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A Weighted False Discovery Rate
Control Procedure Reveals Alleles at FOXA2
that Influence Fasting Glucose Levels

Chao Xing,1,2,* Jonathan C. Cohen,1 and Eric Boerwinkle3

Association signals in GWAS are usually prioritized solely by p values. Here, we attempt to improve the power of GWAS by using

a weighted false discovery rate control procedure to detect associations of low-frequency variants with effect sizes similar to or even larger

than those of common variants. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to test for association with fasting glucose

levels in the Atherosclerosis Risk in Communities Study (ARIC) population. In addition to finding several previously identified sequence

variations, we identified a low-frequency variant (rs1209523; minor allele frequency ¼ 0.043) near FOXA2 that was associated with fast-

ing glucose levels in European Americans (EAs) (n ¼ 7428, p value ¼ 1.3 3 10�5). The association between rs1209523 and glucose levels

was also significant in African Americans (AAs) (n ¼ 2029, p value ¼ 6.7 3 10�3) of the ARIC and was confirmed by replication in both

EAs and AAs of the Dallas Heart Study (n¼ 963 and 1571, respectively; p values¼ 5.3 3 10�3 and 5.8 3 10�4, respectively) and in EAs of

the Cooper Center Longitudinal Study (n ¼ 2862; p value ¼ 1.6 3 10�2). A meta-analysis of these five populations yielded an estimated

effect size of �1.31 mg/dl per minor allele (p value ¼ 2.2 3 10�11). This study reveals that there is a cache of less-frequent variants in

GWAS arrays that can be identified via analytical approaches accounting for allele frequencies.
GWAS have identified hundreds of loci associated with

common complex traits and diseases.1 Despite the explo-

sive growth of discoveries in the past few years, the

common variants identified by GWAS typically have

modest effect sizes and account for only a small fraction

of the heritability of complex traits.2,3 Two major factors

underlie the low power of detecting associations between

low-frequency variants and complex traits in GWAS. First,

the commercially available marker arrays that are used in

GWAS are designed to capture common variants. Second,

conventional statistical methods currently employed to

analyze GWAS data equally weight each hypothesis and

prioritize the signals purely by the p values obtained.

Various strategies have been proposed to uncover the

full allelic spectrum of complex traits. One approach has

been to enhance the power of GWAS by increasing sample

sizes, enhancing the coverage of common variants, and

improving phenotype definition and assessments.2,4,5

Another approach has been to shift the focus to genome

resequencing to detect rare variants with large effect sizes.6

We have focused on developing new strategies to use

the existing data of GWAS to identify less-frequent vari-

ants that contribute to common complex traits. For the

purposes of the current study, we defined common

variants as SNPs with a minor allele frequency (MAF) R

5%, which is consistent with that of the International

HapMap Consortium.7,8 SNPs with a MAF < 5% were

classified as less-frequent variants. A weighted-Holm proce-

dure,9 which is a Bonferroni-type multiple-testing correc-

tion technique, had been proposed to account for allele

frequencies in GWAS.10 Here, we employed a weighted
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false discovery rate (FDR) control procedure11 to enhance

the power of detecting associations between less-frequent

variants and fasting glucose levels in the Atherosclerosis

Risk in Communities Study (ARIC)12 genotyped with the

Affymetrix Genome-Wide Human SNP Array 6.0.13

We first examined the distribution of allele frequency of

autosomal SNPs in data provided by Affymetrix for the

HapMap samples,14 focusing on the Yoruba samples from

Ibadan, Nigeria (YRI) and the European American samples

from Utah, USA, of the Centre d’Etude du Polymorphisme

Humain collection (CEU), and in data from the ARIC study

including 8862 European Americans (EAs) and 2573

African Americans (AAs). In each population of the ARIC

study, SNPs were excluded if they were monomorphic or

singletons or if they had > 10% missing genotypes or

significant deviation from the Hardy-Weinberg equilib-

rium (p value % 1.0 3 10�4 by the exact test15). After

data cleaning, 814,004 SNPs remained in the EAs and

818,899 SNPs remained in the AAs. Although the SNP

Array 6.0 was designed primarily for capturing common

SNPs, considerable information can be gleaned regarding

less-frequent SNPs, nonsynonymous SNPs (nsSNPs) in

particular (Tables S1 and S2, available online). Significant

concordance was observed in the MAF distributions of

SNPs between EA and CEU and between AA and YRI,

which suggests that MAFs from appropriate reference pop-

ulations can be used as weights in GWAS employing the

weighed procedure proposed in this study.

