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Abstract
Using an immersive virtual reality system, we measured the ability of observers to detect the
rotation of an object when its movement was yoked to the observer's own translation. Most
subjects had a large bias such that a static object appeared to rotate away from them as they
moved. Thresholds for detecting target rotation were similar to those for an equivalent speed
discrimination task carried out by static observers, suggesting that visual discrimination is the
predominant limiting factor in detecting target rotation. Adding a stable visual reference frame
almost eliminated the bias. Varying the viewing distance of the target had little effect, consistent
with observers under-estimating distance walked. However, accuracy of walking to a briefly
presented visual target was high and not consistent with an under-estimation of distance walked.
We discuss implications for theories of a task-independent representation of visual space.
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Introduction
The apparent stability of the visual world in the face of head and eye movements has been a
long standing puzzle in vision research. Much of the discussion of possible mechanisms has
focused on methods of compensating for rotations of the eye such as saccades (reviewed by
Burr, 2004), including evidence of neurons that appear to shift their retinal receptive field to
compensate for eye position with respect to the head (e.g. Duhamel et al., 1997); changes in
perceived visual direction around the time of a saccade (e.g. Ross et al., 2001); and
descriptions of a ‘stable feature frame’ that could describe the visual direction of features
independent of eye rotations (Feldman, 1985; Bridgeman et al., 1994; Glennerster et al.,
2001).

There have been fewer proposals about the type of representation that observers might build
when the head translates in space. This is a more difficult computational problem than for
the case of pure rotations of the eye. For one thing, the depth of objects must be known in
order to ‘compensate’ for a head translation. The visual system must maintain some
representation of a scene that is independent of observer translation. Cullen (2004) provides
a recent review of relevant neurophysiological evidence. However, there are few detailed
proposals about what form the ‘stable’ representation might take. It could include the world-
centred 3-D coordinates of points, in which case there must be a coordinate transformation
from the binocular retinal images into this frame. There are suggestions that such a
transformation may not be required and that a ‘piece-wise retinotopic’ map could be
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sufficient for navigation (e.g. Franz and Mallot, 2000) or perception of depth (Glennerster et
al., 2001). However, these ideas have not yet been developed into a detailed model.

There have also been fewer psychophysical studies addressing the consequences of head
movements than there have been for eye movements. This is due in part to the practical
difficulties involved in psychophysical investigations using a moving observer. In studies
where observers move their head, the focus has often been on the perception of surface
structure or orientation (e.g. Rogers and Graham, 1982; Bradshaw and Rogers, 1996;
Wexler et al., 2001b) but this is not the same as detecting whether an object moves relative
to a world-based reference frame. A number of early studies investigated the perception of
static objects as the observer moved. With no ability to move the object, they were limited in
the measurements that could be made, but it was shown that mis-perceptions of the distance
of a point of light induced by changes in convergence (Hay and Sawyer, 1969), convergence
and accommodation (Wallach et al., 1972) or by presentation of the light in a dark room
(Gogel and Tietz, 1973, 1974; Gogel, 1990) gave rise to perceptions of the light as
translating in space with (or against) the observer as they moved, in a manner explicable
from the observer's incorrect judgement of distance.

Using a far more ambitious experimental setup, Wallach et al. (1974) did succeed in yoking
the movement of an object to the movement of the observer, though in this case it was
rotation of the object rather than translation. A mechanical apparatus connected a helmet
worn by the observer to the target object via a variable ratio gear mechanism, allowing the
experimenter to vary the rotational gain of the target. Thus, with a gain of 1, the target object
rotated so as to always present the same face to the observer, with a gain of −1 it rotated by
an equal and opposite amount and with a gain of zero the ball remained stationary. They
found that a gain of as much as ±0.45 was tolerated before observers reported that the object
had moved.

Wexler and colleagues have also used the technique of yoking an object's movement to the
observer's movement to study the perception of stability. Wexler (2003) varied the gain with
which an object translated as the observer moved towards it. Subjects judged whether the
object moved in the same direction as their head movement or in the opposite direction.
Wexler was primarily interested in the difference in perception produced by active or
passive movement of the observer. Overall in these papers, Wexler and colleagues have
shown that active movement alters observers' perceptions by resolving ambiguities that are
inherent in the optic flow presented to them (Wexler et al., 2001a,b; van Boxtel et al., 2003;
Wexler, 2003).

