction of systems with and without noise. The Levenberg–Marquardt algorithm is a
more robust algorithmic option compared to the Gauss–Newton algorithm for nonlinear full recon-
struction. A severe limitation of nonlinear reconstruction is the time consuming calculations re-
quired for the derivatives of temperatures to unknowns. Developing a method of model reduction or
implementing a parallel algorithm can resolve this. The results provided herein are applicable to
hyperthermia with blood perfusion nonlinearly depending on temperature and in the presence of
thermally significant blood vessels. © 2010 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3298005�
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I. BACKGROUND AND SIGNIFICANCES

Hyperthermia is a cancer treatment modality that has been
shown clinically capable of enhancing the therapeutic effects
of radiation1 and/or chemotherapy2 because of the elevated
temperature it induces. Hyperthermia has received increasing
attention partially because of the rapid development in medi-
cal imaging techniques. This imaging allows clinicians to
obtain faster and more detailed patient information to adjust
power focusing.3–5 Consequently, tumor temperature local-
ization is improved.
Selective heating is essential to the success of hyperther-
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mia therapy. Only then can the tumor be maximally de-
stroyed by spatially confined power, while the surrounding
normal tissues are maximally preserved. The integrated en-
vironment of patient and heat sources is hereby referred to as
the system. It is derived from physical laws and can be
gradually updated by using feedback from a learning pro-
cess. To realize accurate confined tumor heating, an accurate
mathematical description of the system is essential. The ac-
curacy of the system description can be degraded by many
factors. For example, the tissue electric and thermal proper-
ties are usually very patient specific,6,7 and thus there would

be discrepancies between the published values and the actual

980…/980/15/$30.00 © 2010 Am. Assoc. Phys. Med.

http://dx.doi.org/10.1118/1.3298005
http://dx.doi.org/10.1118/1.3298005
http://dx.doi.org/10.1118/1.3298005
http://dx.doi.org/10.1118/1.3298005


981 Cheng et al.: Mathematical formulation and analysis of nonlinear system reconstruction 981
values of the patient under treatment. In addition, blood per-
fusion that may affect the therapeutic results8,9 can differ
even for the same patient from one treatment session to an-
other. As such, accurate patient positioning within a flexible
water bolus is also difficult to be estimated before the
treatment.10 All of these uncertainties and the unavoidable
noise involved in temperature feedback from a medical im-
aging scanner, e.g., magnetic resonance imaging �MRI� scan-
ner, degrade the reliability of the description of a system.8,9,11

It is clear that the success of hyperthermia therapy requires
adaptation of a system control strategy that provides the most
accurate dynamic patient-specific information.

The inclusion of a learning strategy distinguishes adaptive
control from other control methodologies. Adaptive control
of hyperthermia consists of a learning process and a feed-
back kernel. By using a measurement feedback, the learning
process gradually improves the accuracy of the mathematical
form that describes the system. The feedback kernel applies
the control rules to steer the power spatially and optimally
and to restrict the power within the tumor.8,11,12 This feed-
back kernel also adjusts the total power output to reach and
maintain the desired temperature.13,8

Different formulations of a system require different learn-
ing strategies. Although the measuring device and the inte-
grated environment of a patient and heat sources involved
remain the same, different computational complexities are
associated with different learning strategies. This is because
different system formulations have different number of inde-
pendent variables and different mathematical structures to
convert the same feedback information to corresponding out-
put. The number of independent heat sources �M� plays an
important role in estimating the workload of a learning strat-
egy. To fully reconstruct the system when M independent
heat sources are employed, a linear learning strategy8 theo-
retically requires M2 learning steps because its system is an
M-by-M Hermitian matrix.14 In contrast, a nonlinear learning
strategy15 requires 6�M steps because its system consists of a
3-by-M complex matrix; the number 3 comes from the three-
dimensional geometry, M is the number of independent heat
sources, and each source has a complex variable that has two
real components �3�M�2=6�M�. As more heat sources �for
example, M �6� are applied to provide better spatial tem-
perature focusing, a nonlinear learning strategy clearly be-
comes even more attractive than a linear strategy because it
demands fewer learning steps thus shortens the time expen-
diture for learning. However, even when a nonlinear learning
strategy is applied, it could still take long time for a complete
learning process. For instance, when a patient is treated by a
modern phased-array applicator like BSD-2000 Sigma-Eye
heating applicator �Sigma-Eye/MR, BSD Corporation, Salt
Lake City, UT� which has 12-paired antennas in three rings,
it could take hours for the nonlinear learning process because
it demands 72 steps of learning correction.15 To further ac-
celerate this learning process, a recent research direction is to
explore the development of a learning strategy that only re-
quires partial reconstruction. In particular, this strategy at-

tempts to determine the optimal configuration of heat sources
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when delivering a spatially confined tumor heating before
the system is fully reconstructed. Currently, partial recon-
struction is addressed in the following published works,8,15

and some approaches incorporating model reduction were
developed recently.11,12

There are certain theoretical limitations regarding the de-
velopment of a successful partial reconstruction approach us-
ing a nonlinear learning strategy, but there is no formal the-
oretical analysis highlighting and addressing them.
Therefore, the authors were motivated to analyze and empha-
size those theoretical considerations and provide solutions to
address these issues. This paper will describe and analyze
algorithms for nonlinear full and partial reconstructions us-
ing feedback with unavoidable noise. Rigorous theoretical
support will also be provided for these algorithms. Problem
formulation and mathematical analysis will be conducted for
problems with increasing theoretical complexity: From the
problem of nonlinear full reconstruction using noiseless
feedbacks to nonlinear partial reconstruction using noisy
feedbacks. After completing the formulation and analysis for
hyperthermia described by linear physical model with con-
stant parameters, the analysis will be conducted for more
practical and complicated conditions of hyperthermia with
blood perfusion nonlinearly varying with temperature.
Lastly, numerical exhibitions will be given, followed by
comparisons between nonlinear and linear formulations of
system reconstruction.

II. METHODS FOR THEORETICAL ANALYSIS AND
NUMERICAL EXHIBITION

Theoretical descriptions of the physical processes related
to the design for real-time image-guided control of hyper-
thermia are first provided. Then followed are mathematical
theorems and the related numerical setups for the purpose of
illustrations.

II.A. Governing equations for the thermal and wave
physics

Using a set of externally applied nonionizing heat
sources, the internal temperature of human body is locally
elevated to a therapeutic level and is maintained for a treat-
ment period to deliver a lethal thermal dose to the target
cancerous cells. This kind of treatment is called multisource
loco regional hyperthermia. Assuming that the bioheat trans-
fer �BHT� process inside human body is linear, the tempera-
ture response to a given power deposition is written below,8

T�t,r�� = �
�=0

t �
V�

G�t − �,r� − r��� · Psum��,r��� · dV� · d� .

�2.1�

Here, the scalar t is time, and the vector r is a function of the
x, y, and z variables indicating the spatial position. The func-
tion G is called Green’s function,16–19 and Psum denotes the

power deposition delivered by a set of nonionizing sources.
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Zero initial and boundary conditions are assumed here to
simplify further analysis. The Green’s function is a compact
expression representing the response of a linear system to an
impulsive input. The Green’s function exists regardless of
whether the linear problem formulation is time invariant or
varying,16 and whether the domain of the problem is finite or
infinite, regular or irregular.17–19 The Green’s function here
implicitly includes the effects of thermal properties of the
patient and the position of the tumor relative to the patient
and the applicator, etc.