Because the MAF appears to be inversely related to the

proportion of functional SNPs,16–18 we took the less-

frequent nsSNPs as candidate functional variants and
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Table 1. The Average Degree of Linkage Disequilibrium, r2,
between Less-Frequent Nonsynonymous SNPs and Neighboring
SNPs from the Affymetrix Genome-Wide Human SNP 6.0 Array
Stratified by MAF in the ARIC Data

MAF EA AA

(0, 0.05) 0.124 0.084

[0.05, 0.10) 0.031 0.037

[0.10, 0.20) 0.016 0.016

[0.20, 0.30) 0.011 0.016

[0.30, 0.40) 0.009 0.018

[0.40, 0.50] 0.008 0.019

Abbreviations are as follows: MAF, minor allele frequency; EA, European Amer-
ican; AA, African American.
compared the performance of neighboring SNPs with

different MAFs to tag these SNPs. The neighboring SNPs

were defined as the SNPs that were within 8 kilobases

(kb) and 4 kb of a less-frequent nsSNP in the EA population

and the AA population, respectively. The interval was

chosen because the average length of haplotype blocks

was 16.3 kb in CEU and 7.3 kb in YRI.8 An inverse relation-

ship was found between the MAFs of neighboring SNPs

and the degree of linkage disequilibrium (LD), measured

by r2; the less-frequent nsSNPs were best tagged by less-

frequent SNPs (Table 1). Note that we specifically used r2

instead of other measures of LD because it is a correlation

coefficient,19 analogous to the metrics typically used in

GWAS. This result suggests that the less-frequent SNPs

are potentially valuable in identifying low-frequency

causal variants in genetic association studies.

To demonstrate the value of less-frequent variants in

GWAS, we performed a genome-wide association scan on

fasting glucose levels in the EA population of the ARIC

study, using the 814,004 autosomal SNPs that passed the
The Ameri
quality control. A total of 7428 individuals remained in

the analysis after removal of diabetic individuals and those

without phenotype information. A total of 1200 ancestry-

informative markers (AIMs) uniformly distributed across

the genome were selected,20–22 and principal components

analysis on these SNPs was performed for the purpose of

adjusting for population stratification.23 Association

between the trait and each SNP was tested by a linear

regression model incorporating age, sex, body mass index,

and the first two eigenvectors from principal components

analysis of AIMs as covariates. The genotypic value was

coded in an additive genetic model, with 0, 1, and 2 denot-

ing major allele homozygote, heterozygote, and minor

allele homozygote, respectively. Because the distribution

of fasting glucose levels was skewed, a Box-Cox power

transformation24 (l ¼ -0.71) was applied to the trait. The

quantile-quantile plot indicates no systematic deviation

from the null distribution, and the inflation factor25 is

1.03 (Figure 1).

We compared the results of three procedures controlling

for the global type I error (Table 2, Table S3). The Bonfer-

roni correction was used to control the family-wise error

rate at the level of 0.05. With this procedure, a nominal

p value less than or equal to 6.14 3 10�8 was required to

declare significance. There were 29 SNPs, located in four

genomic regions (2q24.3, 7p13, 11q21, and 13q21.32),

that met this criterion. The Benjamini and Hochberg

(BH) procedure26,27 was used to control the FDR at the

level of 0.05, and an additional SNP, located at 2q24.3,

was found (p value ¼ 9.1 3 10�8). Thirdly, aiming to

detect less-frequent variants associated with the trait, we

employed a weighted BH (WBH) procedure11 by weighting

each hypothesis according to the MAF of each SNP such

that a hypothesis with a lower MAF received a greater

weight. The MAFs were obtained from the Affymetrix refer-

ence population of European descent. For those with MAF
Figure 1. A Genome-wide Scan of
Plasma Fasting Glucose Levels in the EA
Population of the ARIC
Quantitle-quantile plot and scatterplot of
p values. The black horizontal line denotes
a p value of 6.14 3 10�8 corresponding to
the Bonferroni-corrected p value of 0.05.
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Table 2. Comparison of Three Procedures Controlling for Global
Type I error in the Genome-wide Scan of Fasting Glucose Levels in
the EA Population of the ARIC

Region
Candidate
Gene(s)