Rather than vary the proprioceptive information about observer movement, we have, like
Wallach et al. (1974), examined the role of visual information in determining the perception
of an object as static in the world. We have expanded their original experiment using an
immersive virtual reality system. The advantages of our apparatus are that (i) the observer is
free to move as they would when exploring a scene naturally, (ii) we have greater flexibility
to yoke movements of the target object to certain components of the observer's movement
and not others, (iii) we can manipulate different aspects of the virtual environment. Wallach
et al. (1974) concluded that: there is a “compensating process that takes the observer's
change in position into account” and that this process “emerges from our measurements as
rather a crude process”. They found no significant effect on performance of adding a visual
background and no consistent bias in observers' perception of stability (though their
psychophysical method was too crude to measure this properly). Our findings challenge all
these conclusions. We find that large biases are one of the most striking aspects of people's
perception of stability as they move round an isolated object.
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Methods
Subjects

All subjects had normal visual acuity without correction. In experiments 1 and 2, subjects
were naïve to the purposes of the experiment other than subject LT (author). Two subjects
(JDS and PHF) had not taken part in psychophysical experiments before. In experiment 3,
the three authors acted as subjects.

Equipment
The virtual reality system consisted of a head mounted display, a head tracker and computer
to generate appropriate binocular images given the location and pose of the head. The
Datavisor 80 (nVision Industries Inc, Gaithersburg, Maryland) head mounted display unit
presents separate 1280 by 512 pixel images to each eye using CRT displays. In our
experiments, each eye's image was 72° horizontally by 60° vertically with a binocular
overlap of 32°, giving a total horizontal field of view of 112° (horizontal pixel size 3.4 arc
min). The DV80 has a see-through mode that allows the displayed image to be compared to
markers in the real world using a half-silvered mirror. This permits calibration of the
geometry of the display for each eye, including the following values: horizontal and vertical
resolution and field of view; the 3-D location of the optic centre (projection point) of each
display relative to the reported location of the tracker and the direction of the principal ray
(the vector normal to the image plane passing through the optic centre) for each eye's
display. The calibration was verified by comparing the location of real world points with
virtual markers drawn at these locations. The 3-D location of the points must be known in
the coordinate frame used by the tracker. We used the ultrasound emitters of the tracking
system. In the experiment, the head mounted display was sealed, excluding light from the
outside.

The location and pose of the head was tracked using an IS900 system (Intersense Inc,
Burlington, Massachusetts). This system combines inertial signals from an accelerometer in
the tracker with a position estimate obtained from the time of flight of ultrasound signals.
Four ultrasound receivers are attached to the tracker, while more than 50 ultrasound emitters
placed around the room send out a timed 40kHz pulse sequence. The data are combined by
the Intersense software to provide a six degrees of freedom estimate of the tracker pose and
location and are polled at 60Hz by the image generation program. Knowing the offset of the
tracker from the optic centres of each eye, the position and pose of the head tracker allow
the 3-D location of the two optic centres to be computed. These are used to compute
appropriate images for each eye. Binocular images were rendered using a Silicon Graphics
Onyx 3200 at 60 Hz.

We have measured the temporal lag between tracker movement and image display as 35 ms.
This was done by comparing the position of a moving tracker with its virtual representation
captured on a video camera. We have measured the spatial accuracy of the IS900 tracker as
approximately 5 mm rms for speeds of movement used in our experiments (Gilson et al.,
2003).

Stimulus and task
In the virtual scene, observers viewed a normal sized football (approximately 22cm
diameter, see figure 1a) at a viewing distance of approximately 1.5m from the observer's
starting position. Observers were prevented from approaching the target by a table placed
between them and the target (but not visible in the virtual scene). The table was
approximately 2m wide and guided their movement, ±1m from side to side. Lateral
movement beyond this range caused the target ball to disappear. Observers were permitted
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to walk back and forth as many times as they wished but, after the first few trials, observers
normally did so only once before making their response. Subjects were instructed to fixate
the ball as they walked.

The target rotated about a vertical axis as the observer moved (its centre point remained
fixed). The amount of rotation was linked to the observer's movement by different gains on
each trial. When the gain was +1 the ball rotated so as to always present the same face to the
observer (see figure 2), i.e. the ball moves ‘with’ the observer. A gain of −1 would give rise
to an equal and opposite angular rotation, i.e. the ball moves ‘against’ the observer. When
the gain was zero the ball remained static. Any vertical movement of the observer had no
effect on the ball's rotation. The rotation of the ball depended only on the component of the
observer's movement in a lateral direction, as shown by the arrows in figure 2.

The subject's task was to judge whether the ball moved ‘with’ or ‘against’ them as they
moved. No feedback was provided. After the subject indicated their response, by pressing
one of two buttons, the target football disappeared. It reappeared after a delay of 500 ms.
The surface of the ball had no specular component since this would enable subjects to detect
movement of the ball by judging the motion of features on the ball relative to the specular
highlight. The ball had a random initial pose at the start of every trial to prevent subjects
comparing the position of a particular feature from trial to trial.