There are two types of commonly employed nonionizing
sources: Electromagnetic �EM� waves and ultrasonic �US�
waves. Richer technical issues are contained in the case
when EM sources are used than when US sources are used.
Therefore, the analysis is based on the use of EM sources;
the analysis can be easily reduced to the case when US
sources are used.

Assuming wave propagation inside the human body is
also linear by neglecting the cross-talking and mutual cou-
pling between sources,20 the resultant power deposition is a
function of the product of the conjugate of the synthesized
electric field �E field� with itself,

Psum�t,r�� =
�

2
· E� sum

H · E� sum, r� = �x,y,z� . �2.2�

Here, the superscript H denotes the complex conjugate trans-
pose, and � is the electric conductivity.

Based on linearity assumption of the wave propagation,
the resultant E field is given by the following equation:

E� sum,3�1�t,r�� = �
m=1

M

E� m,3�1 · um = E3�M�t,r�� · u�M�1�t� .

�2.3�

Here, M is the number of antennas, the vector Em denotes the
E field from antenna m, and um refers to the mth �complex�
antenna configuration.

A controller is required for hyperthermia to generate a
power deposition that selectively elevates tumor temperature
and to avoid undesired hot spots in normal tissues, which
would cause damage, patient pain, or discomfort. Given be-
low are theories related to the design for the control of hy-
perthermia.

II.B. The design for control of BHT process

It is desirable to obtain a formulation explicitly linking
together the clinical outputs �temperatures� and the control
variables �the driving vector of the heating sources�. For sim-
plicity, the derivation assumes that power does not change
continuously in time. Therefore, the equations in Sec. II A
are simplified and combined to provide one such equation

below,
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T�t,r�� = u�H · ��

2
· �

�=0

t �
V�

G�t − �,r� − r���

· �EM�3
H · E3�M�r���� · dV� · d�� · u� . �2.4�

The terms in the parentheses together represent the system,
the vector u denotes the driving vector to the heat sources,
and T is the output temperature. With this equation, one can
proceed to design a controller that adjusts the components of
the driving vector so that the corresponding temperature re-
sponse satisfies the goal of hyperthermia.

A complicated mathematical model more accurately de-
scribes the underlying physics. However, a simpler model
better serves the purpose of numerically demonstrating the
essential theoretical characteristics of the design for a non-
linear learning strategy associated with online image-guided
control of hyperthermia. Therefore, a simpler model approxi-
mately describing the clinical physics involved is also given
here,

� · Ct ·
dT

dt
= − wb · Cb · T +

�

2
· u�H · �EM�3

H · E3�M� · u�

⇒
dT

dt
= − � · T +

�

2 · � · Ct
· u�H · �EM�3

H · E3�M� · u�

⇒T�t,r�� = T�0,r�� · exp�− � · t� +
�

2 · � · � · Ct
· u�H

· �EM�3
H · E3�M� · u� · �1 − exp�− � · t�� . �2.5�

Here, � is tissue density, Ct is the specific heat of tissue, wb

indicates the Pennes perfusion,21 � is the effective perfusion
frequency,22 and Cb refers to the specific heat of blood. The
effective perfusion frequency approximately describes the in-
tegrated local cooling from the Pennes blood perfusion21 and
thermal conduction at a point inside the patient underwent
hyperthermia.23 Hence, the important physical cooling fac-
tors known to have significant impacts on hyperthermia24 are
preserved.

II.B.1. The basic ideas of nonlinear learning
strategy

The goal of a learning strategy is to optimally reconstruct
the system. Therefore, in this case, the temperature �e.g.,
from image feedback� and the driving vector in Eq. �2.1� are
given information, and the goal is to determine the ensemble
of the E fields. The unknowns involved in the ensemble of
the E fields are identified from the information retrieved. In
Sec. III the essential features of nonlinear system reconstruc-
tion will be analyzed.

There are some essential theorems involved in optimal
reconstruction of the system. First described below is the
implicit function theorem �IFT�.25,26 It provides the sufficient
conditions required to ensure the existence of a unique solu-
tion to a nonlinear reconstruction. Then the Karush–Kuhn–

27
Tucker �KKT� necessary condition of optimality is intro-
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duced to provide the necessary condition employed to
determine the optimal solution for a given optimization prob-
lem.

II.C. The IFT

IFT is a tool that allows relations to be converted to func-
tions. The theorem states that if the equation R�x ,y�=0 �an
implicit function� satisfies some mild conditions on its partial
derivatives, then, in principle, one can solve this equation for
y, at least over some small interval. Geometrically, the locus
defined by R�x ,y�=0 will overlap locally with the graph of
an explicit function y= f�x�.

The theorem is described below using a simple case in-
volving only a few variables and parameters; however, it can
be extended to cases involving more variables and or param-
eters.

Let f� :R3→R2 be a continuous differentiable �vector-
valued� function in two dimensions. Assuming there is a
point �xa ,yb,1 ,yb,2� that satisfies a unique �vector� relation
g :R→R2 in two dimensions that works around the neighbor-
�

noise.
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hood of this point �xa ,yb,1 ,yb,2� as long as the Jacobian is
nonsingular at this point. This function g relates the variables
x, y1, and y2 as yb,1=g1�x� and yb,2=g2�x�. The Jacobian is
given below,

J�xa,yb,1,yb,2� = 	
� f1

�y1
�xa,yb,1,yb,2�

� f1

�y2
�xa,yb,1,yb,2�

� f2

�y1
�xa,yb,1,yb,2�

� f2

�y2
�xa,yb,1,yb,2� 
 .

�2.6�

As shown in the examples below, IFT provides sufficient
conditions that ensure the existence of the unique reconstruc-
tion regardless the formulation is linear or nonlinear.

II.C.1. Example II.C.1

A famous example in multivariable calculus is given here
to show the power of IFT. This is a two-dimensional coordi-
nate transformation between the Cartesian coordinates �x ,y�
and the polar coordinates �r ,��.
� f1 = x − r cos � = 0

f2 = y − r sin � = 0
� ⇒ J = 	

� f1

�r

� f1

��

� f2

�r

� f2

��

 = 
− cos � r sin �

− sin � − r cos �
� ⇒ det�J� = r . �2.7�
The IFT requires the Jacobian to be nonsingular, i.e., its
determinant is nonzero. According to Eq. �2.7�, this
demands the value r to be nonzero. When this is the case,
there is a unique coordinate transformation between
the Cartesian coordinates �x ,y� and the polar coordinates
�r ,��. However, when r=0, which means IFT is
violated, and then there is no such coordinates transforma-
tion.

Rewriting the IFT less formally in nontechnical terms for
the current hyperthermia issue of multisource heating appli-
cator system reconstruction, it states that when there are M
unknowns, one must have M different equations that satisfy
certain conditions imposed by Eq. �2.6� so that a unique full
reconstruction can be ensured.

