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The Poisson–Boltzmann �PB� formalism is among the most popular approaches to modeling the
solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity
that only depends on position in space. In contrast, the dipolar Poisson–Boltzmann–Langevin
�DPBL� formalism represents the solvent as a collection of orientable dipoles with nonuniform
concentration; this leads to a nonlinear permittivity function that depends both on the position and
on the local electric field at that position. The differences in the assumptions underlying these two
models lead to significant differences in the equations they generate. The PB equation is a second
order, elliptic, nonlinear partial differential equation �PDE�. Its response coefficients correspond to
the dielectric permittivity and are therefore constant within each subdomain of the system
considered �i.e., inside and outside of the molecules considered�. While the DPBL equation is also
a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the
electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge,
none of these can be directly applied to the DPBL equation. The methods they use may adapt to the
difference; their implementations however are PBE specific. We adapted the PBE solver originally
developed by Holst and Saied �J. Comput. Chem. 16, 337 �1995�� to the problem of solving the
DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner.
Numerical evidences suggest that it converges for the DPBL equation and that the convergence is
superlinear. It is found however to be slow and greedy in memory requirement for problems
commonly encountered in computational biology and computational chemistry. To circumvent these
problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian
and an iterative self-consistent solver that is based directly on the PBE solver. While both methods
are not guaranteed to converge, numerical evidences suggest that they do and that their convergence
is also superlinear. Both variants are significantly faster than the solver based on the exact Jacobian,
with a much smaller memory footprint. All three methods have been implemented in a new code
named AQUASOL, which is freely available. © 2010 American Institute of Physics.
�doi:10.1063/1.3298862�

I. INTRODUCTION

Electrostatic interactions play a major role in the stabili-
zation of biomolecules; as such, they remain a major focus of
theoretical and computational studies in biophysics. Theoret-
ical modeling of electrostatics interactions is in principle
simple. The interaction between two isolated charges in a
medium with uniform dielectric property can be described by
Coulomb’s law. When more than two charges interact, the
total electrostatic energy of the system is derived as the sum
of all pairwise Coulomb interactions �superposition prin-
ciple�. Applications of these simple principles imply that the
positions of all charges be known. While this seems to be a
simple requirement, it is unfortunately difficult to meet when
modeling solvated large molecular systems. This is mostly

due to the inherent difficulties in accounting for the mobile
solvent molecules and ions that surround the solutes. Explicit
representation of the solvent provides an accurate treatment
of electrostatics, but it increases the size of the system under
study by orders of magnitude.1 In addition, interactions in-
volving solvent need to be averaged over relatively long time
intervals before results become meaningful. As a response to
these problems, there has been a continuous effort to develop
simplified models that are computationally tractable and that
remain physically accurate. Most of these models include the
solvent implicitly, reducing the solute-solvent interactions to
their mean field characteristics, which are expressed as func-
tions of the solute degrees of freedom alone. They treat the
solvent as a dielectric continuum and are therefore referred
to as continuum dielectric models. The Poisson–Boltzmann
theory provides a framework for calculating the electrostatics
solvation free energy of a solute in such a dielectric con-
tinuum; many numerical solvers have been developed for
solving the corresponding elliptic, second order partial dif-
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ferential equation �PDE� �the PB equation�. The PB equation
is not however the panacea to all electrostatics problems; it is
just a mean field approximation, with known limitations. In
addition, the PB solvers are still too slow to be included in
routine biomolecular simulations. Many improvements have
been proposed to the PB equation, either on the theoretical
side or on the scientific computing side. These two ap-
proaches however often seem exclusive of each other; faster
solvers often rely on simplification of the equations, while
new theoretical models result in more complicated equations
that cannot be solved with the current solvers. This paper
addresses specifically this false segregation issue between
correctness and speed and ease of use; we show that it is
possible to derive a robust and fast solver for even the most
complicated modified Poisson–Boltzmann equations devel-
oped so far. We first briefly review the current computational
and theoretical developments around the PB model.

Exact, closed form solutions of the Poisson–Boltzmann
equation exist only for simple geometries of the solute, i.e., a
sphere,2 a plane �the Gouy–Chapman solution�3,4 or a
cylinder.5 In both cases however, the corresponding equa-
tions are cumbersome as they involve slow converging infi-
nite series. Furthermore, these solutions cannot be extended
to more complicated shapes such as those adopted by large
macromolecules. Recently, Onufriev and co-workers6 devel-
oped an approximate analytical solution to the linearized PB
equation for such molecule, using a regularized expression
for the solution of PB on a sphere, and introducing the con-
cept of electric shape of a molecule, which they identify to
be an ellipsoid. Such an approach however loses all the fine
details of the molecule of interest. While this might not be
important if the goal is to get a single number for the total
electrostatic energy of the molecule, it is definitely an issue if
one is interested in molecular interactions. For solutes of
arbitrary shape, the PB equation can be solved numerically
and efficiently using finite difference methods, as pioneered
by Warwicker and Watson7 and further developed by Honig
and co-workers.8–11 Several programs that solve either the
linearized version of PBE, or directly the nonlinear PBE,
with a variety of scientific computing techniques are now
available �see Refs. 12–14 for recent reviews�, among which
the multigrid methods seem to be the fastest ones15–17 �with
the exception of some specialized solvers�.18,19 It is notewor-
thy that most of these programs have been tailored to the PB
equation and cannot be used to solve other nonlinear second
order PDEs. The successes of the applications of these tech-
niques in biology14,20 boosted the interest for Poisson–
Boltzmann in biology in general, including its potential use
in molecular simulations. Some approximations however are
needed to meet the computing time requirements of the lat-
ter. The boundary element methods for example are viable
alternatives to finite difference methods that can be imple-
mented efficiently into molecular dynamics packages.21

These methods rely on the linearization of the Debye–
Hückel term that accounts for counterions around the solute;
it is known however that this approximation is not valid for
highly charged systems.22 Boschitsch and Fenley23 proposed
a correction to the BME methods to account for the nonlin-

earity in the PB equation. Clearly, we need a more general
framework for solving PB equations, especially in light of
the recent theoretical modifications.

Despite its success, PBE is only a mean-field approxi-
mation to the multibody problem of solvent-solute electro-
statics interactions. It is based on several approximations that
proved to be limitations in some cases. For example, PBE
does not include effects due to ion size or ion-ion correla-
tions in its treatment �for reviews, see Grochowski and
Trylska�.24 Solutions have been proposed to account for at
least ion size using either a single size25 or two different
sizes,26 yielding a size-modified Poisson–Boltzmann
�SMPB� equation. In addition, the PB method contains a
very rough approximation that consists in using a constant
and somewhat arbitrary value for the dielectric constant of
the protein �usually set at 2–4�, which abruptly jumps to 80
at the interface between the protein and the solvent. This
approximation overemphasized the definition of this inter-
face, usually set to the molecular surface of the solute, lead-
ing to dependency of the numerical solution of the PBE to
the positioning of the solute in the grid used by the solver.
Several solutions have been proposed to alleviate this prob-
lem. Roux and co-workers introduced an intermediate
boundary dielectric region in which the dielectric permittiv-
ity grows smoothly from its value in the solute to its value in
bulk water.27 Similarly, the program ZAP proposed by
Nicholls and co-workers uses a Gaussian representation of
the atoms of the solutes and defines a smooth dielectric per-
mittivity based on the molecular function that accounts for
all the individual Gaussians representing the atoms.28 While
these approaches reduce the importance of the solute inter-
face, they introduce a �smooth� dielectric response that only
depends on the geometry of the molecule. Because of strong
polarization effects in the vicinity of charges, it is expected
however that these simple geometric models are bound to be
erroneous close to the interface. We recently developed an
extension to the PB equation in which the solvent is de-
scribed as an assembly of interacting dipoles on a lattice gas
to account for the nonuniform dielectric property of the
solvent.29–31 Here we describe how we solve the correspond-
ing equations, dubbed dipolar Poisson–Boltzmann–Langevin
�DPBL� equations.

This paper is organized as follows. First, we provide an
overview of the PB equation and two of its recent modifica-
tions, the SMPB and DPBL equations. The following section
describes three variants of the truncated Newton solver origi-
nally developed by Holst32 and Holst and Saied16 for the PB
equation and their applications to the DPBL equation. The
first variant is a direct adaptation of the truncated Newton
solver that uses the correct Jacobian of the discretized equa-
tions. The second variant uses a truncated, quasi-Newton
solver based on an approximate Jacobian. The third variant
solves the DPBL self-consistently, using an iterative scheme
where each iteration solves a PB-like equation. The follow-
ing section describes our implementation of these solvers in
our software package, AQUASOL. AQUASOL is heavily based
on the package MG developed by Michael Holst and freely
available at http://www.fetk.org. Note that MG is the scien-
tific computing core of APBS.33 The next section provides
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examples of the usefulness of DPBL for understanding pro-
tein and nucleic acid solvation, as well as numerical ex-
amples of the convergence of our three Newton-based solv-
ers of the DPBL equation. We conclude the paper by noting
that the self-consistent Newton solver for the DPBL equation
is the faster of the three methods we describe, has a small
memory footprint, and is the easiest to implement and can
readily be adapted in any existing PBE solvers; it is the
method of choice in AQUASOL.

