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SUMMARY
A significant source of missing data in longitudinal epidemiologic studies on elderly individuals is
death. It is generally believed that these missing data by death are non-ignorable to likelihood based
inference. Inference based on data only from surviving participants in the study may lead to biased
results. In this paper we model both the probability of disease and the probability of death using
shared random effect parameters. We also propose to use the Laplace approximation for obtaining
an approximate likelihood function so that high dimensional integration over the distributions of the
random effect parameters is not necessary. Parameter estimates can be obtained by maximizing the
approximate log-likelihood function. Data from a longitudinal dementia study will be used to
illustrate the approach. A small simulation is conducted to compare parameter estimates from the
proposed method to the ‘naive’ method where missing data is considered at random.

1. INTRODUCTION
Many prospective epidemiological studies on elderly individuals rely on using follow up
waves, usually several years apart, for the examination of a particular disease status, such as
dementia or Alzheimer’s disease. These cohort studies are often complicated by the presence
of missing data. Many study subjects die before the next examination wave. Some refuse further
participation in the study and some move out of the study area. The latter two sources of missing
data may perhaps be minimized or eliminated by aggressive operational measures. However,
for studies on elderly subjects, death is an inevitable source of missing data which cannot be
eliminated by operational improvement. For those deceased subjects, disease status prior to
death is not ascertained. Under the assumption of missing completely at random (MCAR) or
missing at random (MAR) of the missing data mechanism, using the terminology of Little and
Rubin [1], valid inference may still be derived provided appropriate likelihood or Bayesian
approaches are taken and all covariates contributing to missing data process are included in
the model [2]. However, most medical studies following subjects with various diseases in
cohort studies have found that these subjects are more likely to die than non-diseased subjects.
Hence there are reasons to suggest the data missing by death are probably non-ignorable,
indicating that the missing by death may somehow relate to disease status. Estimation
procedures without adjusting for this type of missing data may lead to biased conclusions.

Statistical inference on non-ignorable missing data has mostly concentrated in two areas: the
selection model approach and the pattern mixture model approach. In the selection model
approach, first proposed by Diggle and Kenward [3], the missing data mechanism was
modelled to depend on the missing outcome variable as well as covariates. Gao and Hui [4]
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extended the selection model approach from continuous outcomes to binary outcomes for
estimating the incidence of dementia adjusting for missing data due to death. One difficulty
with using the selection model approach is that parameter estimates obtained from the selection
model, especially in the model for missing data, are sometimes difficult to interpret.

The pattern mixture model approach, on the other hand, models the probability of missing data
first, then appends to the joint likelihood disease outcome models conditional on the missing
data status. One problem with the pattern mixture model approach is that the modeling of
disease to be dependent on survival status does not seem to follow the chronological order of
these events. Pros and cons of these two approaches for non-ignorable missing data have been
thoroughly discussed by Little [5].

The shared random effect parameter approach has a very intuitive appeal to biomedical
researchers who generally believe that there may be some latent quantity underlying a person’s
susceptibility to both disease and death. This latent quantity may represent genetic or
environmental risk factors yet to be identified. A shared random effect parameter approach has
been used by Lancaster and Intrator [6] on joint modelling of medical expenditures and
survivals, Pulkstenis et al. [7] and Ten Have et al. [8] on comparing pain relievers accounting
for informative drop out in the form of re-medication, to name just a few recent publications.
Most authors have chosen models in specific forms for both disease outcome and missing data
mechanism so that the joint likelihood function will have closed form expression after
integrating over the random effect parameters, with the exception of Ten Have et al. [8] where
numerical approximations are used to derived maximum likelihood estimates with logistic
model assumptions for the disease outcome.

In this paper I propose to use the shared random effect parameter models for the analysis of
longitudinal dementia data with missing data by death. Maximum likelihood estimation with
Laplace approximation can be used for parameter estimation. We illustrate the proposed
models and estimation procedure with a small simulation study which uses data from the
Indianapolis Dementia Project.

2. NOTATIONS AND GENERAL MODELS
Let yij be a binary variable denoting disease status ascertained from the ith subject at the jth
examination wave, i =1,…,N, j =1,…,Ji. yij = 1 indicates diagnosed disease and yij =0 non-
disease. Let Dij be the variable for survival status for the ith subject at the jth examination
wave. Dij = 1 indicates the ith subject died before the jth wave. We restrict our methodology
to situations where the examination waves are approximately equally spaced. Let Xij be the
set of covariates associated with the fixed effect for disease outcome and Zij be the set of
covariates associated with the fixed effect for death. Let γi be a m × 1 vector of unobserved
random effects contributing to the probabilities of disease and death. γi can be thought of as a
measure of ‘physical toughness’ of the person to disease and death. Let Wij and Uij be the set
of covariates associated with the random effect in the disease model and the death model,
respectively.