However, using the IFT alone is insufficient to handle the
practical situations in the presence of unavoidable noise.
Since the goal of this paper is to analyze and design a system
reconstruction algorithm to expedite the learning process, to-
gether it leads to the employment of the theorem regarding to
the numerical optimization. Next, the KKT necessary condi-
tion of optimality is introduced. Based on this condition, one
can better analyze and design a full or a partial reconstruc-
tion algorithm to expedite the learning process for the real-
time adaptive control of hyperthermia involving unavoidable
II.D. The Karush–Kuhn–Tucker „KKT… necessary
condition of optimality

The KKT conditions are necessary for a solution in non-
linear programming to be optimal, provided some regularity
conditions are satisfied. This condition is written below.
Given an unconstrained quadratic optimization problem, the
optimal solution is a critical point of the objective function
and hence its gradient equals to zero,

min
x�M�1

g�x�M�1� = min
x�M�1

1
2 · �f�N�1�x�M�1��2

2. �2.8�

Here, the real scalar function g, which is the half of the
square of the Euclidean norm of the vector function of f , is
called the objective function, goal function, or criterion func-
tion. The vector function of f has N different components.
Each component of the vector function f denotes the differ-
ence between the measured and the predicted outputs from a
given excitation. In hyperthermia, this output can be a vector
in which each of its elements is a product of a selected
weighting coefficient and temperature at a point of interest.9

The points of interest could be tumor points only8,9 or in-
clude the points in critical normal tissues.13,15 The KKT nec-
essary condition indicates that the optimal solution satisfies

the following conditions:
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�g

�x�M�1
= 0�M�1 = JA�f�N�1,x�1�M

A � · f�N�1�x�M�1� . �2.9�

The superscript A denotes complex conjugate transpose for
complex variable and transpose for real variable. The first
term �J� in the right side of the equality is called the Jaco-
bian, which denotes the gradient of a vector function.

II.E. Configurations for numerical simulations

It is difficult to understand all the properties of the models
purely based on the aforementioned advanced mathematical
theorems. Thus, commercial software MATLAB™ �The Math-
Works, Inc., Natick, MA� was used to conduct numerical
experiments to explicitly illustrate the results analyzed using
the abstract theorems.

The approximate physical model expressed by Eq. �2.5�
was used for the aforementioned purpose, but zero initial
temperature was assumed for simplicity. It was also assumed
that there are only three point sources. The target of heating
was the coordinate origin, and the coordinates of the three
sources were �11.5, 0, 0�, �0, �11.5, 0�, and ��11.5, 0, 0�;
the unit of the coordinates was centimeter. Note the dimen-
sions of this simulation configuration were used to mimic a
design of 10-antenna cylindrical applicator for hyperthermic
treatment of extremities that was used in previous studies.9,12

The heating period was 5 min for each single power excita-
tion that was used to produce temperature feedback. Thermal
interactions between different excitations were assumed to
be negligible to simplify the analysis. The electric and ther-
mal property values28,29,7,30,31 involved for the numerical
demonstrations were given as those for �human� muscle
when the driving frequency of the EM wave was 150 MHz.
The electric permittivity was 5.507 188�10−10 F /m, the
electrical conductivity was 0.727 S/m, the permeability was
4�	�10−7 H /m, the density was 1050 kg /m3, the specific
heat of muscle was 3639 J/kg K, the specific heat for blood
was 3770 J/kg K, and the blood perfusion was 3.6 kg /m3 s.

III. ANALYZED RESULTS AND DISCUSSION

In the following sections, effective algorithms and limita-
tions for four different types of nonlinear reconstruction are
analyzed, including the combinations of full and partial re-
constructions, and noiseless and noisy situations. Then dis-
cussions and comparisons with a previously published
algorithm15 are given, followed by an analysis for nonlinear
system reconstruction of adaptive control of hyperthermia
when the perfusion is nonlinearly temperature dependent.
Numerical exhibitions are also presented. Then, comparisons
between nonlinear and linear reconstructions are provided.

III.A. Nonlinear noiseless full reconstruction
„NNLFR…

A full reconstruction in the absence of noise is first dem-
onstrated using a numerical optimization. The optimization

problem is formulated as in Eq. �2.8�. Based on the KKT
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necessary optimality condition given in Eq. �2.9�, the optimal
system reconstructed can be determined by the following
implicit equations:

0�6·M�1 = h�6·M�1 � JA�f�6·M�1,x�1�6·M
A � · f�6·M�1�x�6·M�1� .

�3.1�

Unfortunately, Eq. �3.1� is also a system of nonlinear
equations. Since generally there is no closed-form solution to
a nonlinear problem, among many algorithms, the Gauss–
Newton �GN� algorithm32,33 is chosen to solve Eq. �3.1�.
This method is well known and provides an ideal conver-
gence rate of second order.

The basic idea of this algorithm is to first approximate the
vector function h by the Taylor expansion. A hypothesis as-
sociated with this expansion is that the two consecutive
points at the levels of k and �k+1� iterative corrections are
close enough,

0�6·M�1 � h�6·M�1�x�6·M�1
�k� � + �R6·M�6·M�f�6·M�1

�k� ,x�6·M�1
�k� �

+ JA · J�f�6·M�1
�k� ,x�1�6·M

�k�,A �� · �x�6·M�1
�k+1� − x�6·M�1

�k� � .

�3.2�

By neglecting the high order term described by the matrix R,
the following algorithm is developed:

x�6·M�1
�k+1� = x�6·M�1

�k� − �JA · J�f�6·M�1
�k� ,x�1�6·M

�k�,A ��−1

· h�6·M�1�x�6·M�1
�k� � . �3.3�

If converged, Eq. �3.3� gives the optimal solution to the
optimal reconstruction problem and thus one has the system
reconstructed. Nevertheless, as shown in the IFT, there might
not be a unique solution or even any solution to the KKT
condition given in Eq. �3.1�. To obtain the conditions for the
existence and uniqueness of the solution to Eq. �3.3�, the
following analysis is conducted:

�h�6·M�1�x�6·M�1
�k� �

�x�1�6·M
�k�,A = R6·M�6·M�f�6·M�1

�k� ,x�6·M�1
�k� �

+ JA · J�f�6·M�1
�k� ,x�1�6·M

�k�,A � . �3.4�

Here, the matrix R denotes a collection of all the high order
terms. Based on IFT, the above matrix is required to be non-
singular to ensure that the solution exists and is unique.
Therefore, according to Eqs. �3.3� and �3.4�, the neglect of
the high order terms represented by the matrix R does not
devoid the sufficient condition imposed by IFT to ensure the
existence of the unique solution to the optimal reconstruction
problem.