Psychometric procedure
The first run or block of trials in each condition tested gains, presented in random order from
the range −0.5 and 0.5 (increments of 0.1, i.e. 11 different gain values). A run consisted of
55 trials, with each gain value tested 5 times. The range of the next run was determined by
the observer's bias on the previous run, following a semi-adaptive procedure for deciding the
range of gain values to be tested during a run (Andrews et al., 2001). At least eight runs
were performed for each scene so that the minimum number of trials per psychometric
function was 440. For each scene, the observer's responses were plotted against the rotation
gain of the target. A cumulative Gaussian curve was fitted to the data using probit analysis
(Finney, 1971) to obtain the bias (or point of subjective equality) and the threshold (standard
deviation of the fitted Gaussian). Error bars shown on the psychometric functions (figures 2
and 4) show the standard deviation of the binomial distribution. Error bars on the histograms
of bias and threshold show 95% confidence limits of bias and threshold from the probit fit.

Experiment 1a: Detecting the movement of a yoked target
We examined the claim by Wallach et al. (1974) that the addition of a static environment
around a yoked target did not affect subjects' perception of stability of the target. The static
stimulus they used was a background of vertical stripes 40 cm behind the yoked target
object. However, Wallach et al. (1974) did not use a forced choice procedure, measure
psychometric functions or present data on individual subjects. We measured the bias and
threshold of observers' responses when judging the direction of rotation of a yoked ball
when the ball was presented alone or in the presence of a surrounding static scene. The static
scene consisted of a virtual room with walls 1m from the ball and two other footballs close
to the target ball (see ‘rich cue’ scene in figure 1d). For one observer, we measured
performance for intermediate scenes, with static objects close to or distant from the yoked
target (figure 1b and c).

Figure 3a shows the biases and thresholds for observers in the ‘target alone’ and ‘rich cue’
conditions. All four subjects show a large positive bias when the ball was presented alone.
That is, when subjects perceived the ball to be stationary it was in fact rotating to face them
with a gain of 25-45%. Wallach et al. (1974) did not report this result, although their data
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are consistent with a small positive bias. Our data are also consistent with the direction and
magnitude of bias found in a related experiment by Wexler (2003) (see discussion of
experiment 2 and figure 9). Note that we did not find the large positive bias in all subjects.
In a separate experiment manipulating viewing distance (experiment 2, figure 8) one subject
had biases close to zero.

It is clear from figure 3a that a static background can have a dramatic effect on subjects'
perception of stability. For all four subjects, biases for the ‘rich cue’ condition are around
5%, far lower than when the target is presented alone. This is perhaps not surprising, given
that subjects can use the relative motion between the target and static objects as a cue, but it
is contrary to the conclusion of Wallach et al. (1974). Figure 3b shows the corresponding
thresholds for these judgements. As in the case of biases, for all four subjects, thresholds
(shown by the histogram bars) are better in the ‘rich cue’ than the ‘target alone’ condition.
However, the effect of the stable visual background on thresholds is considerably smaller
than for biases.

It might be suggested that the 35 ms latency between head movement and visual display
could be a cause of the large positive biases. We found this not to be the case. Two subjects
repeated the ‘target alone’ condition with two different latencies, 50 ms and 10 ms. The 50
ms latency was the result of using a different (IS900 Minitrax) receiver. The 10 ms latency
was achieved by using a predictive algorithm for head position supplied by the IS900
tracking system. We have confirmed the latency using the method described above. In one
subject, the reduction in latency led to an increase in the bias (by 0.05), while in another
subject there was a small decrease (by 0.01).

Different measures of threshold
The histogram bars and the diamonds in figure 3b show thresholds for the same data
calculated by different methods, as follows. The first method is to fit a cumulative Gaussian
to the entire data set for one condition (440 trials, see figure 4a). These thresholds are shown
as bars in figure 3). The second method is to fit a cumulative Gaussian to the data for each
individual run of 55 trials and calculate the average (root mean square) of the thresholds for
all 8 runs. These thresholds are shown as diamonds. If there is a significant variation in the
bias for different runs then the threshold according to the first method can be substantially
larger than the second. This was the case in the ‘target alone’ condition for subject LT, as
the inset to 4a shows: there was a systematic drift in the bias to progressively larger values
across runs causing the averaged data to have a shallower slope than any of the individual
runs. Note that this systematic drift in bias was due in part to the fact that the range of cues
presented was varied according to the subject's responses on previous runs (see Methods).
For all four subjects, the root mean square thresholds (diamonds) are lower than the
thresholds obtained from the combined data (bars) in the ‘target alone’ condition, consistent
with drifting biases in each case. There is less difference between the different threshold
measures for the ‘rich cue’ condition, presumably because subjects used the relative motion
between target and static background to help make their judgements.

Intermediate conditions
Figure 5 shows data for one subject for the conditions shown in figure 1b and 1c which
provide more information than the ‘target alone’ but less than the ‘rich cue’ condition. When
the reference football is adjacent to the target the bias is close to zero. This suggests that the
most important components of the static environment shown in the ‘rich cue’ condition are
likely to be the objects close to the target, as would be expected if relative motion is an
important cue.
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Experiment 1b: Low level limits on performance
Wallach et al. (1974) described the range over which subjects perceived no rotation as
‘large’ but gave no indication of the range that might be expected. It is possible to ask
whether observers' thresholds in this task are congruent with thresholds that would be
measured for an equivalent visual task in which the observer does not move and is not asked
to make a judgement about the allocentric pose of the object. The task in the walking
experiment relies on observers making a speed discrimination judgement. We measured
thresholds when this was the only element of the task.