II. CONTINUUM ELECTROSTATICS: MODIFIED
POISSON EQUATIONS

We are interested in computing the electrostatics contri-
bution Wel to the solvation free energy of a set of solutes in
a solvent, using a model in which this solvent is considered
implicitly. The solutes are described by a constant charge
density � f and a solvent accessibility function ��r� that is
zero for points inside their envelopes and one otherwise. The
envelope or “interface” for a solute can be taken as its mo-
lecular surface, accessible surface or skin surface �for review,
see Ref. 34�. In this section, we review the Poisson–
Boltzmann approach for computing Wel as well as a few its
recent extensions.

A. The Poisson–Boltzmann model

The fundamental equation of electrostatics is given by
Gauss’s law:

� · D�r� = 4���r� , �1�

which relates spatial variation of the displacement field D
with position r to the charge density distribution �. In gen-
eral, the displacement field is defined as

D = �0E + P , �2�

where E is the electric field, �0 is the vacuum permittivity,
and P is the polarization density of the material considered.

In a region of material with uniform susceptibility, �, the
polarization density P is given by P=�0�E. Taking into ac-
count the boundaries of the solutes and setting the electric
field as the gradient of and electrostatic potential �E�r�
=−���r��, Eq. �1� becomes

� · ���0 + ��r��0�� � ��r�� = − 4���r� . �3�

The charge density is the sum of all charges qi at posi-
tions ri of the solutes and of the ions in the solvent,

��r� = �s�r� + �ion�r�

= ec�
i=1

M

qi��r − ri� + �ion�r�ec�
i=1

m

cizie
−�ziec��r�, �4�

where ec is the charge of the electron, ci and zi are the bulk
concentration and valence of ion specie i, respectively, and
�=1 /kBT, where kB is the Boltzmann constant, and T the
temperature. �ion�r� is an indicator function for the presence
of absence of ions, equal to 1 if ions can be present at posi-
tion r, and 0 otherwise �usually �ion�r� is set equal to ��r�
though sometimes an ion-excluded zone is defined in the
neighborhood of the solvent, the so-called Stern zone�. Note

that in this formulation, ions are not represented explicitly.
Instead, the ions are considered to be in thermal equilibrium
with each other and relatively free to move. Thus they obey
Boltzmann statistics and their number density follows a
Boltzmann distribution. Replacing Eq. �4� into Eq. �3� we
obtain the Poisson–Boltzmann equation in its standard form:

� · ���0 + ��r��0�� � ��r�� + �ion�r�4�ec�
i=1

m

cizie
−�ziec��r�

= − 4�ec�
i=1

M

qi��r − ri� . �5�

B. Size modified Poisson–Boltzmann equation

The Poisson–Boltzmann equation has two limitations
with respect to how it treats ion atmosphere: it does not
consider ion size explicitly, nor does it account for ion-ion
correlations. Traditional Poisson–Boltzmann solvers define
an ion-excluded layer around the solute, the so-called Stern
layer, as a first-order approximation of the effects of ion size
on ion-protein interactions. The Stern layer however cannot
capture the effects of mixture of mobile ions of different
sizes, nor does it take into account interactions between the
ions. Differential ion size however does play a role in elec-
trostatics interactions; this was recently shown for DNA in
solutions containing competing cations.35 Coalson and
co-workers36–38 as well as Orland and co-workers25 devel-
oped an attractive solution to the problem of the influence of
ion size using a lattice field theory. This solution was re-
cently generalized by Chu et al.26 to deal with ions with two
different sizes; it is referred to as the SMPB theory which we
describe below. Note that Chu et al.26 have shown that the
SMPB theory accurately describes the effect of size on ion
binding on DNA for monovalent ions but not for divalent
ions. The relative failure for divalent ions is most likely re-
lated to the fact that SMPB does not account for ion-ion
correlation �except through their steric interactions�; there is
still a need for further theoretical developments to treat ions
correctly within the PB formalism.

In the SMPB model, the hard core repulsion between
solvated ions is approximated with an excluded term in the
free energy density of a lattice gas model of the ionic solu-
tion. The domain around the charged biomolecule is treated
as a lattice �see Fig. 1�. This three dimensional lattice con-
tains N uniformly sized cuboids, of size a3, with a being the
lattice spacing. Let us suppose that the solution contains Nion

species of ions, with ion i having a valence zi and a bulk
concentration ci. Note that electroneutrality imposes that
�i=1

Nionzici=0. We assume that ion specie one corresponds to
the largest ion, i.e., its volume is a3, where a is the lattice
spacing. The volume of ion i is set to a3 /ki, where ki is a
dimensionless parameter, for all i in 2 , . . . ,Nion. The lattice
site at position r contains at most one ion or type 1 and at
most ki ions of type i. Enumerating all possible configura-
tions of occupancy of this site, for integral values ki, the
grand canonical partition function is
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Z�r� = 	1e−�z1ec��r� + �
i=2

Nion ��
j=0

ki �ki

j
��	ie

−�ziec��r�� j�
= 	1e−�z1ec��r� + �

i=2

Nion

�1 + 	ie
−�ziec��r��ki, �6�

where 	i=e−
i/kBT is the fugacity of ion type i and 
i its
chemical potential. 
i and 	i are independent of the electro-
statics potential; they are derived by considering the mean
number of each ion type in the bulk part of the solvent,

NAcia
3 =

1

�
�� ln�Z�

�
i
�

�=0
. �7�

There are as many equations of type 7 as there are types of
ions. Note that in the case of ions of two different sizes, the
corresponding system of equation can be solved
analytically.26 In the generic case, however, the system is
solved numerically.

The free energy functional for the whole lattice includes
the electrostatic energy, the energy of the fixed charges, and
the logarithm of the partition function Z defined in Eq. �6�,

�F = −
�

2
� dr��0 + ��r��0��	���r�	2 + �� dr� f�r���r�

−
1

a3� dr�ion�r�ln�Z�r�� . �8�

Setting �F /��=0, we find that � must satisfy the equation

� · ���0 + ��r��0�� � ��r�� + �ion�r�
4�ec

Z�r�

�
	2z2e−�z2ec��r� + �
i=2

Nion

�kizi	ie
−�ziec��r�

��1 + 	ie
−�ziec��r��ki−1�� = − 4�ec�

i=1

Nion

qi��r − ri� .

�9�

This is the SMPB equation. Note that although Eq. �9� was
derived for integral values of ki, the continuity of the grand
partition function allows us to choose any real values of ki.

C. Dipolar Poisson–Boltzmann equation

The PB model assumes a linear dielectric response of the
solvent to the presence of the charges of the solute, leading
to a continuum dielectric with a dielectric susceptibility �
that is independent of the electrostatic potential; this assump-
tion however does not take into account the strong, nonuni-
form dielectric response of water molecules around
charges.39–42 We recently proposed a simple formalism based
on statistical thermodynamics that allows us to circumvent
this limitation.29,30,43 In this formalism, we represent the sol-
vent as an assembly of freely orientable dipoles of constant
modulus p0 and bulk concentration cdip. These dipoles as
well as all counterions are distributed on a lattice surround-
ing the solutes to simulate the excluded volume effects �see
Fig. 2�. Note that this formalism is a generalization of the
Langevin dipoles-protein dipoles model advocated by
Warshel and co-workers,44,45 with the key additional feature
that the dipoles are now allowed to have a variable density at
each lattice site.

Each site in this lattice can contain at most one dipole or
one ion. If it is empty, its energy is 0. The energy of one
dipole of constant magnitude p0 at position r is obtained as
the Boltzmann-weighted average of the interaction −p0 ·E
over all orientations of p0, where E is the local electric field.
The energy of one ion of charge ziec at the same position is
ziec��r�. Following the formalism introduced by Borukhov
et al.,25 the grand canonical partition function Z�r� for the
lattice site at position r is then given by, after enumeration of
its possible occupancies �empty, one dipole, or one ion�,

Z�r� = 1 + 	dip��r�
sinh�u�r��

u�r�
+ �ion�r��

i=1

Nion

	ie
−�ziec��r�,

�10�

where Nion is the number of ion types, 	dip and 	i are the
fugacities of the dipoles and ions, respectively, and

a

a

Solute

zN

zi

zj

FIG. 1. Illustration of the lattice gas model for the SMPB equation. Each
lattice cell may be empty or occupied by one or several ions of the same
type. The lattice size a sets the size of the species with the largest radius, zN,
while the parameters ki and kj �in this example ki=4 and kj =2� set the
relative sizes of the smaller ions with valence zi and zj, respectively.

p0 p0

p0

a

a

p0

p0

p0

Solute

zi

zj

FIG. 2. Illustration of the lattice gas model for the DPBL equation. Each
lattice cell may be empty, occupied by one ion or occupied by a water dipole
of constant magnitude p0 but variable orientation. This example shows mul-
tiple sites occupied by water dipoles and two sites occupied by ions with
valence zi and zj. The lattice size a sets the size of the ions and dipoles.
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u�r�=�p0	���r�	. The fugacities are derived from
the bulk concentration of the dipoles and ions:
	dip= �NAcdipa

3� / �1−NA�i=1
Nioncia

3−NAcdipa
3� and 	i

= �NAcia
3� / �1−NA�i=1

Nioncia
3−NAcdipa

3�.
Using the same approach described above for the SMPB

equation, the free energy functional for the whole lattice is
given by

�F = −
�

2
� dr�0	���r�	2 + �� dr� f�r���r�

−
1

a3� dr ln�Z�r�� . �11�

Setting �F /��=0, we find that � must satisfy the equation

� · ���0 + ��r��0��r,��r��� � ��

+ �ion�r�
4�ec

a3Z�r� �i=1

Nion

	icizie
−�ziec��r�

= − 4�ec�
i=1

M

qi��r − ri� , �12�

where ��r ,��r�� is the dielectric susceptibility given by

��r,��r�� =
�p0

2	dipF1�u�r��
a3�0Z�r�

, �13�

with F1�x�= �sinh�x� /x2���1 / tanh�x��− �1 /x��
= �sinh�x� /x2�L�x� where L�x� is the Langevin function. This
is the DPBL equation.