The GN algorithm is a method belonging to the family of
Newton methods, and thus a good initial guess must be sup-
plied for this algorithm; otherwise this algorithm will not
converge to the correct solution. In addition, the success of
linearization �from Eqs. �3.2� and �3.3�� relies on the fact that
the correcting vector 
x is small. The correcting vector at the

iterative step k is demonstrated below,
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x�6·M�1
�k� = x�6·M�1

�k+1� − x�6·M�1
�k� . �3.5�

This requirement of small correcting vector might be vio-
lated during iteration since there is no restriction on the mag-
nitude of this correcting vector from the GN algorithm. As a
result, the objective function my increase from one iteration
step to another.34,35 Besides, the Jacobian matrix in Eq. �3.3�
could temporarily become singular during the iterative
search and thus halt the GN algorithm before
convergence.34,35 In the presence of noise from image feed-
back, the discrepancy between the measured and the pre-
dicted vector function f could become worse than a noiseless
one, which, in turn, results in a poorer behavior of its gradi-
ent, the elements of the Jacobian matrix. This further in-

creases the chance of making the Jacobian being singular

the iteration and then gradually decreases it, e.g., at a rate of
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during the GN search process. These issues are addressed in
the following.

III.B. Nonlinear noisy full reconstruction „NNYFR…

In the presence of noise, the goal is to find the best ap-
proximate solution to the nonlinear reconstruction. In this
case, again based on the IFT and the derivation for the GN
algorithm, in order to iteratively solve the KKT necessary
optimality condition, 6�M different excitations are required
to fully reconstruct the approximate system; different in the
sense that the requirements of IFT are fulfilled.

As mentioned in Sec. III A, the Jacobian of Eq. �3.3�
could become singular when the correcting vector 
x is too
large.34,35 A remedial approach is determining the optimal

solution to the formulation below,
min

x�6·M�1

�k�
gLM�x�6·M�1

�k� ,
x�6·M�1
�k� � = min


x�6·M�1
�k�

1
2 · �f�6·M�1�x�6·M�1

�k� � + J6·M�6·M�f�N�1,x�1�6·M
�k�,A � · 
x�6·M�1

�k� �2
2,


x�6·M�1
�k� = x�6·M�1

�k+1� − x�6·M�1
�k� , �
x�6·M�1

�k� �2 � �, � � 0. �3.6�
The optimal solution of the problem listed above is deter-
mined by solving the KKT condition of the constrained op-
timization above using the method of Lagrange,

�gLM

�
x�6·M�1
�k� = 0�6·M�1 =

1

2
·

�

�
x�6·M�1
�k� ��f�6·M�1�x�6·M�1

�k� �

+ J6·M�6·M�f�6·M�1,x�1�6·M
�k�,A � · 
x�6·M�1

�k� �2
2

+ 
 · �
x�6·M�1
�k� − ��2

2�, 
 � 0. �3.7�

The optimal correction vector is given below,

0�6·M�1 = �JA · J�f�6·M�1
�k� ,x�1�6·M

�k�,A � + 
 · I6·M�6·M� · 
x�6·M�1
�k�

+ h�6·M�1�x�6·M�1
�k� � . �3.8�

Once the correcting vector for the vector x is determined,
another correction is conducted at the newly updated vector.
This process is repeated until convergence. This algorithm
was called the Levenberg–Marquardt �LM� algorithm. It is a
variant of the GN algorithm.

The LM algorithm was developed to improve the perfor-
mance of the iterative correction provided by the GN algo-
rithm by imposing additional constraint on the norm of the
correcting vector at each iteration step since the linearization
employed by the GN algorithm is invalid if the correction at
each step is too large. As an accompanied benefit, one im-
mediately finds that the LM algorithm will not halt when the
Jacobian matrix is temporarily singular because of the newly
added 
 term. The value of 
 changes with iterations. A
general guideline is to use a larger value at the beginning of
exponential function. However, the 
 value at the next itera-
tion is increased if the decrease in the objective function
value does not meet the imposed criterion.

An essential limitation of full reconstruction is that the
time for a system reconstruction would be impractically long
when a modern heating applicator like BSD-2000 Sigma-Eye
applicator36 is retained for more spatially selective and flex-
ible temperature focusing. There are 12 pairs of dipole an-
tennas, mounted on three rings along its longitude, four pairs
on each ring. It would demand about 216 min for full system
reconstruction, even when each single reconstruction session
takes only 3 min. This stimulated the investigation of partial
reconstruction.

III.C. Nonlinear noiseless partial reconstruction
„NNLPR…

To meet clinical requirements, the goal is to find, if pos-
sible, the best solution to the nonlinear system reconstruction
in a timely manner. This motivated the investigation of the
possibility to find the best solution without completing the
full system reconstruction, i.e., the research for the applica-
bility of the partial reconstruction.8,11,12,15 Because there are
more unknowns than equations in this approach, some un-
knowns become “free variables.” This means that there are
infinite feasible solutions. As a result, different numerical
search algorithms might converge to different system recon-
structions. Moreover, the quality of the reconstructed system,
as well as the quality of the optimal heating vector deter-
mined from this system, is not ensured since there is no

control on the free variables.
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Besides, when developing the GN algorithm in Sec. III A,
the matrix R must vanish in Eq. �3.2� so that a linear recur-
sive formulation is obtained to iteratively determine the so-
lution until convergence. However, this means that this ma-
trix R in Eq. �3.4� also vanishes. On the other hand, based on
the IFT, a nonsingular matrix in Eq. �3.4� must present as a
sufficient condition for the unique solution to exist. Since the
R matrix vanishes in Eq. �3.4� and the number N �the number
of equations available� is also smaller than the number 6�M
�the number of unknowns�, the only remaining term in Eq.
�3.4� is a singular matrix. Hence, according to IFT, whether a
solution exists or is unique cannot be assured. The LM algo-
rithm is slightly better than the GN algorithm in this regard.
Because of the presence of the 
 term, based on the IFT, the
unique solution to the problem formulated by Eq. �3.6� can
still by determined provided a good initial guess that is close
enough to this optimal solution is supplemented. Neverthe-
less, the modified constrained optimization expressed by Eq.
�3.6� is only an approximation to the desired optimization
problem formulated by Eq. �2.8�. Thus, owing to the pres-
ence of uncontrolled free variables, as indicated at the begin-
ning of this section, the original reconstruction cannot be
sure to have a unique optimal solution nor can be sure to its
companied approximated formulation.

When a given problem does not have a unique solution, it
is called ill posed.37 There is a family of approaches called
regularization methods38,39 designed to provide an approxi-
mate solution to ill posed problem. The �regularized� optimi-
zation formulation is shown below,

min
x�M�1,
�0

g
�x�M�1� = min
x�M�1,
�0

1
2 · ��f�N�1�x�M�1��2

2

+ 
 · �x�M�1�2
2� . �3.9�

The new term is called a regularization term, and 
 denotes
the regularization parameter. Since Tikhonov and Phillips are
the major pioneers developing this kind of approach, it is
denoted here as the Tikhonov–Phillips regularization �TPR�.