Total
SNPsa MAFb

No. of SNPs Identified

Bonferroni BH WBH

2p23.3 GCKR 1 0.40 0 0 1

2q24.3 G6PC2,
ABCB11

19 0.29 ~0.48 17 18 19

4q31.23 NR3C2 1 0.072 0 0 1

6p12.3 RUNX2 1 0.28 0 0 1

7p13 GCK 4 0.17 ~0.22 4 4 4

11q21 MTNR1B 8 0.28 ~0.43 7 7 8

13q21.32 PCDH9 1 0.00018 1 1 1

20p11.21 FOXA2 1 0.042 0 0 1

Total 36 29 30 36

The Bonferroni correction procedure controls the family-wise error rate at 0.05,
whereas both the BH and WBH procedures control the FDR at 0.05. Abbrevia-
tions are as follows: MAF, minor allele frequency; BH, Benjamini and Hochberg
procedure; WBH, weighted Benjamini and Hochberg procedure.
a The number of significant SNPs in each region obtained with the use of the
three procedures. The numbers are identical to those of the WBH procedure in
this study.
b The range of MAF for all of the significant SNPs (column 2) in each region
calculated in the EA population of the ARIC.
equal to zero in the reference population, we set them as

0.0001. For each SNP i with MAF fi, in which i ˛ {1, 2, ., m}

and m is the total number of SNPs, we defined its weight as

wi ¼ ðm=fiÞ=ð
Pm

j¼1

1=fjÞ such that
Pm

i¼1

wi ¼ m. Controlling the

FDR at the 0.05 level by the WBH procedure, we identified

six more SNPs that met the selection criterion, in addition

to those that we had found by using equal weights; we

identified a total of 36 SNPs, located in eight genomic

regions (2p23.3, 2q24.3, 4q31.23, 6p12.3, 7p13, 11q21,

13q21.32, and 20p11.21). Among the eight regions, four

(2p23.3, 2q24.3, 7p13, and 11q21) have been previously

reported to be associated with fasting glucose levels at

a genome-wide significance level in other GWAS,28–34

and the other four have not been previously reported to

be associated with the trait.

We tested association of the four SNPs (rs6816503,

rs1928529, rs1442017, and rs6048209) identified as the

genome-wide significance level in these four newly discov-

ered regions with fasting glucose levels in the AA popula-

tion of the ARIC study, using the same model that we

used in the EA population. The only significant SNP is

rs6048209 (MAF ¼ 0.042 and 0.39 in EAs and AAs, respec-

tively) at 20p11.21 (p value ¼ 5.4 3 10�3). We were not

able to design a real-time PCR assay to replicate

rs6048209 in other populations. Therefore, we chose

another SNP, rs1209523 (MAF ¼ 0.043 and 0.37 in EAs

and AAs, respectively), which is in strong LD (r2 ¼ 1.00

and 0.86 in the HapMap CEU data and ARIC EAs, respec-

tively) with and close (~3.1 kb) to rs6048209, for replica-

tion (Figure 2, Table 3). The SNP rs1209523 is associated
442 The American Journal of Human Genetics 86, 440–446, March 1
with fasting glucose levels in both EAs (p value ¼ 1.3 3

10-5) and AAs (p value ¼ 6.7 3 10-3) of the ARIC study.

We genotyped this SNP in both EAs (n ¼ 963) and AAs

(n ¼ 1,571) of the Dallas Heart Study (DHS),35 and we

confirmed that it was associated with fasting glucose levels

in both ethnic groups (p values ¼ 5.3 3 10-3 and ¼ 5.8 3

10-4, respectively) after controlling for population stratifi-

cation as described previously.36 This association was further

confirmed in the EA population (n ¼ 2862, p value ¼ 1.6 3

10-2) of the Cooper Center Longitudinal Study (CCLS).37

The direction of effect was constant across studies (Figure 3).

A fixed-effects meta-analysis of regression coefficients

weighting by the inverse of the variance38 estimated the

effect size to be �1.50, �1.16, and �1.31 mg/dl per minor

allele in EAs, AAs, and all samples, respectively; the corre-

sponding p values were ¼ 4.4 3 10-7, 4.0 3 10-6, and 2.2 3

10-11, respectively. The gene FOXA2 (MIM 600288), close

to this SNP, is a potential candidate. It is highly expressed

in liver and pancreas and is known to be involved in glucose

homeostasis (for a review, see 39).

In this study, we identified associations between less-

frequent SNPs near FOXA2 and fasting glucose levels in

a genome-wide scan by weighting hypotheses on the basis

of the MAF of SNPs, such that MAFs of less-frequent SNPs

counted more in assessing the FDR. The association signal

would have been missed with the use of the Bonferroni

correction or the BH procedure that equally weights each

hypothesis to control the global type I error rate at 0.05.