III. NUMERICAL SOLUTIONS TO THE DIPOLAR
POISSON–BOLTZMANN–LANGEVIN EQUATION

The general form of the family of Poisson–Boltzmann-
like equations described in the previous section is

� · ���r,��r�� � ��r�� + H�r,��r�� = f�r� . �14�

The function � describes the dielectric permittivity at any
position,

��r,��r�� = �0 + ��r��0��r,��r�� . �15�

In the special cases of the PB and SMPB equations �Eqs. �5�
and �9�, respectively�, � is constant and � only depends on
the position r. In the more general case of the DPBL Eq.
�12�, � is given by Eq. �13� and � depends nonlinearly on the
position r, on the electrostatic potential ��r�, and on the
magnitude u�r�= 	���r�	 of the electric field at position r.
The function H is the Helmholtz source term that account for
the ionic atmosphere in the solvent surrounding the solute. H
is a nonlinear function of r and ��r� for the PB and SMPB
equations, and of r, ��r�, and u�r� for the DPBL equation.
The fixed charges of the solutes have been denoted as the
generic function f . The infinite domain of Eq. �14� is usually
truncated to a finite domain � with boundary ��, which
requires knowledge of the boundary conditions on �� that
are provided either from a known analytical solution or from
an approximation.

Several programs that solve either the linearized version
of PBE, or directly the nonlinear PBE, are available with a

variety of scientific computing techniques �see Refs. 12 and
13 for recent reviews�. To our knowledge, all these programs
have been tailored to the PB equation, i.e., they assume for
example that the coefficient function � only depends on po-
sition. While these methods can easily be adapted to solve
the SMPB equation �recent versions of APBS for
example contains such a functionality, see http://
www.poissonboltzmann.org/apbs�, they cannot be used with-
out significant modifications to solve the more general sec-
ond order PDE given by Eq. �14�. In the following, we
describe three numerical methods for solving the DPBL
equation, which generalize the methods proposed by Holst
and Saied16 for solving the nonlinear PB equation. While
these methods are general enough that they can solve all
three types of equations described above, we will focus on
their application to the DPBL equation.

A. Discrete DPBL equation: A nonlinear system
of equations

The DPBL model expresses the electrostatic potential �
in the domain � in which the solutes of interest are
surrounded by solvent that may contain electrolytes as the
solution of a second order differential equation given by
Eq. �12�. As this PDE cannot be solved analytically �except
maybe for simple cases such a single solute with spherical or
cylindrical geometry�, it is discretized on a mesh. Appendix
A reviews this process using the box method on a Cartesian,
nonuniform three dimensional �3D� mesh that is relevant to
the DPBL equation; it leads to an algebraic system of non-
linear equations,

F��� = A���� + H��� − g = 0, �16�

where F���= �F1��� , . . . ,FN����T, �= ��1 , . . . ,�N�T, A is
the stiffness matrix whose coefficients are nonlinear func-
tions of �, and N is the number of interior vertices in the
mesh �see Appendix A�. The different functions Fi are de-
fined in Eq. �A8�.

B. Inexact Newton methods for solving the discrete
DPBL equations

Newton’s methods are probably the most popular meth-
ods for solving nonlinear system of equations. These are it-
erative methods that are derived from classical Newton’s
method for one dimensional problem. Assume we know that
� is “close” to the true solution �min of the nonlinear system
of equation F���=0. We can estimate the behavior of F in
the neighborhood of � using a first-order Taylor expansion,

F�� + h� = F��� + F����h + O�h2� , �17�

where F� is the Jacobian of F �i.e., the matrix of partial
derivatives of F�. By neglecting terms of order h2 and by
setting F��+h�=0, we obtain a set of linear equations for
the correction vector h that moves the function F closer to
zero, namely, F����h=−F���. This system is also referred
to as the Newton or Jacobian system. The correction h �also
referred to as Newton direction� is then added to the approxi-
mate solution � and the process is iterated until conver-
gence. Each Newton step is then defined as follows:
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F���n�hn = − F��n� ,

�18�
�n+1 = �n + hn.

When the number of equations and variables is large, the
Newton linear system of equations defined in Eq. �18� is
solved iteratively. Finding the exact �or at least accurate�
solution of this system may however be very time consum-
ing. The inexact Newton methods were designed to circum-
vent this problem �for review, see Refs. 46 and 47�. They are
based on the rationale that it is often preferable to compute
only an approximate �inexact� Newton direction; the number
of Newton iterations may then be higher, but this is usually
compensated by the fact that the amount of work per itera-
tion is smaller. There are two types of inexact Newton meth-
ods, the truncated methods that use the exact Jacobian but
only solve the Newton system approximately with loose
stopping criteria, and the quasi-Newton methods that use an
approximate Jacobian. The latter approach is popular for
cases for which computing the exact Jacobian is costly. Note
that these two options can be combined.

A key element to the success of inexact Newton methods
is the definition of the level of accuracy that is required to
maintain rapid convergence of the overall Newton approach.
Holst and Saied derived conditions that this level of accuracy
must satisfy to guarantee global and superlinear convergence
of the Newton method applied to the PB equation.16 It
leads to the following algorithm �corresponding to their
algorithm 7�:16

Algorithm 1 Truncated Newton method for solving the
PB equation �from Holst and Saied �16��

Initialize �0=0
for n=0, . . . until convergence do

�1� Compute exact Jacobian matrix F���n�
�2� Solve iteratively the Jacobian system F���n�hn=−F��n�+rn until:

�a� �rn�
 �F��n��
and
�b� �rn��C�F��n��p+1 , C�0, p�0

�3� Update: �n+1=�n+�nhn

�4� Check for convergence: if
�F��n+1��

�F��0��

TOL, stop

end for

In this algorithm condition �a� in step �2� is the necessary
and sufficient condition for the truncated direction hn to be a
descent direction,16 while condition �b� ensures local Q-order
�1+ p� �i.e., superlinear� convergence.46 The damping param-
eter �n is obtained by solving the equation �F��n+�nhn��
� �F��n�� using line search. The existence of such an �n is
guaranteed as long as hn is a descent direction.16,48

We derived three extensions of this algorithm for the
purpose of solving the DPBL equation:

• Variant 1: Newton27. Newton27 is a direct application
of algorithm 1 to the DPBL equation. It uses the exact
Jacobian matrix that can be computed analytically �see
Appendix B�. As such, it is guaranteed to be globally
convergent, with superlinear behavior. It is named New-

ton27 as each row of the exact Jacobian contains 27
nonzero elements.

• Variant 2: Newton7. Newton7 implements a quasitrun-
cated Newton method to solve the DPBL equation. It
varies from algorithm 1 in that, in step 1, an approxi-
mate Jacobian is computed and subsequently used in
step 2. This approximate Jacobian only includes the
stiffness matrix of the nonlinear system of equation
�i.e., the matrix of coefficients �� and ignores its deriva-
tives with respect to the electrostatic potential �see Ap-
pendix B�. This approximate Jacobian is much faster to
compute and has a much smaller memory footprint
�O�4N� compared to O�14N� for the exact Jacobian�,
which is significant for large meshes. As it is an ap-
proximation, however, conditions �a� and �b� of step 2
do not guarantee any more global convergence and lo-
cal superlinear convergence. It is named Newton7 as
each row of the approximate Jacobian contains seven
nonzero elements.