We assume a general disease model for the disease outcome: Let

(1)

where β is the fixed effect parameter. We assume that γi follows a distributional function H
(γi), with E(γi)=0 and Var(γi)=Im, where I is a m × m identity matrix, and Σ′Σ is a positive
definite variance–covariance matrix. In other words we define the conditional probability of
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new disease to relate linearly to fixed and random effects by some link function η. The quantity
pij has the epidemiological interpretation of disease incidence.

We also define the following model for death:

(2)

where α is the fixed effect parameter and γi is as defined in the disease model. Δ′Δ is a positive
definite variance–covariance matrix.

The above disease and death models are in the most general forms.

Assuming that yij and Dij are independent given γi, the joint likelihood function of y and D is

(3)

The derivation of maximum likelihood estimates from the joint likelihood function above
usually requires high dimensional integration over the distributions of the random effect
parameters, with the exception of some specific forms of link functions where closed form
expression is available. Pulkstenis et al. (1998) used a log–log link for the binary outcomes
and a log–log link for the drop-out model. A closed form expression for the likelihood function
was achieved for these specific models.

In general, the Laplace method can be used to approximate the integral in the likelihood
function (3). We consider here the situation where γ~N(0, I). An alternative approximation,
used by Ten Have et al. (1998), is a binomial approximation to the normal distribution in the
above likelihood function.

With the normal distribution assumption for γ, and letting κ(y, D/γ)=f(y/γ)g(D/γ), the likelihood
function can be rewritten as

(4)

We can expand  at  by Taylor series to the 2nd order, where  maximizes

(5)

Notice that the first order term in the Taylor series expansion in (5) is zero because the first

derivative of  is zero at . The remaining terms in the integral was evaluated by
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taking expectations with respect to a normal variate having mean  and variance

. The approximate log-likelihood function is therefore

(6)

Similar approximation approaches have been used by Solomon and Cox [9], Breslow and Lin
[10] and Lin [11] in approximating the likelihood function of random effect generalized linear
models. Notice that the random effect γ is no longer present in the approximate log-likelihood
function. We can then derive maximum likelihood estimates of β, α, Σ, and Δ using a Newton–
Raphson algorithm.

In summary three steps are involved in parameter estimation from the shared random effect
models:

1. obtain  by maximizing:

2. substitute  in the approximate log-likelihood function:

3. maximize l* to obtain , ,  and .

3. THE INDIANAPOLIS DEMENTIA STUDY
The Indianapolis dementia study is an on-going prospective epidemiological study on dementia
and Alzheimer’s disease [12,13]. The study subjects are African Americans age 65 and over
living in Indianapolis. The primary aim of the study is to estimate the prevalence and incidence
rates of dementia and Alzheimer’s disease and identify potential risk factors. The study is
designed to have one baseline wave and three follow up waves two years apart. Data are
currently available on two follow up waves. At study baseline 2212 subjects participated in
the study providing exposure history on potential risk factors. One risk factor that has generated
considerable interest in the dementia field is the level of education. Low education has been
suggested by numerous studies to be a risk factor for dementia. However, there are
inconsistencies in the reported strength of this association between cross-sectional and
prospective studies with stronger associations reported by cross-sectional studies. Evidence
from cross-sectional studies are sometimes dismissed because education has been shown to
influence performance on neuropsychological tests used in the diagnosis of dementia.
Longitudinal studies, where cognitive changes within subjects are considered as evidence of
cognitive decline instead of comparisons made between subjects cross-sectionally, are believed
to yield more valid answer to the association between low education and dementia. One
problem with many longitudinal studies, however, is that subjects with low education also die
earlier than the ones with high education, thus raising the possibility of non-ignorable missing
data. In the Indianapolis dementia study, a total of 551 subjects died during the course of the
study before the 2nd follow up wave yielding incomplete responses on disease status. Among
the subjects with low education defined as having 6 years or less schooling in this population,
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34 per cent died before the second follow up compared to 23 per cent in the high education
group. Analyses ignoring deceased subjects are likely to find a weaker association between
education and dementia.

Since the data from the Indianapolis dementia study is complicated by complex sampling
schemes to ascertain disease status at each examination wave, we conducted a simulation study
to investigate the performance of the Laplace approximation on parameter estimation from the
shared random effect models.

4. A SIMULATION STUDY
The probability of incident dementia, pij, can be modeled by a logistic function:

We assume that the ith subject has Ji non-missing observations on disease status y.

The joint probability of disease outcomes can be written in terms of conditional probabilities:

(7)

We will also use a logistic regression model for death:

Hence the probability function for death is

Covariates from the Indianapolis dementia study were used for the simulation. We used a
logistic regression model with random intercept and random slope for disease for the
simulation. Specifically, we used the following disease model:

(8)

Here the variance covariance matrix for γ is

The covariate age used in the disease model is the age of the participant at each examination
wave.
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We also used a logistic regression model with random intercept and random slope for the death
model:

(9)

The variance–covariance matrix for γ is

Regression coefficients in the simulation were chosen so that the percentages of diseased and
died in the simulated datasets are similar to those observed in the Indianapolis dementia data.
Parameter estimates from 100 simulations are presented in Table I. For comparison purposes,
we also included in Table I the so-called ‘naive’ estimates where two separate logistic
regression models are fit, one for the dementia outcome and one for the survival outcome. The
‘naive’ approach assumes that the missing data by death is not related to the disease model and
is shown here to underestimate the education effect on disease. The parameter estimate for
education from the shared random effect model approach corrected some of the downward bias
of the naive estimate, but still slightly underestimates the true parameter.