Specifically, subjects were seated while wearing the head mounted display and saw a
football presented alone at a viewing distance of 1.5m, as illustrated in figure 1a. On each
trial, the subject saw the images that they would have seen had they moved along a circular
path centred on the football and always facing towards it. The simulated observer's speed
varied according to a cosine function, slowing down at either extremity of the path. The
amplitude of the trajectory was ±45° around the circle. In fact, both subjects perceived the
ball to rotate about a vertical axis rather than perceiving themselves to be moving around the
ball. The simulated observer's location was static for 1s at the beginning of the trial, it
moved through a single oscillation lasting 3s and then the ball disappeared until the subject
made their response, triggering the next trial.

On different trials, the ball had different rotation gains relative to the simulated observer's
translation, as in the previous experiment. The subject's task was to judge whether the
rotation speed of the ball on a particular trial was greater or smaller than the mean rotation
speed in the run. We again used a method of constant stimuli except that in a run of 130
trials the responses from the first 20 trials were discarded. This allowed subjects to view
sufficient trials to judge the mean rotation speed. In this type of paradigm, subjects are
known to be able to make comparisons of a stimulus relative to the mean of a set of stimuli
with as much precision as when the standard is shown in every trial (McKee et al., 1990;
Morgan et al., 2000)). We measured thresholds for this task for a range of different rotation
gains.

As described above, a rotation gain of 1 means that the image of the ball does not change as
the simulated observer moves, while a rotation gain of 0 means that the virtual ball is static.
However, since subjects perceived themselves to be static, the ball would appear static for a
gain of 1 and to rotate in the opposite direction for a gain of 0. In the case of a gain of 0, the
maximum retinal speed generated by the ball would be 1 degree of visual angle per second.
In fact, we used mean gains of 0.9, 0.8, 0.6, 0.2 and −0.6 in different runs, corresponding to
retinal speeds of 0.1, 0.2, 0.4, 0.8 and 1.6 times the speeds of a ball with a gain of 0.

The results are shown in figure 6 for two observers (closed symbols). Thresholds rise with
the mean rotation speed of the ball relative to the observer. The slope of the functions
relating threshold to mean speed is 0.59 for subject LT and 0.89 for subject AG. The
thresholds approach Weber's law (a slope of 1) at the highest speeds. Also shown, as open
symbols, are the thresholds measured in the experiment where subjects walked to and fro
viewing the target football with no background (re-plotted from figure 3b and, for subject
AJMF, from figure 8). Each subject had a slightly different bias, and hence a different
rotational gain at the point of subjective equality even if they walked at the same speed. We
have used this rotational gain to plot their thresholds alongside the static observer data in
figure 6.

This control condition demonstrates that the thresholds for “constancy of object orientation”
(as Wallach et al., 1974, described them) are similar in magnitude to those measured for a
low-level speed discrimination task that is intrinsic to the judgement of object stability. Far
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from being a “crude”, active process, the detection of object motion that occurs while the
observer is moving appears to be almost as precise as speed discrimination thresholds allow
and hence noise from any subsequent stage of the task must be low.

Experiment 2: Mis-estimation of viewing distance or distance walked?
In experiment 1, when the target football was presented alone, all observers perceived a
stationary football to be rotating ‘against’ them. In this experiment, we explored possible
reasons for the bias, namely that subjects perceive the ball to be further away than it really is
or under-estimate the distance that they have walked. Figure 7 illustrates how each of these
mis-estimates could give rise to a positive bias.

The explanations illustrated in figure 7 rely on an assumption that the observer perceives the
ball to be stationary (not translating). Several investigators have investigated situations in
which stationary objects are perceived to translate as the observer moves their head back and
forth (Hay and Sawyer, 1969; Wallach et al., 1972; Gogel and Tietz, 1973, 1974). The
direction of perceived translation depends on whether the object is misperceived as closer or
more distant than its true distance (Hay and Sawyer, 1969; Gogel and Tietz, 1973)
consistent with subjects accurately estimating (i) the distance they moved their head and (ii)
the angle of rotation around the object (the change in visual direction of the object). By
contrast, in all the experiments described here, observers' subjective reports were that the
target object appeared to be fixed in space (not translating). We have carried out other
experiments, in which the ball translated laterally, yoked to the observer's translation. In
those experiments (not reported here), observers did perceive the ball to be translating as
they moved when the gain was non-zero (±0.5)1. In the present experiment, given that the
ball was perceived to remain in one location, possible interpretations of the point of
subjective equality are illustrated in figure 7 and figure A1 in the Appendix2.