• Variant 3: NewtonSC. This variant uses a self-consistent
approach. The idea is to apply algorithm 1 directly on a
set of PB like equations that converge toward the DPBL
equation. This leads to the following algorithm:

Algorithm 2 Self-Consistent Newton method for solving
the DPBL equation

Initialize �0=0
for n=0, . . . until convergence do

�1� Set �n�r�=��r ,�n�
�2� Set Zn�r�=Z�r ,�n�

Define Hn�r ,��=�ion�r�4�ec / a3Zn�r� �
i=1

Nion

	icizie
−�ziec��r�

�3� Solve the PB-like PDE:
� · ��n�r����r��+Hn�r ,��r��= f�r�
for �, using algorithm 1

�4� Update �:
�n+1=	�+ �1−	��n

�5� Check for convergence: if
�F��n+1��

�F��0��

TOL, stop

end for

Step �1� of this algorithm sets the diffusion coefficients
�n independent of the electrostatic potential. Similarly, step
�2� defines a Helmholtz-like term Hn whose value at position
r only depends on the value of the electrostatic potential at
that position. The PDE in step �3� is then a PB equation that
can be solved directly by algorithm 1 without modification.
The update in step �4� is a typical trick for self-consistent
methods that remove oscillations in the convergence behav-
ior.

Similar to the reasoning behind inexact Newton meth-
ods, there is no need to solve the PDE in step �3� exactly. As
its solution vector � is used as a correction for the solution
of the DPBL equation �step 4�, it is appropriate to use an
approximation; the number of total iterations may then be
higher, but this is compensated by the fact that the amount of
work per iteration is smaller. The algorithm is then fully
defined by the number nN of Newton iterations used for solv-
ing the PDE in step �3� and the damping factor 	 in step �4�.
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1. Solving the Jacobian systems

We finish this section by looking at the core element of
any Newton methods, i.e., how to solve the Newton or Jaco-
bian system. There are many direct methods available for
solving linear systems of the form J�= f such as Gauss, LU
decomposition, Jacobi, etc. These methods however becomes
impractical as the size of the system �number N of un-
knowns� increases, as their computational complexities and
memory requirements are usually O�N3�. Such systems are
usually solved using methods that iteratively improve an es-
timate w of the solution. There are two measures of w as an
approximation of �. One is the error, defined as

� = w + e ,

and the second is the residual r that measures how well w
satisfies the linear system,

r = f − Jw .

From these two definitions we derive a key relationship be-
tween the error and the residual,

Je = r . �19�

Iterative methods for solving linear systems of equations
therefore proceed as follows: for a given estimate w of the
solution, compute the residual r, find the corresponding error
e by solving Je=r, update accordingly w, and repeat until
either the norm of the residual or of the error becomes small
enough. Among those, the Jacobi techniques and the Gauss–
Seidel technique are well adapted to solving systems coming
from the discretization of PDEs.49 These types of solvers
quickly reduce local �high frequency� errors in the solution,
but perform poorly however on global �or low frequency�
errors in the solution. The key to the success of multilevel
methods is to notice that a low frequency phenomenon on a
fine mesh can be transformed into a high frequency phenom-
enon on a coarser mesh. The idea is to first run a few itera-
tions of the solver on the fine mesh to remove high frequency
errors �the so-called smoothing process�, to restrict the cor-
responding residual on a coarser grid, to solve for the cor-
rection on this coarser grid using the same smoothing solver,
and finally to interpolate this correction back to the fine mesh
and apply it to the current estimate. This strategy was first
implemented by Holst and Saied15 to solve the linearized
Poisson–Boltzmann equation and later adapted as a precon-
ditioner for the Newton method for solving the nonlinear
Poisson–Boltzmann.16 We rely on their implementation in
their software package MG.

IV. COMPUTATIONAL CONSIDERATIONS

AQUASOL is a generic package written in FORTRAN de-
signed to solve the dipolar Poisson–Boltzmann equation and
accessorily the Poisson–Boltzmann and SMPB equations, as
those can be considered as special cases of the former. AQUA-

SOL implements the three variants Newton27, Newton7, and
NewtonSC of the inexact Newton method originally devel-
oped by Holst and Saied16 to solve the nonlinear system of
equations that results from the discretization of the DPBL
equation on a Cartesian nonuniform mesh.

AQUASOL is mostly inspired from and in fact uses many
routines from the FORTRAN package MG developed by
Michael Holst and freely available at http://www.fetk.org.
Note that there is a more recent version of MG, named PMG,
written in C/C�� and that is available at the same site. MG
is also available as part of APBS �Ref. 33 see also http://
www.poissonboltzmann.org/apbs�, a popular package for
solving the PB equation on biomolecular systems.

In this section, we describe the particulars of AQUASOL,
focusing on the parts that were added to MG, as well as the
modifications required by each of the three solvers that were
implemented. Note that AQUASOL differs significantly from
AQUA, a software package available in APBS that is only an
optimized version of MG.

A. Setting up the mesh

The coordinates of the atoms of the solute�s� as well as
their vdW radii and partial charges are read from a single file
under the PQR format used by APBS. For large biomolecules,
PQR files can be readily generated from the correspondent
PDB50 files using the service PDB2PQR.51 The PQR file may
contain several molecules.

AQUASOL starts by building a regular mesh around the
solutes �note that the solvers included in AQUASOL can
handle both uniform and nonuniform meshes�. The mesh is
positioned such that its center matches with the center of the
solute. The user provides the number of points and the mesh
spacing in each direction. When solving DPBL equations,
AQUASOL checks that there is at least a distance of 2lB �lB

being the Bjerrum length in water at 300 K, i.e., approxi-
mately 7 Å� from any point on the surface of the solute to the
closest face of the mesh; if this condition is not met, the
mesh size is adjusted accordingly.

AQUASOL offers two options for representing the inter-
face between the interior and exterior of the solutes, namely,
their accessible surface or their molecular surface. The ac-
cessible surface is obtained as the envelope of the hydrated
spheres representing the atoms, whose radii are the vdW ra-
dii increased by Rprobe=1.4 Å, where Rprobe is the radius of a
water molecule.52 We map the accessible surface on the regu-
lar mesh as follows. All mesh vertices are initially labeled as
0. The procedure then loops over each atom and labels as 1
each mesh point that is interior to its hydrated sphere. This
method is not optimal as it will visit some mesh vertices
several times but is fast enough for this application. The
molecular surface is the lower envelope obtained by rolling a
water probe of radius Rprobe on the vdW surface of the mol-
ecule. It is computed as follows. First, mesh vertices are
labeled with 0 or 1 based on the accessible surface as de-
scribed above. AQUASOL then loops over each atom, placing
uniformly points on the surface of its hydrated sphere at a
density of 10 points /Å2. It uses the rapid method of Le
Grand and Merz53 based on Boolean logic to select those that
are accessible; any mesh vertex with a label of 1 that is
within Rprobe of one of these accessible points is then re-
verted to a label of 0. At the end of the procedure, all points
whose label stayed as 1 are inside the molecular surface.
AQUASOL repeats the calculation of the solute interface four
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times: first for the regular mesh and then for the three meshes
whose generic points are 
i+1 /2, j ,k�, 
i , j+1 /2,k�, and

i , j ,k+1 /2�, respectively. These four maps are stored for
subsequent use in computing the scalar fields � and �ion that
are needed for computing the stiffness matrix A �see
Appendix A�.

B. Computing the charge densities on all vertices
of the mesh

Classical treatment of electrostatics assigns a point
charge to each atom, usually located at the center of the
sphere representing this atom. The mesh considered in AQUA-

SOL is Cartesian; as such, the centers of the atoms of the
solute�s� will most likely not coincide with its vertices. One
step in setting up the PDE solver described above is there-
fore to project the atomic charges on the vertices of the
mesh. The most common approach to perform this task is
trilinear interpolation. A point charge is positioned in the
mesh by defining the cell to which it belongs. The charge is
then distributed over all eight vertices of this cell, with the
fraction of the charge on each vertex given by a trilinear
function based on the distance between the vertex and the
actual charge. Bruccoleri proposed an alternate method for
computing the charge density on the mesh, the sphere charg-
ing model.54 This method assumes a spherical distribution of
charges. Given the position of an atom relative to the mesh,
we identify all mesh points that fall within the van der Waals
radius of that atom. If there are eight or more such points,
then the atom’s charge is evenly divided and added to the
charges assigned to these points. If there are less than eight
points, then the trilinear interpolation is used. Both methods
have been implemented in AQUASOL, with the trilinear inter-
polation method used by default. Note that both approaches
introduce nonphysical energies coming from the interactions
between the partial charges representing an actual point
charge. These energies can be removed by subtracting poten-
tials calculated in vacuo.

C. Implementing the three variants of the Newton
method

MG includes an implementation of the inexact Newton
method given in algorithm 1 that is specific to the PB equa-
tion. Specifically, it uses the fact that the matrix of diffusion
coefficients A is independent of the electrostatic potential.
The Jacobian matrix at each iteration can then be computed
efficiently, as it only requires the �low cost� computation of
the derivatives of the Helmholtz term H.

The two variants Newton27 and Newton7 designed to
solve the DPBL equation cannot use the same simplification.
Newton27 uses the exact Jacobian, computed from the ana-
lytical derivatives of the Jacobian system given in Appendix
B, while Newton7 uses an approximate Jacobian, also given
in Appendix B. Both the exact and approximate Jacobian
matrices depend on the electrostatic potential. These two
variants therefore require that the full Jacobian matrix be
recomputed at each step �instead of only being updated�.
Consequently, AQUASOL includes a modified version of MG

that accounts for this difference, as well as all routines re-

quired to compute the exact and approximate Jacobians
given in Appendix B.