In Figures 1 and 2 we present box plots of the parameter estimates from the two methods. The
white line in each box plot is the median of the estimates and the dotted line represents the true
parameter values. As is shown by these figures, the variability in the parameter estimates given
by the shared random effect parameter models is much larger than those of the naive estimates.

4. DISCUSSION
In this paper I propose to use the shared random effect parameter models for the joint modeling
of disease status and missing data by death in longitudinal dementia studies. The two models
assume a common latent quantity attributing to the probabilities of both disease and death,
while allowing the distribution of this random effect to differ between the two models by
including separate variance–covariance parameters in the models. While the conceptualization
of the models is straightforward, parameter estimation for the general model is challenging.
There are three approximation methods for avoiding the high dimensional integration in the
joint likelihood function. Some of the methods have the additional assumption of normality of
the random effect distribution. The first is the Gaussian quadrature points where the integration
over the normal distribution is approximated by summing over selected quadrature points with
probability weights attached. The method of quadrature points can be computationally
intensive if either the number of random effects is large, the number of observations is large,
or there are many quadrature points. The second method is the binomial approximation used
by Ten Have et al. [8] which has essentially the same computational challenges as the Gauss
quadrature method. The third method is the Laplace approximation used in this paper. The
Laplace method is applicable to any parametric distributions, although in this paper we
considered only the normal distribution. The Laplace approximation is attractive in that it offers
the approximate likelihood function in an algebraic form so that standard techniques for
deriving maximum likelihood estimates such as the Newton–Raphson algorithm can be used.
However, results from our limited simulation indicate less than satisfactory performance for
the Laplace method on some parameter estimates. Two sources of potential errors are
suspected. One is in the accuracy of the estimation of the expansion point . Another is in
whether Taylor series to the second order is accurate enough to approximate the target function.
More extensive simulations are needed to investigate the properties of the approximate
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maximum likelihood estimates from the Laplace approximation. It is also interesting to
compare parameter estimates from the Laplace approximation to those obtained by Gauss
quadrature points or the binomial approximation in more extensive simulations.

The modelling framework used here bears resemblance to generalized random effect models
used for longitudinal data where a single random effect is introduced in all observations from
the same subject to induce a pattern of correlation. The difference between the longitudinal
data setting and our modelling is that the observations in the longitudinal setting all belong to
a single response variable and are generated random outcomes from similar stochastic
processes, while in our models we have two distinct stochastic processes linked by two related,
but different, random effects. In the cases of longitudinal data of the generalized linear models
the penalized quasi-likelihood (PQL) proposed by Breslow and Clayton [14] has been shown
to adequately estimate the fixed effect parameters in large samples. It is to be noted that the
PQL uses the Laplace method for approximating the quasi-likelihood function.

The current paper has focused narrowly on parameter estimation from the shared random effect
parameter models. More research is needed for variance estimation, hypothesis testing
regarding model parameters and model diagnostics. Although my motivation is rooted in the
dementia data, the methodology is applicable to a wide variety of problems with non-ignorable
missing data.
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Figure 1.
Parameter estimates for the disease model.

Gao Page 9

Stat Med. Author manuscript; available in PMC 2010 March 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Parameter estimates for the death model.
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Table I

Parameter estimates using Laplace approximation for the shared random effect parameter models (n = 100).
Empirical standard errors calculated from the 100 simulated datasets are included in the parentheses.

Parameters True value ‘Naive’ estimate SREP estimate

Disease model

β0 (intercept) −9.8057 −9.6096 (0.0518) −9.8028 (0.1341)

β1 (age) 0.0750 0.0836 (0.0007) 0.0742 (0.0018)

β2 (female) 0.1069 0.1317 (0.0148) 0.1360 (0.0236)

β3 (low education) 0.4346 0.3547 (0.0141) 0.4271 (0.0224)

σ1 0.2 — 0.2743 (0.0012)

σ2 0.2 — 0.2952 (0.0014)

Death model

α0 (intercept) −6.5100 −7.3345 (0.0515) −5.8938 (0.1075)

α1 (age) 0.0500 0.0708 (0.0006) 0.0350 (0.0014)

α2 (female) −0.5147 −0.2757 (0.0109) −0.5318 (0.0198)

α3 (low education) 0.2000 0.1348 (0.0109) 0.2342 (0.0192)

δ1 0.2 — 0.2644 (0.0019)

δ2 0.2 — 0.2938 (0.0020)
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