If the cause of the bias is a mis-estimation of viewing distance, then one would expect the
size of the bias to vary with viewing distance in a way that is consistent with previous
experiments. These studies have generally found that close distances are over-estimated and
far distances are under-estimated with a distance between the two, sometimes called the
‘abathic distance’ or ‘specific distance’, at which viewing distances are estimated correctly
(Ogle, 1950; Gogel, 1969; Foley, 1980). The method is often indirect, so that the judgement
the observer makes is one of shape rather than distance (e.g. Johnston, 1991; Cumming et
al., 1991). Ogle (1950) found that the shape of an apparently fronto-parallel plane was
convex at distances closer than about 5m and was concave at distances greater than this,
corresponding to an overestimate of near and an underestimate of far distances. Johnston
(1991) found a similar result using a different shape judgement, although in this case the
‘abathic distance’ was approximately 1m. There is other evidence that the absolute value of
the abathic distance varies with the subject's task (see review by Foley, 1980). However, all
these cases can be interpreted as showing a ‘compression of visual space’, i.e. an
overestimate of near and an underestimate of far distances. We repeated the ‘target alone’
condition of the previous experiment at different distances to see whether the same type of
distortion of space could explain our results.

1Since translational gain was not varied in our experiment, there may have been a tendency to assume that the object was not
translating. This does not necessarily imply that the bias would be zero if translational gain were varied on every trial and subjects
judged the direction of translation as they moved. By the same token, one would expect that if translational and rotational gains and
viewing distance were to be varied from trial to trial, subjects would find the task of judging direction of translation and rotation
extremely difficult, because assumptions about translational or rotational stability would no longer be valid.
2If observers had perceived correctly the angle by which they had rotated around the object (angle θ in figure A1) but mis-estimated
either the distance walked or the viewing distance, then they should have perceived the ball to translate. In this case, one would expect
a bias of zero on the rotation task.
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Figure 8a shows the biases for viewing distances of 0.75, 1.5 and 3m. The definition of a
gain of 1 still implied that the ball rotated to face the observer. Thus, for a given distance
walked, a gain of 1 corresponds to a smaller rotation of the ball when the viewing distance is
large. The biases for subjects LT and JCM are large and positive at all three viewing
distances, as in experiment 1. (Their data for 1.5m is re-plotted from figure 3a, the ‘target
alone’ condition in experiment 1.) By contrast, the biases for subject AJMF are close to
zero. Despite this variability between subjects, figure 9 shows how all the data can be used
to assess the hypotheses described above. It shows the biases in figure 8a converted into
estimated viewing distance and estimated distance walked, calculated as described below.

Converting biases into distance estimates
The biases in figure 8a can be converted to an estimated viewing distance if one assumes
that the observer estimates correctly the distance they walk and that they perceive the centre
of the ball to be stationary in space (as discussed in Experiment 2). Estimated viewing
distance, D′, is given by:

(1)

where D is the true viewing distance, β is the bias, θ = arctan(x/D) and x is the lateral
distance walked from the starting position (see Appendix for details). Estimated viewing
distance, D′, is plotted against real viewing distance, D, in figure 9a. It is possible that
observers make their judgements on the basis of a small head movement rather than the
whole ±1m excursion in which case small angle approximations apply and the estimated
viewing distance is given by D′ ≈ D/(1 − β). As figure 9a shows (square symbols), these
values are only slightly different. The estimated viewing distances for AJMF are close to
veridical, corresponding to the small biases shown in figure 8a. The larger positive biases
for observers LT and JCM give estimated viewing distances that are greater than the true
viewing distance and which increase with increasing viewing distance. This trend is the
reverse of that expected from previous experiments (Ogle, 1950; Foley, 1980; Johnston,
1991).

The second possible explanation of biases in the ‘target alone’ conditions is that subjects
mis-estimate the distance they have walked. The ratio of estimated lateral distance walked, x
′, to real distance walked, x, is given by:

(2)

as shown in the Appendix. As before, if subjects use information from only a short head
movement then the equation can be simplified. Here, x′/x ≈ (1 − β), shown by the squares in
figure 9b.

Figure 9b shows estimated distance walked, x′/x, for the three conditions tested in
experiment 2. Although there are differences between subjects, for each subject the extent to
which distance walked is mis-estimated is almost constant across viewing distance. This
makes mis-estimation of distance walked a plausible explanation of the biases. It has the
advantage over the viewing distance hypothesis that it does not contradict results of earlier
experiments.

In fact, the conclusion that subjects mis-estimate distance walked is consistent with data
from a related experiment (Wexler, 2003). For the purposes of comparison, we have plotted
the estimate of distance walked derived from Wexler's experiment in figure 9b (arrow). In
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Wexler's experiment, as in ours, observers judged whether an object moved ‘with’ or
‘against’ them as they moved, although in their case the target object translated rather than
rotated. The target was presented alone and, as in our experiment, subjects displayed a large
bias. Wexler (2003) found that for the conditions in which observers moved their head the
underestimation of distance moved was about 40%, very close to the values found for
subject LT and JCM.