The third variant NewtonSC was much easier to imple-
ment and required no modification of the Newton solver
implemented in MG. It is based on algorithm 2 whose imple-
mentation only requires routines for computing the dielectric
permittivity maps �step 2� and Helmholtz term �step 3� at
each iteration; it solves the PB-like equation by a direct call
to the driver for the inexact Newton solver available in MG.
As such, NewtonSC is very attractive as it can be imple-
mented with minimal programming cost in any Poisson–
Boltzmann solver currently available.

D. Solving the Jacobian system

AQUASOL uses the linear multilevel solver developed by
Holst and Saied15 and available in MG with the following
features:

• Smoothing. The red-black Gauss–Seidel algorithm is
used for pre- and postsmoothing. The number of itera-
tions for both smoothing operations is set to 2 on the
finest mesh and 2 on the coarse meshes. Note that the
Gauss–Seidel algorithm is guaranteed to converge if the
matrix is either diagonally dominant, or symmetric and
�semi-� positive definite. While this is the case for Jaco-
bian matrix corresponding to the PB and SMPB equa-
tions, as well as for the approximate Jacobian matrix
used by the variant Newton7 for the DPBL equation, it
is not guaranteed to be true for the exact Jacobian of
DPBL used in the variant Newton27. The following
strategy was consequently implemented in Newton27 to
circumvent possible problems of convergence. The mul-
tigrid linear solver starts with the exact Jacobian matrix;
if the residual at the end of its first iteration is larger
than the initial residual, the procedure is deemed to di-
verge and the solver switches to the inexact, 7-stencil
Jacobian. While this safeguard option was not necessary
on most of the cases tested so far, it prevented diver-
gence in a few difficult cases �see next section�.

• Restriction and interpolation. Special care must be
taken for both operations in the presence of discontinui-
ties in the coefficients of the PDE; we have conse-
quently used the 3D Galerkin coarsening procedure of
Holst,32 directly from the MG package.

E. Availability of AQUASOL

A full version of AQUASOL �including source code and
binaries for Linux� is available upon request to P. Koehl
�koehl@cs.ucdavis.edu� under a lesser GPL open source li-
cense.

V. RESULTS AND DISCUSSION

We evaluate and compare the three solvers implemented
in AQUASOL for solving the DPBL equations on two test
cases that are typical of applications in computational biol-
ogy, namely, the analyses of the electrostatics component of
the solvation of a protein and a DNA molecule. First, The
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C-terminal fragment of the L7/L12 ribosomal protein �PDB
code 1CTF� was chosen, as it is a pet protein in many com-
putational biology studies. Second, the B-DNA Dickerson–
Drew dodecamer �PDB code 1BNA� was chosen as an ex-
ample of the family of highly charged nucleic acids.

The relative pros and cons of the PB and DPBL equa-
tions have been described in detail;12,13,25,26,29–31,43,55 here we
focus on the properties of the PDE solvers, namely, conver-
gence rate, computing time, and memory requirements. As
the emphasis of the paper is on solving the DPBL equation,
we show first that the increased complexity of the equation is
a small price to pay compared to the wealth of information
derived from its solution, in particular the possibility to look
at hydration.

A. Protein and DNA hydration

In the DPBL formalism, the solvent is represented as an
assembly of freely orientable dipoles of constant modulus p0

and fixed bulk concentration cdip. The local concentration of
these dipoles however vary and is defined by the correspond-
ing local electric field E. The solution of the DPBL equation
provides the electrostatic potential at each position in the
mesh; the local dipole �water� density is then defined by

�dip�r� =
1

a3

	dip sinh u

uZ�r�
, �20�

where u=�p0�E�r�� and Z�r� is given by Eq. �10�. Once the
solvent density map is known, it can be used to place a
collection of water molecules around the solute molecule.
First we sort the �dip�r� values obtained from Eq. �20� in
descending order. Water molecules are placed by walking
down the list until the desired number of water molecules is
reached; each time a water molecule is placed, we eliminate
points within 1.5 A of this position from the list. We use the
local electrostatic field to orient the dipole. As an illustration
of the usefulness of the DPBL equation, we give two ex-
amples where the knowledge of the water density profile
clearly correlates with known molecular properties.

The first example is the C-terminal domain of the L7/
L12 ribosomal protein from Escherichia coli, whose struc-
ture was derived by x-ray crystallography at 1.7 Å resolution
�PDB code 1CTF�. This protein is known to form a ho-
modimer in solution.56 We solved for the electrostatic poten-
tial around the assymetric unit of 1CTF using the DPBL
equation. The protein was immerged in a 65�65�65 regu-
lar grid, with 1.1 Å spacing in each direction. The lattice size
for the dipoles and ions was set to 2.8 Å �i.e., the diameter of
a water molecule�, and p0 was set to 3.0 D, its accepted value
in liquid phase.57 Monovalent counterions at 0.1M were
added. We derived the solvent density map around the asym-
metric unit of 1CTF and placed 200 water molecules based
on this density map. These water molecules are organized
relatively uniformly around the protein, except for one re-
gion with a strong desolvation; this region is found to match
with the dimerization zone for 1CTF, derived from the struc-
ture of the dimer �see Fig. 3�.

The second example is the so-called Dickerson–Drew
DNA dodecamer; its crystal structure provided the first de-

tailed picture of a right-handed DNA duplex.58,59 This struc-
ture and those of related dodecamers served as bases to study
the interdependence of base sequence and structure, DNA
backbone flexibility, solvation, bending and bendability, drug
binding, and the effects of packing forces and crystallization
conditions on DNA structure. Of particular interest to us is
the study of the hydration of the dodecamer. Based on 72
bound water molecules observed in the electron density
maps, Drew and Dickerson60 identified three different hydra-
tion patterns in B-DNA:

A) The Electrostatic Potential B) Placing water molecules

C) Desolvation and Binding
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FIG. 3. Analyzing protein hydration: application to 1CTF. 1CTF is a small
globular �+� protein shown in cartoon mode �green�. Its electrostatic po-
tential was computed from the DPBL equation using a mesh of size 65
�65�65 with uniform spacing of 1.1 Å in each direction. �a� Visualizing
the potential. We show two isosurfaces at +1kBT /ec and −1kBT /ec of the
electrostatic potential derived as solution of the DPBL equation on the mesh.
�b� Adding water molecules. The electrostatic potential map is used to derive
the water dipole density map �see text for details�, which is subsequently
used to place water molecules around the proteins. The top 200 water mol-
ecules corresponding to the highest water density points are represented in
CPK mode. These molecules are positioned relatively uniformly around the
protein, except for one patch. Interestingly, this patch corresponds to the
dimerization zone for 1CTF. This is illustrated by coloring in blue all resi-
dues whose accessible surface area is reduced by more than 10% between
the monomer and the dimer �the structure of the monomer is taken from the
PDB file 1CTF�; the structure of the dimer was downloaded from the PQS
server �http://www.ebi.ac.uk/pdbe/pqs/�. Note that the same procedure can
be used to place ions around the solute. They are omitted here, for sake of
clarity. �c� Desolvation and binding. We compare the difference in accessible
surface area between the monomer alone and the monomer as part of the
dimer �solid line�, with the accessible surface area of the 1CTF monomer in
the presence of the top 200 water molecules �dashed line�. The two curves
correlate well. Panels �a� and �b� of this figure were generated using pymol
�http://www.pymol.org�.
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• Water molecules that hydrate the oxygens of the back-
bone phosphate.

• A “spine of hydration” deep in the minor groove of the
DNA duplex.

• Hydration in the major groove is confined to water
bound to exposed N and O of the bases.

We solved for the electrostatic potential around the
Dickerson–Drew DNA dodecamer �PDB structure 1BNA�
using the DPBL equation. The DNA was placed in a 65
�65�65 regular grid, with 1.2 Å spacing in each direction.
The lattice size for the dipoles and ions was set to 2.8 Å �i.e.,
the diameter of a water molecule�, and p0 was set to 3.0 D,
its accepted value in liquid phase.57 Monovalent counterions
at 0.1M were added. We derived the solvent density map
around the asymmetric unit of 1BNA and placed 72 water
molecules based on this density map, as a parallel to Drew
and Dickerson studies. The positions of these water mol-
ecules match remarkably well with the experimental obser-
vations �see Fig. 4�.