Careful examination of the MAFs and effect sizes explained

the findings. Among the five regions (2p23.3, 2q24.3,

7p13, 11q21, 20p11.21) confirmed to be associated with

fasting glucose levels in the EAs,28–34 the less-frequent

variant rs6048209 at 20p11.21 had the largest effect size

(Table S3), and thus it attained a compelling p value;

however, it did not meet the level of genome-wide signifi-

cance unless the MAFs were taken into consideration.

Recently, the Meta-Analysis of Glucose and Insulin-related

traits Consortium (MAGIC) reported association of 16 loci

with fasting glucose levels in 46,263 individuals of Euro-

pean descent from 21 cohorts;40 however, the region

20p11.2 was not in the list. Note that all SNPs with signif-

icant p values (%1.0 3 10-4) at 20p11.21 in the ARIC EA

population have low MAFs in EA and CEU populations

(Table S4); thus, their associations are less likely to be

detected as compared to the more frequent variants given

similar effect sizes. We speculate that this might be the

reason that the association between FOXA2 and fasting

glucose levels was not detected in the previous large-scale

European-ancestry-based GWAS. There appeared to be an

inverse relationship between MAF and effect size in these

five regions. We speculate that this relationship arose

because the MAF and effect size are inversely related given

a test statistic value.41 The data in this study is insufficient

to address the architecture of the trait. Compared to an

equal-weighting approach, the WBH method determines

the significance level accounting for the MAFs without

changing the effect size estimate. Therefore, it is subject
2, 2010



Figure 2. Association of SNPs at Chromosome 20p11.21 with Fasting Glucose Levels in the EA Population of the ARIC
Scatterplot of p values and LD structure of the region.
to the ‘‘winner’s curse,’’ and proper correction needs to be

done in power calculation for replication studies.

We performed a proof-of-principle simulation study

based on the genetic structure of the ARIC EA data to

investigate the empirical power of the WBH method.

A quantitative trait was simulated on the basis of the five

SNPs rs780094 (MAF ¼ 0.40), rs552976 (MAF ¼ 0.35),

rs2908289 (MAF ¼ 0.17), rs10830963 (MAF ¼ 0.28), and

rs6048209 (MAF ¼ 0.04), each being the top SNP at the
Table 3. Association between rs1209523 and Fasting Glucose Levels i

Study Ethnicity MAF p Value

Fasting Gluc

CC Genotype

N M

ARIC EA 0.043 1.3 3 10-5 6807 98

DHS EA 0.044 5.3 3 10-3 883 91

ACLS EA 0.037 1.6 3 10-2 2651 96

Subtotalb EA 4.4 3 10-7

ARIC AA 0.367 6.7 3 10-3 808 99

DHS AA 0.391 5.8 3 10-4 585 92

Subtotalb AA 4.0 3 10-6

Totalb EAþAA 2.2 3 10-11

MAF, minor allele frequency.
a Diabetic individuals were excluded.
b By a fixed-effects meta-analysis of regression coefficients weighting by the inve

The Ameri
five regions confirmed to be associated with fasting glucose

levels. These five SNPs account for 3.58% of total variance

of glucose levels in the real data, the ratio of individual

contributions being 0:99: 2:40 : 1:98 : 3:36 : 1:00. To keep

this variance components structure, we simulated the

ratio of effect sizes of the corresponding variants as

0:40 : 0:64 : 0:73 : 0:80 : 1:00 according to the formula

genetic variancef effect size2 x MAFð1�MAFÞ41,42 under

the assumption of an additive model at each locus and
n Five Populations

ose Levels (mg/dl)a

CT Genotype TT Genotype

ean 5 SD N Mean 5 SD N Mean 5 SD

.7 5 9.0 602 97.3 5 9.0 19 86.5 5 11.0

.9 5 11.8 76 88.4 5 11.0 4 79.0 5 5.6

.7 5 11.8 211 95.8 5 12.1 0 NA

.2 5 10.1 952 98.1 5 9.7 269 97.5 5 10.1

.5 5 13.8 742 91.5 5 11.6 244 88.5 5 10.8

rse of the variance.
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Figure 3. Association between rs1209523 and Fasting Glucose
Levels In Five Populations

Table 4. Empirical-Power Comparison of Three Procedures
Controlling for Global Type I error in 1000 Genome-wide Scans