Experiment 3: Walking to a virtual target
Walking to a remembered visual target requires an estimate of viewing distance and an
estimate of distance walked. The task has been used on numerous occasions as a measure of
the visual representation of space (Thomson, 1983; Elliott, 1987; Rieser et al., 1990;
Steenhuis and Goodale, 1998; Sinai et al., 1998; Loomis et al., 1998, 1992; Ooi et al., 2001),
including the effects of immersive virtual reality on distance perception (Witmer and
Sadowski, 1998; Loomis and Knapp, 2003).

In our experiment, subjects (the three authors) viewed a football of the same size and type as
in Experiments 1 and 2 placed at the observer's eye height at a distance of 0.75, 1.06, 1.5,
2.12 and 3 m from the observer. The football was only visible when the observer was within
a viewing zone 0.5 m wide by 0.1 m deep. The viewing zone was narrow so that as soon as
the observer moved forward the football disappeared. They were instructed to continue
walking until they judged that a point midway between their eyes coincided with the
location at which the centre of the football had been displayed. The subject then pressed a
button on a handheld wand, the location of the subject's cyclopean point was recorded and
the trial terminated.

We ran two conditions. In one, the football was presented alone, as in the target-alone
condition in Experiment 1 and 2. Thus, once the subject had left the viewing zone they were
in complete darkness until they pressed a button to end the trial. In the other condition, the
ball was presented within a wire-frame room (like the one shown in figure 1b) which
remained visible throughout the trial. In this case there were many visual references that
subjects could use to tell them when they had reached the previous location of the ball. From
trial to trial the location of the football was varied. Each of the 5 viewing distances were
tested 5 times within a run. We ran 10 trials for each distance in each condition.

Figure 10 shows data for three subjects. Most of the data lie close to the dashed line
indicating accurate walking. The regression slopes for the data shown in figure 10 are 0.92,
0.78, 0.88 (SJG, AG, LT) for trials in which a background was visible and 0.91, 0.74 and
0.83 when no background was present. Distances closer than 2m tend to be over-estimated
(as measured by subjects' walking) while further distances are under-estimated. A three way
ANOVA shows a significant effect of distance walked (understandably) and also of subject
(F(2,299) = 48; p < 0.01). We found no significant effect of the background being present or
absent (F(1,299) = 1.6; p > 0.2).

Philbeck and Loomis (1997) carried out a similar experiment, measuring walking distance to
previously displayed visual targets at eye level in the dark and under full cue conditions.
They found accurate walking under full cue conditions but much poorer performance in the
dark. The reason that they found a large effect of removing the background while we did not
is probably that their stimulus had a constant angular size while we used the same familiar
football at all distances (as we did in our other experiments).

Figures 7 and 10 show radically different plots of estimated viewing distance against real
viewing distance for the rotating football and walking tasks. To explain the data in figure 10,
the hypothesis was raised that observers might under-estimate the distance they had walked,
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particularly for the more distant targets. By contrast, the data in Figure 10 from the walking
experiment suggest, if anything, that for the more distant targets observers over-estimate the
distance they have walked (they stop too early). The walking data are compatible, instead,
with an abathic or specific distance hypothesis (Ogle, 1950; Gogel, 1969; Foley, 1980) in
which near objects are perceived to be further than their true distance while distant objects
are perceived to be closer.

The fact that very different patterns of estimated distance are observed for two tasks, despite
similar cues being available, is evidence that the visual system does not use a common
‘perceived distance’ to underlie both tasks. (The converse logic has been used to argue for a
common representation of distance, (e.g. Philbeck and Loomis, 1997; Foley, 1977).) Instead,
different cues might be important in the two tasks. The issue of task-dependent judgements
is taken up in the Discussion.

Discussion
We have examined people's perception of a set of images that, taken alone, are compatible
with movement of the object, the observer or both. Extra-retinal information about vergence
and proprioception could distinguish these in theory but we have found that subjects show
large biases in their judgements, tending to see a static ball rotate away from them as they
move round it (see figures 3 and 8). The ability to use relative motion between the target and
static objects dramatically improved observers' biases (figure 4). Thresholds for the task are
within the range expected given the sensory demands for this judgement (figure 6).

All of these conclusions contrast with those of Wallach et al. (1974) in their earlier study
yoking target rotation to observer movement. First, they described the process responsible
for ‘constancy of object orientation’ as ‘crude’, whereas we show that observers are about as
good at the task as can be expected given that the judgement requires different speeds to be
discriminated. Of course, thresholds for detecting that the ball moved are very much greater
than if the observer had remained static. However, using an object-centred measure of
thresholds rather than a retina-centred measure would be mis-leading, as has been pointed
out in other contexts (e.g. Eagle and Blake, 1995).