B. Solving the DPBL equation: Numerical comparison
of the three Newton variants implemented in
AQUASOL

The three nonlinear Newton variants presented above are
investigated numerically when applied to the DPBL equation
on the two test sets described above, i.e., the protein mol-
ecule 1CTF and the DNA molecule 1BNA. A first set of

comparison is performed on Cartesian uniform meshes of
size 257�257�257. All calculations use a lattice size for
the dipoles and ions of 2.8 Å �i.e., the diameter of a water
molecule�, with p0, the intensity of the dipole moment set to
3.0 D. Monovalent counterions with an ionic strength of
0.1M are added. The interface between the solute and the
solvent is taken to be either the molecular surface or the
solvent accessible surface. Computing times shown in the
plots include preprocessing time. The electrostatic potential
is initialized at zero for all methods. The same stopping cri-
teria is used �steps �4� and �5� of algorithms 1 and 2, respec-
tively�, with TOL set to 1.0e−6. While this is not the most
appropriate stopping criterion for nonlinear iterations, it al-
lows us to compare the method as they produce solutions
with similar qualities. All computations are performed on an
Intel Xeon 5560 2.8 GHz eight-core processor with 16 Gbyte
of memory; the program is compiled without any parallel
option. Results are presented in Fig. 5.

The convergence of our solvers is sensitive to the defi-
nition of the surface of the molecule that serves as an inter-
face: calculations based on the accessible surface are usually
faster than those based on the molecular surface �red versus
black curves on Fig. 5�. This is expected for two reasons.
First, the molecular surface may include self-intersection that
leads to severe singularities; such singularities may result in
convergence problem. Second, and more importantly, the ac-
cessible surface area is an expanded surface of the molecule.
As such, it defines a larger solvent-excluded region around
the charges than can be seen as a pseudo-Stern layer for the
water dipole, thereby reducing the effect of steric interac-

A) The Electrostatic Potential B) Placing water molecules

FIG. 4. DNA solvation. The Drew–Dickerson dodecamer adopts a right
handed double helix structure �green�. Its electrostatic potential was com-
puted as the solution of the DPBL equation on a mesh of size 65�65
�65 with uniform spacing of 1.2 Å in each direction. �a� Visualizing the
potential. We show two isosurfaces at +1kBT /ec and −3kBT /ec of the elec-
trostatic potential derived as solution of the DPBL equation on the mesh. �b�
DNA hydration. The electrostatic potential map is used to derive the water
dipole density map �see text for details�, which is subsequently used to place
water molecules around the proteins. The top 72 water molecules corre-
sponding to the highest water density points are represented in CPK mode.
We distinguish three types of water molecules: those that bind nonspecifi-
cally to the oxygens of the phosphate �shown in red�, those that form a spine
of hydration that sits at the bottom of the minor groove �shown in blue�, and
those found in the major groove �shown in magenta�. Similar to the protein
case �see Fig. 3, ions are omitted for sake of clarity�. This figure was gen-
erated using pymol �http://www.pymol.org�.
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FIG. 5. Comparison of Newton7, Newton27, and NewtonSC for solving the
DPBL equation. The relative residual computed as �F��n�� / �F��0�� is plot-
ted vs the number of iterations �panels �a� and �c�� as well as vs the com-
puting time, given in seconds �panels �b� and �d��. Panels �a� and �b� corre-
spond to the protein test case, while panels �c� and �d� relate to the DNA test
case. All calculations are performed on a 257�257�257 Cartesian grid.
The interface between the solute and the solvent is set to either the acces-
sible surface �red curves� or the molecular surface of the molecule �black
curves�.
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tions between the dipole and the solute. Note that the DPBL
formalism is designed to take into account the steric interac-
tions between the solvent dipoles and between these dipoles
and the ions, but not between the dipoles or the ions and the
solute.

The convergence behavior observed for Newton27 was
fully predictable; it is a direct application of the truncated
Newton method and as such is expected to converge globally
and superlinearly. Holst and Saied16 gave formal proofs that
justify these two properties; their proofs, while originally
developed for the PB equation, make no assumptions on the
nature of the diffusion coefficients and therefore apply di-
rectly to the DPBL equation. There is however a significant
difference between the PB and DPBL equations that may
adversely affect the convergence of Newton27 for the latter.
The global convergence of algorithm 1 is guaranteed if we
can solve approximately the Jacobian system F���n�h
=−F��n� at any iteration n with a residual rn that satisfies
�rn�
 �F��n��. Michael Holst has shown that for elliptic
equations with smooth coefficients a red/black Gauss–Seidel
algorithm or a Jacobi algorithm combined with a multigrid
technique solves this problem efficiently.32 In the more com-
plicated case however of the PB equation applied on large
biomolecules with interface problem at the molecular surface
boundary, this simple procedure may fail. Special care is
needed for the coarsening steps of the multigrid techniques,
and Holst designed a Galerkin coarsening procedure that re-
stores good convergence property for solving the Jacobian
system. The exact Jacobian matrix for the DPBL equation is
more complicated and more prone to discontinuities at the
molecular surface interface. In the DNA case tested above,
the Gauss–Seidel red-black algorithm coupled with a multi-
grid technique that uses the Galerkin procedure diverge dur-
ing the second and third Newton iterations; using the har-
monic averaging proposed by Holst and Saied15 did not solve
the problem. The solution we implemented in Newton27 for
the DPBL equation is pragmatic; if at any Newton step of
algorithm 1 the linear solver fails on the exact Jacobian, we
temporarily switch to the approximate Jacobian to derive an
approximate descent direction. Numerous numerical experi-
ments �those presented here and others� indicate that this
restores good convergence for the difficult cases encoun-
tered. Ultimately, we need a more robust iterative solver for
the exact Jacobian system derived from the DPBL equation.
We did not pursue this direction as the two other variants
implemented in AQUASOL proved to be robust and more ef-
ficient than Newton27.

Newton7 is the quasitruncated Newton version of algo-
rithm 1 applied to the DPBL equation. While it is not theo-
retically guaranteed to converge, the numerical experiments
shown in Fig. 5 as well as extensive testing on other test
cases not shown here indicate that it does, albeit not always
globally, especially at the initial steps when the current solu-
tion is usually a poor estimate. It requires more iterations
than Newton27 to reach convergence, but its iterations are
faster to compute.

NewtonSC is the most efficient of the three Newton vari-
ants implemented in AQUASOL. For the examples shown in
Fig. 5, we used nN=1 and 	=1. The convergence rate for

NewtonSC is very similar to the one observed for Newton7;
the former is however consistently faster than both New-
ton27 and Newton7. The speedup compared to Newton27 is
related to the fact that it does not compute the exact Jacobian
associated with the DPBL equation. It is faster than Newton7
as it makes full use of the PBE specific code implemented in
the software package MG.

In addition to the three Newton variants described here,
we also tested the full approximation scheme �FAS� method
that implements a fully nonlinear multilevel method.49 The
FAS method is found to be significantly slower �a factor of 4
at least for a mesh with 2573 vertices� than all three Newton
methods. There are two factors that explain this difference.
First, the FAS method computes explicitly the coarse grid
Jacobians by finite difference, while the Newton methods
proceed by simple restrictions. Second, FAS uses nonlinear
procedures for smoothing, which are much slower than the
linear smoothing routines used in the Newton iterations. We
did not explore further the use of other fully nonlinear mul-
tigrid methods.

C. Differences in solving the PB, SMPB, and DPBL
equations

The PB, SMPB, and DPBL equations belong to the same
class of PDEs whose discretization leads to the general non-
linear system of equation given by Eq. �16�. There is how-
ever a significant difference to take into account: the stiffness
matrix A is independent of the electrostatic potential � for
the PB and SMPB equations, but highly nonlinear in � for
the DPBL equation. The Newton7 variant implemented in
AQUASOL is “exact” if applied on the PB and SMPB equa-
tions, in that the approximate Jacobian is then exact. In Fig.
6 we compare the performance of this specialized Newton’s
method applied to solving the PB and SMPB equations with
the performance of the NewtonSC method for solving the
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FIG. 6. Solving the PB, SMPB, and DPBL equations. The computing time
required to reach a residual error lower than TOL=1.e−6 is plotted vs the
number of points in the mesh. The mean and standard deviation for each
mesh size are computed over the CTF and DNA test cases. All calculations
are performed with the molecular surface defining the interface of the solute,
in presence of 0.1M of monovalent ions, with the intensity of the dipole
moment set to 3.0 D. The lattice is set at 2.8 Å.

064101-11 A solver for modified PB equations J. Chem. Phys. 132, 064101 �2010�



DPBL equation �the average behavior between the protein
test case and the DNA test case is shown�. It takes approxi-
mately ten times longer to solve the DPBL equation than to
solve the PB equation. This difference is not unexpected:
many of the convenient time-saving tricks that apply to the
PB equation �see Ref. 16� are obsolete for the DPBL equa-
tion. It remains that there is room for improvement if the
DPBL equation is to replace the PB equation for routine
analysis.

VI. CONCLUSION

We described three nonlinear multigrid methods for
solving the DPBL equation, a modified Poisson–Boltzmann
equation whose solution describes the electrostatic potential
around the solute of interest as well as provide water density
maps around the same solute. These three methods are de-
rived from a truncated Newton method proposed by Holst
and Saied for solving the Poisson–Boltzmann equation.16

Our numerical results indicate that the self-consistent method
which we dubbed NewtonSC is the best compromise for
solving DPBL as it is fast, robust, and has a low storage
requirement. It is also the easiest to implement and can be
adapted with low implementation cost to any PB solvers to
allow them to solve the DPBL equation.