After adding this term, the KKT necessary condition is
expressed by the following equation, which is similar to Eq.
�3.1�:

�g


�x�6·M�1
= 0�6·M�1 = h�
,6·M�1

� J6·M�N
A �f�N�1,x�1�6·M

A � · f�N�1�x�6·M�1�

+ 
 · x�6·M�1. �3.10�

Again the sufficient conditions need to be developed to en-
sure the existence of the unique solution to Eq. �3.10� ac-
cording to the IFT. Note that the regularized objective func-
tion, g
, and its first derivative, h
, are different from those
listed in Eqs. �2.7� and �3.1�. Similar to Eq. �3.4�, these con-

ditions are provided below,
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�h�
,6·M�1�x�6·M�1�
�x�1�6·M

A = R
,6·M�6·M�f�N�1,x�6·M�1�

+ J6·M�N
A · JN�6·M�f�N�1,x�1�6·M

A �

+ 
 · I6·M�6·M . �3.11�

The last term is always nonsingular, and thus the suffi-
cient conditions required by the IFT can be satisfied by as-
signing an appropriate 
 value. Nevertheless, in contrast to
Eq. �2.8�, now one is optimizing two competing goals simul-
taneously: Optimally satisfying the physical criterion de-
scribed by the vector function f and minimizing the Euclid-
ean norm of the solution. A large 
 value places more weight
on minimizing the norm of the solution, while sacrificing the
optimality of the physical criterion.

Having the uniqueness of the optimal solution theoreti-
cally guaranteed, now it makes sense to find an efficient
numerical algorithm to determine this solution. Again, the
GN algorithm is analyzed first to check if it would satisfy the
need herein. Equation �3.10� is linearized to get the follow-
ing equations:

x�6·M�1
�k+1� = x�6·M�1

�k� − �J6·M�N
A · JN�6·M�f�N�1

�k� ,x�1�6·M
�k�,A �

+ 
 · I6·M�6·M�−1 · h�
,6·M�1�x�6·M�1
�k� � . �3.12�

The algorithm above simultaneously satisfies the require-
ments based on the IFT and linearization required to develop
the GN algorithm. It is denoted as the Tikhonov–Phillips
Regularized Gauss–Newton �TPRGN� algorithm since it is
an algorithm based on the idea of GN algorithm and is de-
signed to solve a TPR problem. This algorithm allows one to
iteratively determine the best system reconstructed as long as
a good initial guess is supplemented with the algorithm to
allow convergence. A good initial guess remains important
for the convergence of this algorithm since its kernel is still
the GN algorithm. In addition, the regularization term listed
in Eq. �3.9� plays a role in limiting the magnitude of the
correcting vector. Hence, the advantages provided by the LM
algorithm mentioned in Sec. III B are also inherited here.
Nevertheless, one cannot reduce the value of 
 to be identi-
cally zero when the TPRGN algorithm is used to solve a
partial reconstruction. Otherwise, one does not have a well-
posed formulation that has a unique solution.

A seemly weakness is that the presence of a nonzero regu-
larization term never allows one to obtain an unperturbed
solution to the original system. More details addressing this
will be provided in Sec. III D.

III.D. Nonlinear noisy partial reconstruction „NNYPR…

Noise is now reintroduced into the system in order to
mimic the clinical situation. First, instead of using the GN
algorithm developed in Sec. III A, the TPRGN algorithm de-
veloped in Sec. III C is retained to determine the unique and
best approximate solution to the target nonlinear system re-
construction. Meanwhile, additional modifications are made

here to better cope with the noise,
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min
x�M�1,
�0

g
,W�x�M�1� = min
x�M�1,
�0

1
2 · ��f�N�1�x�M�1��2

2 + 
 · �x�M�1 − x�guessed,M�1�W
2 �, �x�M�1 − x�guessed,M�1�W

2

= y�1�M
A · WM�M · y�M�1,y�M�1 = x�M�1 − x�guessed,M�1. �3.13�
Here, the vector xguessed is what one guesses, based on all
available physical knowledge, to be close to the true system,
and the matrix W is a positive definite matrix. To make it
clearer, W could be a diagonal matrix having positive ele-
ments with values set according to one’s confidence with the
guessed vector x. When an element of guessed vector x is
found with more confidence, one can assign larger value to
the corresponding element of W.

By assigning the values of the regularization parameters,
one can determine the optimally reconstructed system to be
the one that is closer to a guessed system. That is, this more
complicated formulation allows one to utilize a priori infor-
mation regarding the system to be reconstructed to accelerate
the convergence of the iterative optimal search and to deter-
mine an optimal system that better matches the a priori in-
formation. Otherwise, according to previous analysis based
on the IFT, theoretically one can only determine the approxi-
mated system optimally after at least 6�M steps, when there
are M independent heat sources, and when a nonlinear for-
mulation like Eq. �2.4� is the target of reconstruction. Note,
in the presence of noise in which one does not have an ex-
plicit mathematical formulation, the true system can only be
recovered approximately.

In addition, the presence of noise in the image feedback
contained in the vector function f makes this function noisy.
Thus, it does not make much sense to formulate an optimal
reconstruction problem that exactly matches the noisy re-
sponses. Instead, one ought to include as much a priori in-
III C, the sufficient conditions for the existence of a unique
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formation based on know physics in the problem formulation
so that the system reconstructed better describes the desired
physics. Taking this into account, the TPRGN becomes an
appealing algorithm having better theoretical properties for
adaptive control of clinical hyperthermia.

Furthermore, there are different rules for assigning the
value of the regularization parameter. Some popular methods
for determining the 
 value of a given problem are the
L-curve method,40 the cross validation method,41 and the dis-
crepancy principle.42 In general, there is usually an optimal
value of the regularization parameter to a given problem: A
large 
 value emphasizes too much on minimizing the norm
of the solution at the expense of poorly matching the mea-
sured and simulated system output; however, a small 
 value
emphasizes too much on fitting the noisy measurement. De-
termining an optimal 
 value to a particular regularization
problem remains an active research topic.

III.E. Analysis for the PIGN algorithm

In this section, the IFT and KKT necessary conditions of
optimality are applied to analyze the pseudoinverse-based
GN algorithm �PIGN�, which was used in the study of real-
time image-guided adaptive control of hyperthermia.15 This
PIGN algorithm applied the linearization used in the GN
algorithm; however, the use of the GN algorithm implies that
one attempts to solve the linearized version of the KKT nec-
essary condition of optimality described below,
J6·M�N
A · JN�6·M�f�N�1

�k� ,x�1�6·M
A � · �x�6·M�1

�k+1� − x�6·M�1
�k� � = − h�6·M�1�x�6·M�1

�k� � . �3.14�
As a result, the iteration stops because N�6�M in NNLPR
or NNYPR, and thus there is no inverse of the product of the
adjoint of the Jacobian and itself. To resolve this issue, the
PIGN algorithm retained the pseudoinverse43,44 of the Jaco-
bian to determine the unique minimum-norm least-squares
error �MNLSE� approximation to Eq. �3.14�. Among all cor-
rections for this particular iterative step, this pseudoinverse
correction produces optimal result in the sense that the Eu-
clidean norm of this MNLSE correction is minimal. Using
this trick, the initial guess is iteratively updated until it con-
verges to the nonlinear equations for the KKT necessary con-
dition of optimality �to the original optimization problem.�

However, based on the analysis accomplished in Sec.
solution fulfilling the KKT necessary condition of optimality
are violated when the GN algorithm is used for a partial
reconstruction. Consequently, the solution obtained by the
PIGN algorithm might correspond to an inflection point, a
local optimal solution, or the true optimal solution, if it in-
deed converges. Hence, in principle, one must determine all
the solutions satisfying the KKT necessary condition, and
then compare each of them to find the unique solution to the
minimum value of the proposed objective function. How-
ever, as just stated, there might be infinite feasible solutions
satisfying the KKT necessary condition due to insufficient
equations, since N could be �6�M in NNLPR or NNYPR.