Second, the psychometric procedure Wallach et al. (1974) used is not well suited to
measuring bias, there is no consistent evidence for a bias in their data and the authors make
no mention of a bias. By contrast, we find that when the target is presented alone, subjects'
biases are the most striking feature of their responses (figure 3). Third, they found no
significant effect of adding a static background and concluded that the process of
compensating for movement of the observer was primarily driven by proprioceptive inputs.
We found, instead, that relative motion between the target and objects that are static in the
virtual world is an important cue that produces large changes in observers' perception of
stability. The strong influence of reliable visual cues on the bias is perhaps not surprising
and fits with cue combination models (Clark and Yuille, 1990; Landy et al., 1995; Ernst and
Banks, 2002), but Wallach et al. (1974) described an active compensation process that was
independent of visual cues.

We have considered two possible causes of the large biases that occur when the object is
presented alone. One is an over-estimation of the distance of the target. The other is an
under-estimation of the distance walked (see figure 7). Our results do not fit with previous
results on a mis-estimation of distance which have shown, using a variety of tasks, that
subjects tend to over-estimate near distances and under-estimate far distances, with a cross-
over point at some ‘abathic’ distance (e.g. Foley, 1980; Johnston, 1991; Glennerster et al.,
1996). In order to explain the biases in our experiment within the same framework, one
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would have to postulate a quite different pattern of estimated viewing distances: an
expansion of visual space rather than a compression around an abathic distance (see figure
9a).

On the other hand, the explanation that subjects mis-estimate the distance that they walk fits
both our data and that from a previous experiment (Wexler, 2003) in which observers judged
whether an object was translating towards or away from them when that movement was
yoked to their own head movement. For each subject in our experiment, the extent to which
distance walked was mis-estimated remained constant across viewing distances (figure 8b).
For two subjects, the mis-estimation was a factor of about 40%, very similar to the mean
value found for subjects in Wexler's study.

The conclusion that subjects under-estimate the distance they have walked when carrying
out the rotating object task seems at odds with the results we obtained when subjects walked
to a previously displayed target (figure 10). Here, in line with data in similar studies (e.g.
Witmer and Sadowski, 1998; Loomis et al., 1998; Loomis and Knapp, 2003), the direction
of the biases in the walking task indicates, if anything, the reverse (an over-estimation of
distance walked for more distant targets). However, walking to a remembered location is a
quite different task from judging the visual consequences of moving round an object. There
is no logical necessity that performance on one task should be predictable from the other. A
purely task-dependent explanation of the rotation bias we have found makes it unnecessary
to discuss the underlying cause in terms of mis-estimating object distance or distance
walked. If it is not possible to generalise about a mis-estimation of walking distance to other
tasks, then it may be more appropriate to describe the bias in terms that are much closer to
the data (e.g. simply as a mis-estimate of the angle the observer walks round the target,
angle θ in figure A1).

The extent to which performance in spatial tasks is task-dependent remains to be
determined. There is some empirical evidence that supports the idea of a single
representation underpinning performance in a number of different tasks (see reviews by
Gogel, 1990; Loomis et al., 1996). On the other hand, there is psychophysical evidence for
quite different performance in different tasks suggesting that either different representations
of distance or different algorithms are used depending on the task with which the observer is
faced (Glennerster et al., 1996; Bradshaw et al., 2000). There are also good theoretical
reasons for using different information for different tasks (e.g. Schrater and Kersten, 2000).
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Appendix
Here we give the derivations of equations 1 and 2 for ‘estimated viewing distance’ and
‘estimated distance walked’ plotted in figure 9.

The estimated viewing distance of the yoked object can be calculated from the bias (the
rotation gain at which the ball was perceived to be stationary) if it is assumed that the
subject estimates correctly the distance they have walked. As can be seen from figure A1a,
the distance walked, x, is given by

(A1)
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where D is the real distance of the target ball at the start of the trial and θ is the angle
between the line of sight to the ball at the start of the trial and the line of sight after walking
laterally by distance x. When the ball rotates with a certain rotation gain, g, the angle
through which the line of sight moves relative to the ball is θ(1 − g). For example, for a gain
of 1 the view does not change; for a gain of 0 the line of sight moves through an angle θ. Let
β be the bias, i.e. the gain at which observers perceive the ball to be stationary. As figure
A1a illustrates, if observers perceive the ball to be at distance D′ and they perceive the
distance they walk correctly as x, then:

(A2)

Equation 1 follows from equations A1 and A2.

Similarly, the estimated distance walked can be calculated from the bias if it is assumed that
the subject estimates the viewing distance of the target correctly. As can be seen from figure
A1b, the distance of the object D, is given by

(A3)

from which equation 2 follows.