Newton-like methods are robust and efficient solvers for
elliptic PDEs and it can be shown theoretically that they are
guaranteed to converge if the coefficients of the PDE are
smooth. For nonlinear systems with possible discontinuities
in the coefficient, however, this guarantee is contingent to
finding a good initial approximation. In that respect, we have
shown that the quasi-Newton method Newton7 is more ro-
bust than Newton27 that uses the exact Jacobian of the non-
linear system of equations resulting from the discretization
of the DPBL equation.

The solution of the DPBL equation is more informative
than the solution of the PB equation; solving the former
however is approximately ten times costlier in computing
time than solving the latter, even with the fast NewtonSC
method described here. While most of this difference is in-
herent to the nature of the equations themselves, we believe
that there is still room for improvement. We are currently
investigating approaches such as the Jacobian-free Newton–
Krylov methods61 in hope of substantial speedup.

AQUASOL is a software package designed as a special-
ized solver for DPBL equation; it can be used however for
solving the PB and SMPB equations as those can be consid-
ered as special cases of the former. It is heavily based on the
MG software package developed by Michael Holst, which
also serves as a base for the software package APBS. AQUA-

SOL currently uses Cartesian meshes and a finite volume ap-
proach to discretize the nonlinear PDE resulting from the
DPBL formalism. While working on a Cartesian mesh offers
some numerical advantages �the setup is usually easy and the
Jacobian matrices used in the Newton-like solvers are usu-
ally highly sparse�, there are two main issues that are left
untreated.14 First, the point charges do not match with verti-
ces of the mesh and consequently need to be projected. All
current methods apply fractional projections, leading to self-

interactions between the different partial charges generated.
This effect is usually removed by subtracting the result of a
calculation with vacuo dielectric; it still remains a subject of
concern. Second, and probably more important, Cartesian
meshes provide only an approximate position for the mo-
lecular surface of the solutes. This leads to discontinuities in
the coefficients of the discrete equations, as well as in diffi-
culties in enforcing a continuity condition of the electric dis-
placement on the molecular surface. As a result, we usually
observe low accuracy of the solution potential at the surface
and low convergence rate.62 Possible solutions to these prob-
lems include reducing the mesh spacing to improve reso-
lution as well as application of improved and robust solvers.
While we have taken both options into account while devel-
oping AQUASOL �i.e., special care was taken to limit the
AQUASOL memory usage to allow for large meshes, the dis-
cretization scheme allows for nonuniform meshes to give the
possibility to increase resolution at the interface, and AQUA-

SOL strives to fast convergence by adopting an inexact New-
ton solver�, it remains that these are workarounds that treat
the symptoms related to the use of Cartesian meshes rather
than the problems at the root. There has been recently sig-
nificant interest from applied mathematicians to develop PB
solvers with interface methods that specifically deal with the
continuity and accuracy issues at the molecular surfaces.
Methods such as the jump condition capturing finite
difference scheme,63,64 and the matched interface and
boundary62,65,66 seem very promising and we are currently
investigating ways to incorporate them in AQUASOL.

Finite element methods represent a viable alternative to
the finite difference methods discussed above. They allow for
non-Cartesian meshes that provide better approximation of
the geometry of the solutes. They also provide more flexibil-
ity for local mesh refinement as well as for handling nonlin-
ear equations.14 Finite elements methods have been applied
both to the linearized PB equation67 and to the nonlinear PB
equation.17 Recently, Holst and colleagues68 established its
rigorous solution and approximation theory, resulting in the
first rigorous convergence result for any numerical methods
applied to PBE. We plan to either extend AQUASOL to include
a finite element solver for the DPBL equation that will take
into account these theoretical results, or to adapt the New-
tonSC strategy in an existing finite element solver.
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APPENDIX A: DISCRETIZING THE DPBL EQUATION

The box method �also called finite volume method� is
one of the standard approaches for discretizing PDEs on gen-
eral meshes. We follow the implementation of Holst32 of this
method; it is designed for nonuniform Cartesian meshes, i.e.,
the mesh lines need not be uniformly spaced. This has the
advantage that the mesh can be adapted to the geometry of
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the system considered to represent more accurately the
solute-solvent interface. The box method is well known; for
a full description we refer the reader to Holst’s thesis32 as
well as to Holst and Saied.16 The purpose of the following
section is simply to introduce notation and equations relevant
to our system.

The DPBL model expresses the electrostatic potential �
in a domain � that includes the solutes of interest as the
solution of a second order differential equation,

� · ���r,��r�� � ��r�� + H�r,��r�� − f = 0, �A1�

where � is the dielectric permittivity,

��r,��r�� = �0 + ��r�
�p0

2	dipF1�u�r��
a3Z�r�

, �A2�

with u�r�= p0ec���r� and

Z�r� = 1 + 	dip��r�
sinh�u�r��

u�r�
+ �ion�r��

i=1

Nion

	ie
−�ziec��r�.

�A3�

H accounts for the ion atmosphere in the solvent surrounding
the solute,

H�r,��r�� = �ion�r�
4�ec

a3Z�r� �i=1

Nion

	icizie
−�ziec��r�, �A4�

and f accounts for the fixed charges of the solutes. The func-
tions ��r� and �ion�r� are witness functions set to 1 if r is in
a region where solvent and ions are present, respectively, and
0 otherwise.

The domain � on which Eq. �A1� is discretized as a
rectangular mesh characterized by vertices rijk at position
�xi ,yj ,zk�. There are Nx+2, Ny+2, and Nz+2 possible values
for x, y, and z. We define the mesh spacings as

hi = xi+1 − xi, hj = yj+1 − yj, hk = zk+1 − zk, �A5�

which are not required to be equal or uniform.
We build a three-dimensional parallelepiped Rijk cen-

tered at each mesh point rijk of sizes 0.5�hi+hi−1�, 0.5�hj

+hj−1�, and 0.5�hj +hj−1� along the directions i, j, and k, re-
spectively �see Fig. 7�. The volume of Rijk is given by

Vol�Rijk� = Vijk =
�hi−1 + hi��hj−1 + hj��hk−1 + hk�

8
. �A6�

The surface areas of the faces of Rijk along x, y, and z are
given by

Sjk =
�hj−1 + hj��hk−1 + hk�

4
, Sik =

�hi−1 + hi��hk−1 + hk�
4

,

Sij =
�hi−1 + hi��hj−1 + hj�

4
, �A7�

respectively.
Integrating Eq. �14� inside the region Rijk gives the re-

sulting discrete equation �see Holst’s thesis32 for details�

�i−1/2.j,k��ijk − �i−1,j,k

hi−1
�Sjk + �i+1/2.j,k��ijk − �i+1,j,k

hi
�Sjk

+ �i.j−1/2,k��ijk − �i,j−1,k

hj−1
�Sik

+ �i.j+1/2,k��ijk − �i,j+1,k

hj
�Sik

+ �i.j,k−1/2��ijk − �i,j,k−1

hk−1
�Sij

+ �i.j,k+1/2��ijk − �i,j,k+1

hk
�Sij + Vijk�Hijk − f ijk� = 0.

�A8�

f ijk is the value of the fixed �solute� charge density at position
rijk. Hijk=H�rijk ,��rijk�� depends on the values �ijk and uijk

�see Eq. �A4��. In this equation, the modulus of the electric
field uijk is given by

uijk = p0ec���i+1,j,k − �i−1,j,k

hi−1 + hi
�2

+ ��i,j+1,k − �i,j−1,k

hj−1 + hj
�2

+ ��i,j,k+1 − �i,j,k−1

hk−1 + hk
�2

. �A9�

i-1 i i+1
j-1

j

j+1

k-1

k

k+1

i,j,khk

hk-1

hi-1 hi

hj-1

hj

Rijk

FIG. 7. Geometry of the mesh near a vertex rijk.
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The different coefficients � are evaluated at the center of the
faces of Rijk based on Eq. �A2�. To compute these coeffi-
cients we need the values of the different scalar fields ��r�,
�ion�r�, �, and u at positions 
i+hi /2, j ,k�, 
i−hi−1 /2, j ,k�,

i , j+hj /2,k�, 
i , j−hj−1 /2,k�, 
i , j ,k+hk /2�, and 
i , j ,k
−hk−1 /2� in the mesh. The values of � and �ion are precom-
puted once during setup, based on the geometry of the sol-
utes �see Sec. IV above�. The values of the electrostatic po-
tential � at midpoints along each mesh direction are
computed using linear interpolation:

�i�1/2,j,k =
�i,j,k + �i�1,j,k

2
,

�i,j�1/2,k =
�i,j,k + �i,j�1,k

2
, �A10�

�i,j,k�1/2 =
�i,j,k + �i,j,k�1

2
.