Region

Method

Bonferroni BH WBH

2p23.3 0.413 0.540 0.773

2q24.3 1.000 1.000 1.000

7p13 1.000 1.000 1.000

11q21 1.000 1.000 1.000

20p11.21 0.422 0.549 0.774

The Bonferroni correction procedure controls the family-wise error rate at 0.05,
whereas both BH and WBH procedures control the false discovery rate at 0.05.
Abbreviations are as follows: BH, Benjamini and Hochberg procedure; WBH,
weighted Benjamini and Hochberg procedure.
between loci. One thousand data sets were simulated. We

performed genome-wide scans by using a linear regression

model and compared the empirical power of the three test

procedures—Bonferroni, BH, and WBH—to detect the five

regions associated with the trait at a genome-wide signifi-

cance level (Table 4). The weighting function was the

same as that in the real data analysis. The results showed

that the WBH procedure greatly increased the power of

detecting association of less-frequent variants with com-

pelling p values that fell short of genome-wide signifi-

cance. The power of detecting association of less-frequent

variants at 20p11.21 was 0.422 by Bonferroni correction,

and the WBH procedure increased the power to 0.774.

The results also indicated a situation in which the WBH

procedure could increase the power of detecting associa-

tion of common variants. When the significance level of

a common variant is close to that of a less-frequent one,

threshold relaxation by the WBH procedure might lead

to declaration of significance for both signals. The power

of detecting association of common variants at 2p23.3

was 0.413 by Bonferroni correction, and the WBH proce-

dure increased the power to 0.773.

In this study, we proposed using the WBH procedure to

increase the power of detecting association of less-frequent

variants in GWAS. Nonetheless, we wish to emphasis that

the WBH test is a prototype, not a panacea. Its properties in

GWAS should be further investigated. In this study, we

used a loss-weighting approach that places weights on

error rates according to the MAFs.11 This weighting scheme

does not change the order of hypotheses as compared to

an equal-weighting procedure, but the corresponding

adjusted p value43 is affected, with a larger weight count-

ing more in assessing FDR. As a result, not only the signal

of less-frequent SNP rs6048209 but also the signal of
444 The American Journal of Human Genetics 86, 440–446, March 1
common variant rs780094 (MAF ¼ 0.40) at 2p23.3, which

achieved the level of genome-wide significance only in

extremely large samples (>35,00028) because of small

effect size, were boosted to genome-wide significance.

Another approach is to weight the p value directly.9,44

This strategy would affect the order of hypotheses relative

to an equal-weighting procedure. It is conceivable that the

p value weighting method will be sensitive to the weight-

ing function chosen. Using the same weighting function

as that used in the loss-weighting method, the p value

weighting method detected fewer significant SNPs than

did the loss-weighting method in tests for association

with fasting glucose levels in ARIC EAs (data not shown).

Both weighting schemes have merits, and their advantages

and disadvantages in GWAS are worth investigating.

A well-accepted threshold for genome-wide significance

in GWAS is 5:0310�8, which corresponds to a family-wise

error rate of approximately 0.05, assuming ~1 million

independent hypothesis tests across the genome.45–47 To

achieve this level of significance, a large sample size will

be required for detecting the association of less-frequent

variants, even though their effect sizes are similar to or

larger than those of common variants. However, the

heterogeneity of consortia data may impair the power of

a study, and the less-frequent variants will always be infe-

rior to the common variants to be detected as long as all

hypotheses are equally weighted. In this study, the meta-

analysis p value attained genome-wide significance only

when all five samples were included; all signals in the 16

regions detected by the MAGIC were common variants.

Thus, weighting hypotheses by MAFs and other preknowl-

edge may provide a practical way for detecting association

of less-frequent variants, and we advocate using such

methods to reanalyze existing GWAS data, particularly

when independent samples are available for replication.

The proposed method is also applicable to meta-analysis,

provided that the samples are homogeneous in terms of

genetic background, such that MAFs from appropriate

reference populations can be used as weights. In this

study, we employed a frequentist approach; alternatively,

a Bayesian approach48,49 can be employed. To better
2, 2010



handle dependence between tests caused by LD structure,

future research should incorporate a weighted version of

the FDR control procedure under dependence.27

In summary, we employed a WBH procedure to detect

less-frequent variants associated with fasting glucose levels

in a GWAS. Our primary goal was to look specifically at

less-frequent variants, which are usually discarded in

GWAS and whose association signals typically cannot

meet the genome-wide significance by conventional

methods. We showed that considerable information on

less-frequent variants is included in a commercial array

based on randomly distributed SNP selection. Though

more complete coverage of the genome will capture more

variants of low frequency, we speculate that the issue of

low power in detecting association for less-frequent vari-

ants will remain because of sample size limitations. Efforts

to develop new methods to extract information regarding

less-frequent variants on the current arrays also have perti-

nence to the next-generation GWAS, in which larger

numbers of low-frequency variants will be included.
Supplemental Data

Supplemental Data include four tables and can be found with this

article online at http://www.ajhg.org.
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