The IFT provides only sufficient conditions, and violating

the conditions does not exclude the possibility for a unique
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solution of the original optimal reconstruction problem to
exist. Hence, there might still be only one solution to the
KKT necessary condition. For any given case, there is nev-
ertheless no guarantee on the uniqueness of the optimal so-
lution. Finally, the PIGN algorithm cannot guarantee the glo-
bal optimal solution within 6�M steps of full reconstruction.
Unlike the TPRGN algorithm, the PIGN algorithm cannot
incorporate any a priori physical information into the solu-
tion reconstructed. The best the PIGN algorithm can deter-
mine is the MNLSE approximation that satisfies the partial
information already retrieved, i.e., a local optimum to
NNYPR, in general. The approximate solution determined
Medical Physics, Vol. 37, No. 3, March 2010
by TPRGN is also a local optimal in general; however, as
just mentioned, by incorporating with an appropriate regular-
ization term in Eq. �3.14�, this solution might be a better
approximation to the global optimal solution.

The following paragraphs show explicitly why the best
the PIGN algorithm can determine is the MNLSE approxi-
mation. When developing an iterative algorithm solving non-
linear problems, a basic test is to check if a consistent result
is accomplished for the companied linear problem. For this
purpose, the derivation of the PIGN algorithm based on the
optimization theory is given below,
min

x�6·M�1

�k� ,
�0

q�
x�6·M�1
�k� � =

1

2
· lim


→0
,
�0

min

x�6·M�1

�k�
��f�N�1�x�6·M�1

�k� � + JN�6·M�f�N�1,x�1�6·M
�k�,A � · 
x�6·M�1

�k� �2
2

+ 
 · �
x�6·M�1
�k� �2

2 � . �3.15�
The equation above explicitly exhibits why the PIGN solu-
tion is the MNLSE approximation, in the best case. By defi-
nition, an MNLSE solution is the solution of the limiting
case of a regularized optimization problem when the Euclid-
ean norm of the solution is constrained. This formulation
leads to the PIGN algorithm below,

x�6·M�1
�k+1� = x�6·M�1

�k� − pinv�JN�6·M�f�N�1,x�1�6·M
�k�,A ��

· f�N�1�x�6·M�1
�k� � . �3.16�

When the PIGN algorithm is used to solve a linear prob-
lem described below,

f�N�1�x�6·M�1� = AN�6·M · x�6·M�1 − b�N�1

⇒JN�6·M�f�N�1,x�1�6·M
A � = AN�6·M �3.17�

by substituting Eq. �3.17� into Eq. �3.16�, the PIGN algo-
rithm results in the following equality and inequality:

x�6·M�1
�k+1� = x�6·M�1

�k� − pinv�AN�6·M� · �AN�6·M · x�6·M�1
�k� − b�N�1�

� pinv�AN�6·M� · b�N�1. �3.18�

The inequality indicates that the PIGN algorithm does not
guarantee to converge to the MNLSE solution of a linear

TABLE I. Results when the initial guess was �1.0, 1.
equations.

Solution 2-norm

True solution �0.6299, 0.3705, 0.5751� 0
GN �0.6210, 0.3675, 0.5903� 0
LM �0.6299, 0.3705, 0.5751� 0
PIGN �0.6299, 0.3705, 0.5751� 0
problem because the product of the pseudoinverse of a rect-
angular matrix A and itself is not always an identity matrix.
Hence, the first two terms in Eq. �3.18� do not canceled out,
in general. As a result, the PIGN algorithm could only con-
verge to a suboptimal solution to an underdetermined linear
problem other than the MNLSE solution, i.e., its pseudoin-
verse solution plus some extra value, because the first two
terms of Eq. �3.18� are not canceled out. One cannot obtain
the optimal solution by using the PIGN algorithm as the
learning scheme associated with the adaptive control of hy-
perthermia, unless there are sufficient equations.

III.F. Analysis of the result from applying the derived
algorithms to BHT with temperature-dependent
perfusion and thermally significant blood vessels
involved

In this section, readers will learn how to utilize the IFT,
optimization theory, the KKT condition, regularization, and
the TPRGN algorithm to investigate the problem of nonlin-
ear reconstruction of the system when the BHT process in-
volves thermally significant blood vessels45 and perfusions
that depend on temperatures. Note that perfusion has been
shown as an important factor affecting treatment outcomes of

� and full reconstruction was conducted using three

e solution
2-norm of the error

of the solution No. of iteration

95 – –
245 0.017 811 1 28
95 1.791 74�10−7 4
95 6.949 81�10−8 4
0, 1.0

of th

.929

.932

.929

.929
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hyperthermia46–48,24 and, in practice, it can be affected by
temperature46,49,50 and thus makes the BHT process nonlin-
ear.

III.F.1. Issues related to the problem formulation

The first and the most important step is to formulate the
output temperature as a function of the input variables, e.g.,
the 6�M variables representing the ensemble of the E fields
from the M sources, plus a number of Madditional any other
variables, such as those parameters related to perfusion val-
ues in different tissues. To make the formulation more ex-
plicit, the Pennes BHTs with empirically curve-fitted perfu-

sion relations is employed to approximate temperature

tives of temperatures to unknowns.
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response to nonlinear temperature-dependent perfusion. In
addition, the convective heat transfer term is also included.
The convective heat transfer from thermally significant blood
vessels is known to have strong influence on
hyperthermia,45,51,52

� · Ct · � �T

�t
+ u� · �T� = div�k grad�T�� − wb�T�

· Cb · �T − Tb� + Q . �3.19�

The vector u denotes the flow velocity vector inside the ther-
mally significant vessel. The nonlinear curves expressed be-

48,13,9,12
low were used to simulate this phenomenon,
wtissue = �wtissue,1 + wtissue,2 exp�− �T − Tcrit,tissue�2

stissue
�, T � Tcrit,tissue

wtissue,1 + wtissue,2, T � Tcrit,tissue

. �3.20�
Then, the nonlinear system is formulated in a form of
implicit function below,

T = T�t,r�;E3�M,u� ,wtissue,1 · Cb,wtissue,2

· Cb,Tcrit,tissue,stissue,� · Ct,k� . �3.21�

The remaining steps for formulating the optimization prob-
lem for the nonlinear reconstruction of the system, for deriv-
ing the iterative search algorithm, and for analyzing the al-
gorithm follow the same steps and patterns of Secs.
III A–III E. In other words, all the conclusions drawn from
Secs. III A–III E remain valid for very general practical hy-
perthermia with thermally significant vessels and
temperature-dependent perfusion.

III.F.2. Issues related to the calculation or
estimation of the derivatives

As shown in Eq. �2.9�, the optimal solution to system
reconstruction problem using nonlinear formulation is deter-
mined based on the KKT condition, and thus one needs to
determine the derivatives of temperatures to unknowns.
Hence, it becomes essential for one to be able to determine
exactly or approximately the derivatives of the temperatures
to the unknown variables.