Finally, the moduli of the electric field at the centers of the
six faces of Rijk are computed using bilinear interpolation.
For the faces perpendicular to the x direction, we have

ui�1/2,j,k

= p0ec
���x�i�1/2,j,k�2 + ��y�i�1/2,j,k�2 + ��z�i�1/2,j,k�2,

with

�x�i+1/2,j,k =
�i+1,j,k − �i,j,k

hi
, �x�i−1/2,j,k =

�i,j,k − �i−1,j,k

hi−1
,

�y�i�1/2,j,k =
�i,j+1,k + �i�1,j+1,k − �i,j−1,k − �i�1,j−1,k

2hj−1 + 2hj
, �A11�

�z�i�1/2,j,k =
�i,j,k+1 + �i�1,j,k+1 − �i,j,k−1 − �i�1,j,k−1

2hk−1 + 2hk
.

The values of u at the centers of the faces perpendicular to
the y and z directions can be derived in the same way.

There is one nonlinear Eq. �A8� for each of the �Nx
+2�� �Ny+2�� �Nz+2� vertices in the mesh. The boundary
conditions impose the values of the electrostatic potential on
the outer faces of the mesh; therefore, there remains only
N=Nx�Ny�Nz such equations, with N unknowns, i.e., the
values of the electrostatic potential � at these vertices. After
proper ordering of these vertices we obtain a single nonlinear
algebraic system of equations of the form

F��� = A���� + H��� − g = 0, �A12�

where A��� is the “stiffness matrix,” H��� is the nonlinear
term resulting from the ion atmosphere in the solvent and the
vector g consists of the component Vol�Rijk�f�rijk� for each
mesh vertex. Each row of the matrix A corresponds to one
point in the mesh. The row associated with the point rijk

contains seven nonzero values given by

Aijk = �i+1/2,j,k
Sjk

hi
+ �i−1/2,j,k

Sjk

hi−1
+ �i,j+1/2,k

Sik

hj

+ �i,j−1/2,k
Sik

hj−1
+ �i,j,k+1/2

Sij

hk
+ �i,j,k−1/2

Sij

hk−1
,

Ai�1,j,k = − �i�1/2,j,k
Sjk

hi�
,

�A13�

Ai,j�1,k = − �i,j�1/2,k
Sik

hj�
,

Ai,j,k�1 = − �i,j,k�1/2
Sij

hk�

,

where hi+=hi, hi−=hi−1, hj+=hj, hj−=hj−1, hk+=hk, and hk−

=hk−1. These seven values relate to the point itself and its six
direct neighbors, forming a stencil of size 7. In the simple
case of the Poisson equation, the stiffness matrix is constant
and H���=0; the system of equations is linear. In the cases
of the PB and SMPB equations, the stiffness matrix is also
constant while H��� is a vector that is nonlinear in �. In the
general case of the DPBL equation, A contains the nonlinear
functions of �. It is not difficult to show that A is symmetric
in all three cases.

APPENDIX B: JACOBIAN OF THE NONLINEAR
SYSTEM OF EQUATION

1. The exact Jacobian

The Newton method solves iteratively the system of
nonlinear equations F���=0 using the iteration

�n+1 = �n − F���n�−1F��n� , �B1�

where F���� is the Jacobian matrix of partial derivatives,

F���� = ��Fijk���
��a

� , �B2�

where �a stands for the electrostatic potential at any mesh
position a and Fijk corresponds to the nonlinear equation
derived at position rijk in the mesh, given by Eq. �A8�.

From Eq. �A12�, we get

F���� = A��� + B��� + H���� , �B3�

where B is a perturbation matrix whose jth column is given
by

Bj =
�A

�� j
� .

In Appendix A we described how to compute the stiffness
matrix A. We describe now how to obtain the two other terms
B and H� needed to build F�.

2. The derivative of the Helmholtz term H

The Helmholtz term H��� in Eq. �A12� is a diagonal
matrix corresponding to the contribution of the ionic atmo-
sphere in the solvent. Its generic term Hijk at position rijk is
computed using Eq. �A4�.
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Let �abc be the electrostatic position at position rabc with
a� 
i−1, i , i+1�, b� 
j−1, j , j+1�, and c� 
k−1,k ,k+1�.
Using Eq. �A4�, we get

�Hijk

��abc
= �ijk;abc�− �ion�rijk�

4��ec
2

a3Zijk
�
i=1

Nion

	icizi
2e−�ziec�ijk�

−
Hijk

Zijk

�Zijk

��abc
, �B4�

with

�Zijk

��abc
= 	dip��rijk�F1�uijk�

�uijk

��abc

− �ijk,abc�ion�rijk��ec�
i=1

Nion

	izie
−�ziec�ijk, �B5�

where �ijk;abc=1 if 
i , j ,k�= 
a ,b ,c� and 0 otherwise and uijk

and its derivatives can easily be computed from Eq. �A9�.
Note that the derivatives �uijk /��abc are nonzero only if

rabc is in direct contact with rijk. This means that there are
only seven nonzero terms in each row of the matrix H����,
corresponding to a stencil of size seven.

3. The perturbation matrix B

Each column j of B is the product of the derivative of the
stiffness matrix A with respect to � j with the field vector �.
We show how to compute the different derivatives of A.

From Appendix A, it is clear that the elements of the
stiffness matrix corresponding to the mesh point rijk depend
only on the values of the electrostatic potential at the 27
vertices in the direct neighborhood of this point �see Fig. 7�.
Let �abc be the electrostatic potential at position rabc, with
a� 
i−1, i , i+1�, b� 
j−1, j , j+1�, and c� 
k−1,k ,k+1�.
There are seven nonzero values �see Eqs. �A13�� in the row
of A corresponding to position rijk; their derivatives with
respect to �abc are

�Aijk

��abc
=

Sjk

hi

��i+1/2,j,k

��abc
+

Sjk

hi−1

��i−1/2,j,k

��abc
+

Sik

hj

��i,j+1/2,k

��abc

+
Sik

hj−1

��i,j−1/2,k

��abc
+

Sij

hk

��i,j,k+1/2

��abc
+

Sij

hk−1

��i,j,k−1/2

��abc
,

�Ai�1,j,k

��abc
= −

Sjk

hi�

��i�1/2,j,k

��abc
,

�B6�
�Ai,j�1,k

��abc
= −

Sik

hj�

��i,j�1/2,k

��abc
,

�Ai,j,k�1

��abc
= −

Sij

hk�

��i,j,k�1/2

��abc
.

Equations �B6� require the derivatives of the dielectric
coefficients � with respect to the 27 different �abc. The de-
rivatives of the coefficients �i�1/2,j,k are derived from Eq.
�A2�,

��i�1/2,j,k

��abc
= ��ri�1/2,j,k�

�p0
2	dip

a3Zi�1/2,j,k

�
sinh�ui�1/2,j,k� − 3ui�1/2,j,kF1�ui�1/2,j,k�

ui�1/2,j,k
2

�
�ui�1/2,j,k

��abc
− ��ri�1/2,j,k�

�
�p0

2	dipF1�ui�1/2,j,k�
a3Zi�1/2,j,k

2

�Zi�1/2,j,k

��abc
, �B7�

where ui�1/2,j,k and its derivatives are computed from Eq.
�A11�, and Zi�1/2,j,k and its derivatives are computed with
analogs of Eqs. �A4� and �B5�, respectively. Similar expres-
sions are obtained for the derivatives of the coefficients
�i,j�1/2,k and �i,j,k�1/2.

Note that since A is symmetric and H is diagonal, it is
clear that the Jacobian matrix is symmetric; this implies that
we only need to compute and store 14 values for each value
�ijk, namely, the derivatives of Fijk with respect to �ijk,
�i+1,j,k, �i−1,j+1,k, �i,j+1,k, �i+1,j+1,k, �i−1,j−1,k+1, �i,j−1,k+1,
�i+1,j−1,k+1, �i−1,j,k+1, �i,j,k+1, �i+1,j,k+1, �i−1,j+1,k+1, �i,j+1,k+1,
and �i+1,j+1,k+1.

4. The inexact Jacobian

In the simpler cases of the PB and SMPB equations, the
stiffness matrix is constant, and Hijk only depends on �ijk.
This property makes the Newton method very attractive for
solving the corresponding nonlinear systems of equations;
the Jacobian matrix can be computed at very low computing
cost as all its off-diagonal elements are constant and can be
precomputed once during setup and only its diagonal terms
need to be updated at each step. In addition, there are only
seven nonzero elements in F����, and since the matrix is
symmetric only four of these need to be computed and stored
�see Holst and Saied for details�.16

Computing the exact Jacobian for the DPBL equation is
more demanding; it needs to be performed at each iteration
and the memory footprint is large as it requires space for 14
values for each interior point in the mesh. To reduce the
computational cost and the memory footprint required by the
exact Jacobian matrix, we propose to build an approximation
that neglects the perturbation matrix B as well as the off-
diagonal elements of the derivatives of H,

Fapprox� ��� = A��� + Happrox� ��� , �B8�

where the only nonzero elements in Happrox� are given by

�Happrox;ijk

��ijk
= − �ion�rijk�

4��ec
2

a3Zijk
�
i=1

Nion

	icizi
2e−�ziec�ijk. �B9�

Since A is a symmetric matrix obtained with a stencil of size
seven, Fapprox� is also a symmetric matrix with seven nonzero
elements per row, out of which only four need to be stored.
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