However, in general, an explicit expression relating the
unknown variables �e.g., those listed in the parentheses of
Eq. �3.21�� and the temperatures is unavailable. The deriva-
tives of the temperatures to the unknown variables are also
not available. Two existing approaches were introduced be-
low to address the determination or estimation of the deriva-
A remedy for the above mentioned situation is to solve the
following coupled partial differential equations �PDEs� for
the temperatures and the derivatives of the temperatures from
the unknown variables,

� · Ct · � �T

�t
+ u� · �T� = div�k grad�T�� − Db · �T − Tb�

+ Q,

Db � wb · Cb, �3.22�

� · Ct · � ��

�t
+ u� · ��� = div�k grad���� − �T − Tb�

− Db · �,

� �
�T

�Db
. �3.23�

Equation �3.23� is the original PDE governing the BHT
physics. The new equation ��3.23�� shows up for the purpose
of determining the unknown gradient required by the itera-
tive algorithm such as GN or LM. Notice that even in this
very simplified situation in which perfusion is a single con-
stant, the approach requires one to solve the above system of
PDEs to determine the simulated temperatures and the asso-
ciated derivatives. Furthermore, one should be aware that Eq.
�3.23� is not linear. It is even more complicated, in practice,
since perfusions are different in different tissues and follow
different nonlinear dependences with temperatures �e.g., Eq.
�3.20��. Plus, this computation for the set of coupled �non-
linear� PDEs is required for every single iterative step of the

learning search for system reconstruction.
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For example, suppose a variant of the GN algorithm is
retained to reconstruct the nonlinear system with a number of
6�M unknowns, then at least �1+6�M� of coupled �nonlin-
ear� PDEs need to be solved at one iterative update for a
single step of reconstruction. Assuming, in average, a single
step of system reconstruction requires p steps to converge,
then at the kth step of the reconstruction, one must conduct
the computations of PDE p�k��1+6�M� times in real time.
Hence, this approach is not attractive for designing a real-
time adaptive control of hyperthermia.

There is another approach that is better known probably
because it is simpler to apply. This alternative uses a numeri-
cal approximation to estimate the derivatives of temperature
to unknowns. Depending on the number of the temperatures
corresponding to the perturbed unknown used to estimate the
derivative, one needs to determine the same number of addi-
tional temperatures. Since one still needs to solve a PDE like
Eq. �3.22� or Eq. �3.19� plus Eq. �3.20� to determine the
temperature for a particular value of an unknown, there
should be additional computations for PDEs to numerically
estimate the derivatives. Assuming that in average a single
step of system reconstruction requires p steps to converge,
and that each estimation of the derivative requires q addi-
tional temperatures, then at the kth step of the reconstruction,
one must conduct the computations of PDE p�k� �1
+q�6�M� times in a practical time frame. Therefore, this ap-

TABLE II. Results when the initial guess was �1.0, 1.0
the first two equations.

Solution 2-norm

True solution �0.6299, 0.3705, 0.5751� 0
LM �0.6160, 0.3414, 0.6406� 0
PIGN �0.6160, 0.3414, 0.6406� 0
proach is also very computationally intensive.

iterative algorithms.
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A straightforward solution addressing the aforementioned
extensive computations in real time is probably the use of
parallel computation and more powerful computational hard-
ware. Or one can try to develop an approximate temperature
model that can be evaluated very fast at the same time pre-
serving appropriate physics of hyperthermia.

III.G. A numerical example based on a set of real-
valued second order equations

Another example of the problem in nonlinear system re-
construction is given to show some essential characteristics
of the GN and LM algorithm. The following rules were
adapted in this study for the numerical simulations using the
LM algorithm. At each iterative step, the regularization pa-
rameter was chosen as 1.0�10−4, and then it was halved �for
the next iteration� if the value of the objective function de-
creases, otherwise the regularization parameter was multi-
plied by 2.5. In addition, the PIGN algorithm was also tested.

Equation �2.5� describes the simplified BHT process, and
the major work of system reconstruction is to inversely re-
construct the components of a complex-valued second order
problem. To make it simple, a real-valued model problem
was used to examine some basic performances of the three

and partial reconstruction was conducted using only

e solution
2-norm of the error

of the solution No. of iteration

95 – –
003 0.072 961 7 4
002 0.072 961 2 4
algorithms,
�
0.5716 = 0.4983 · x1

2 + 0.3200 · x1 · x2 + 0.4120 · x1 · x3 + 0.4399 · x2
2 + 0.2126 · x2 · x3 + 0.1338 · x3

2

0.9541 = 0.2140 · x1
2 + 0.9601 · x1 · x2 + 0.7446 · x1 · x3 + 0.9334 · x2

2 + 0.8392 · x2 · x3 + 0.2071 · x3
2

0.9506 = 0.6435 · x1
2 + 0.7266 · x1 · x2 + 0.2679 · x1 · x3 + 0.6833 · x2

2 + 0.6288 · x2 · x3 + 0.6072 · x3
2.� �3.24�
The initial guess of �x1 ,x2 ,x3� was used in the first iteration,
and then the chosen algorithm was used to iteratively deter-
mine the optimal solution that minimizes the square of the
sum for the difference among the three equations.

The following table summarized the influences of the ini-
tial guess and the number of equations provided to the three
Based on the numerical results summarized in the previ-
ous four tables �Tables I–IV�, the following facts were dis-
covered. �1� Even when sufficient equations were provided, a
bad initial guess still leads to an incorrect solution for all
three tested gradient-based algorithms. �2� With insufficient
equations, the performances of the LM and the PIGN algo-
, 1.0�

of th

.929

.952

.952
rithms are quite similar, but none of the algorithms converges



991 Cheng et al.: Mathematical formulation and analysis of nonlinear system reconstruction 991
to the true solution when insufficient equations were sup-
plied. These facts agree with the results of the theoretical
analysis conducted in the previous Secs. III A–III E.

III.H. Numerical example based on a simplified
physical model

In this section, numerical illustrations are provided to
show readers another intrinsic difficulty involved in in-
versely reconstruct the original E fields based on the excited
temperatures.

TABLE III. Results when the initial guess was ��0.20
using three equations.

Solution 2-norm

True solution �0.6299, 0.3705, 0.5751�
GN ��0.3872, 1.2129, �0.0001�
LM ��0.6327, 1.1353, 0.5883�
PIGN ��0.6324, 1.1355, 0.5873�
tance of imposing a constraint on the norm of the solution to
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The model equation used Eq. �2.5� assumes zero initial
temperature,

T�t,r�� =
�

2 · � · � · Ct
· u�H · �EM�3

H · E3�M� · u�

· �1 − exp�− � · t�� �3.25�

The following is an ensemble of the E fields produced
from the configurations given in Sec. II E:

2000, 1.0000� and full reconstruction was conducted

e solution
2-norm of the error

of the solution Number of iteration

95 – –
19 1.440 52 6
66 1.476 24 5
23 1.476 04 5
E = 	 − 0.6540 − i · 18.4009 − 50.9763 − i · 68.5070 − 35.0646 − i · 32.6336

− 61.7110 − i · 10.9476 − 55.9187 − i · 44.1251 − 83.3993 − i · 67.5388

− 36.1327 − i · 79.3490 − 20.0352 − i · 49.0499 − 17.5995 − i · 12.4801

 . �3.26�

However, the temperature excited by the above ensemble of the E fields is very close to that by the very different ensemble of
the E fields below,

E = 	54.8752 + i · 23.6583 68.3855 + i · 45.3003 58.7610 + i · 47.8418

35.5216 + i · 40.7102 34.0176 + i · 58.6614 42.5001 + i · 50.3939

29.5917 + i · 32.7615 31.8210 + i · 47.0263 28.9420 + i · 38.4557

 . �3.27�
Suppose that a driving vector given below was used to
excite the above two ensembles of E fields, the correspond-
ing temperatures were 1.1463 �when Eq. �3.26� is plugged
into Eq. �3.25�� and 1.1065 �when Eq. �3.27� is plugged into
Eq. �3.25��,

u� = �0.0430 + i · 0.9251

0.7469 + i · 0.0270

0.7505 + i · 0.6824
� . �3.28�

This result indicates that there are two very different en-
sembles of E fields producing temperatures that are very
close. Since measurement error is unavoidable, this result
implies that the system reconstructed might be very different
from the true one. Hence, using a temperature measuring
technique having high accuracy would be very advantageous
when using a nonlinear system reconstruction. Meanwhile,
the sensitivity shown in this result also implies the impor-
be reconstructed. This sensitivity provides another important
reason to use the regularization approach.

III.I. Comparison between linear and nonlinear
formulations of system reconstruction

System reconstruction using nonlinear formulation is
theoretically more advantageous than linear formulation for
it demands fewer learning correction steps, provided the
number of heat sources is greater than 6. However, in prac-
tice, this theoretical advantage is diminished by the signifi-
cant computational loads of evaluating or estimating the de-
rivatives of temperature to unknowns, as analyzed in Sec.
III F 2.

Assuming one can develop an efficient way to evaluate or
estimate these derivatives such as using a simplified BHTE
model �e.g., Eq. �2.5�� or a parallel algorithm; one still needs
to perform at least 36 learning steps of system reconstruc-
tion, assuming there are only six independent sources. Ac-
00, 1.

of th

0.929
1.273
1.426
1.426
cording to the analyses shown in Secs. III C and III D, one
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does not have a solid theoretical support to optimally recon-
struct the true system before these steps. Adding regulariza-
tion is mandatory to formulate a well-posed problem of par-
tial reconstruction, and it increases the chance to optimally
reconstruct the system within 36 steps, but again, there is no
theoretical guarantee of this success. Besides, the nonlinear
reconstruction that identifies the ensemble of E fields using
temperature feedbacks is sensitive to the perturbations in-
volved, as shown in Sec. III H, and thus, a sufficient time
period becomes necessary for imaging facility to retrieve ac-
curate temperature image feedback during each correction
session. When MRI is used, the length of this time interval of
5 min was suggested.53,15 Hence, in principle, a total time of
180 min �180=5�36� would be required for the optimal sys-
tem reconstruction using nonlinear approach; this is not
clinically appealing.

This undesirably long time of nonlinear reconstruction
can be shortened if a model reduction method is developed
to reduce the number of unknown variables,12 and appar-
ently, the fewer the better. However, a nonlinear formulation
is not theoretically better than a linear formulation, if the
number of sources is less than 6. That is, incorporating a
method of model reduction reduces the learning time of non-
linear formulation, but, when the number of independent
variables is less than 6, an even shorter learning time results
if one uses a linear formulation having the same number of
unknowns reduced from a method of model reduction. In
addition, the nonlinear reconstruction formulated in Eq. �2.4�
does not identify any thermal properties such as thermal dif-
fusivity or blood perfusion. Consequently, one must design
and implement another algorithm to identify these un-
knowns, e.g., Eq. �3.21�, which, in turn, demanding extra
time and effort. However, without this information, one can-
not determine the optimal driving vector that optimally el-
evates the temperature distribution. In contrast, the linear for-
mulation already taking these thermally related factors into
account in an implicit form,8 and thus, once identified, the
optimal driving vector determined directly satisfies an objec-
tive function optimizing temperature.8,11,12 Taking all these
considerations into account, a more clinically attractive op-
tion appears to be the combination of a linear formulation
and a model reduction.11,12

IV. CONCLUSIONS AND SUGGESTIONS TO
FUTURE DIRECTION

Problem formulation has strong influence on the effi-

TABLE IV. Results when the initial guess was ��0.2
ducted using only the first two equations.

Solution 2-norm

True solution �0.6299, 0.3705, 0.5751�
LM ��0.6327, 1.1353, 0.5883�
PIGN ��0.6324, 1.1355, 0.5873�
ciency and accuracy of system reconstruction in hyperther-
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mia therapy. Formulating in nonlinear form results in a theo-
retically fewer correction steps than formulating in linear
form for the system reconstruction embedded in the adaptive
control of hyperthermia, provided the number of independent
heat sources is greater than 6. Besides, formulating a regu-
larized optimization problem is mandatory when attempting
using partial reconstruction to shorten the time required for
the learning improvements of the mathematical description
of the system to the integrated environment of patient and
the heating facility. Otherwise, one does not have a solid
theoretical support to optimally reconstruct the optimal sys-
tem, regardless of which algorithm to use for the problem of
nonlinear partial reconstruction. In a word, one must formu-
late the problem at hand properly before designing or em-
ploying an algorithm to solve a problem.

When a full reconstruction method �NNLFR or NNYFR�
is used, the LM algorithm is suggested for solving the prob-
lem of system reconstruction. Nevertheless, in the presence
of noise, the TPRGN algorithm might have better perfor-
mance in reconstructing an approximate system, especially
when one has reliable a priori information in physics to
supplement a good guessed system. On the other hand, when
a partial reconstruction �NNLPR or NNYPR� is employed,
both the LM and the GN algorithms cannot be used. Instead,
one must first regularize the original reconstruction problem
to make it well posed. Then, the TPRGN algorithm is rec-
ommended. The TPRGN algorithm can incorporate a priori
information and thus increase the chance to reconstruct an
optimal system before its theoretical iterations required by
IFT. Moreover, the users of the TPRGN algorithm can design
an appropriate regularization term to reduce the negative in-
fluences from the unavoidable measurement noise. Nonethe-
less, an estimate, in advance, on the steps required by an
iterative searching algorithm to solve a nonlinear partial re-
construction problem remains unavailable. In addition, to en-
sure its convergence to the true solution, a good initial guess
very close to the true solution must be supplemented with the
LM or TPRGN algorithm.

Finally, the extensive computational works required to
evaluate or estimate the derivatives of temperature with re-
spect to the variables to be identified severely diminishes the
attractiveness of using nonlinear formulation. This motivates
the development of model reduction12 so that these deriva-
tives can be determined or estimated in a practical clinical

1.2000, 1.0000� and partial reconstruction was con-

he solution
2-norm of the error

of the solution No. of iteration

95 – –
66 1.476 24 5
23 1.476 04 5
000,

of t

0.929
1.426
1.426
time frame. An alternative is the development of fast numeri-
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cal solver to the Penne BHTE to accelerate the computation
of the derivatives, e.g., implementing a parallel algorithm for
the BHTE.
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