Figure A1. Assumptions used in calculating estimated viewing distance and distance walked
D is the real distance of the target ball at the start of the trial, θ is the angle between the line
of sight to the ball at the start of the trial and the line of sight after walking laterally by
distance x and β is the subject's bias. In (a), D′ is the estimated viewing distance of the
target assuming x is judged correctly. In (b), x′ is the estimated distance walked assuming D
is judged correctly. D′ and x′ are plotted in figure 9 for the conditions tested in experiment
2.
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Figure 1. Different backgrounds
The central, target football rotated around a vertical axis as the observer moved. The gain of
this yoked movement varied from trial to trial, as described in the text. Observers judged the
direction of rotation, as ‘with’ or ‘against’ them, as illustrated in figure 2. The walls of the
room and the other footballs shown in (b), (c) and (d) were static throughout. Results for the
‘target alone’ condition, (a), and the ‘rich cue’ scene, (d), are shown in figure 3. Results
when the target was presented just with a background, (b), and when a static reference was
presented adjacent to the target, (c), are shown in figure 5.
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Figure 2. An example psychometric function
The proportion of trials on which the subject responded that the target ball had moved ‘with’
them as they moved is plotted against the rotation gain of the ball. As shown in the diagrams
below, when the gain is 1 the ball rotates so as to always face the observer, when it is −1 the
ball has an equal and opposite rotation and when the gain is 0 the ball remains static. The red
line is included in order to illustrate the rotation of the ball. The bias, or shift in the 50%
point, indicates the rotation gain at which the subject perceived the ball to be stationary as
they moved. The threshold is the standard deviation of the fitted cumulative Gaussian.
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Figure 3. Results from experiment 1
Biases (a) and thresholds (b) are shown for four observers when the yoked target football
was presented alone (red) or in the ‘rich cue’ environment (green) which consisted of a static
background and adjacent static objects (see figure 1a and d). Biases and thresholds are given
as rotation gains (see figure 2) and hence have no units. The white diamonds show the
average (root mean square) threshold for individual runs (see text and figure 4 for
explanation).
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Figure 4. Thresholds raised by a drifting bias
Psychometric functions for the data of subject LT shown in figure 3b for (a) the ‘target
alone’ condition and (b) the ‘rich cue’ condition. These illustrate how thresholds for
individual runs of 55 trials were similar across runs in both conditions (see insets). The
values of the root mean square thresholds for the two conditions are plotted in figure 3b
(subject LT). However, because the bias has drifted between runs in the ‘target alone’
condition, the psychometric function for the combined data in (a) has a shallower slope, i.e.
a higher threshold, than in (b).
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Figure 5. Other backgrounds
Bias and thresholds in experiment 1 for one subject using all four types of background
shown in figure 1. The labels (a) to (d) correspond to the labels of the conditions illustrated
in figure 1. Data for the ‘target alone’, (a), and ‘rich cue’ conditions, (d), are re-plotted from
figure 3. (b) shows data for the target football with a static room. (c) shows data for the
target with an adjacent static football. The white diamonds show average thresholds across
individual runs, as in figure 3. The asterisk (column (a), thresholds) shows data for a control
condition in which the subject remained static, as described in the text.
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Figure 6. Speed discrimination thresholds
Results of experiment 1b showing the thresholds for determining whether a ball is rotating
faster or slower than the mean speed across trials. Thresholds are given in terms of gain (no
units) as in experiment 1a. Thresholds from experiment 1a are re-plotted as open symbols
(see text). The abscissa shows rotation speeds in the image, where all rotation speeds are
given relative to the situation in which the ball is stationary and the simulated observer
moves round it (this corresponds to 1 on the abscissa). A gain of 1 would lead to no image
motion and correspond to 0 on this axis. In general, rotation speed is (1 − g), where g is the
rotation gain of the ball.
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Figure 7. Possible causes of bias in the ‘target alone’ condition
A positive bias can be attributed to either a) an overestimate of distance to the target or b) an
underestimate of the distance walked. In either case, the subject expects their view of the
ball to change by a smaller amount than would be the case if their estimate was correct.
Hence, the ball they see as stationary is one that rotates ‘with’ them.
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Figure 8. Results of experiment 2
The ‘target alone’ condition from experiment 1 (1.5m) repeated at 0.75 and 3m viewing
distances. For subjects LT and JCM, the bias and thresholds for 1.5m viewing distance is re-
plotted from figure 3. Figure 9a shows how the bias data here can be related to the two
hypotheses illustrated in figure 7.
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Figure 9. Tests of the hypotheses in figure 7
(a) Data from figure 8 re-plotted to show the estimated viewing distance that would account
for the rotation perceived as static if other parameters were judged correctly (equation 1). (b)
The same data re-plotted but now assuming that distance walked is mis-estimated. The
ordinate shows estimated distance walked normalised by the true distance walked (x′/x,
equation 2). The squares show, in corresponding colours for each subject, (a) estimated
viewing distance and (b) estimated distance walked assuming that subjects make their
judgement on the basis of a short translation rather than the ±1m maximum excursion (see
text). The arrow in (b) shows the estimated distance walked derived from a related
experiment by Wexler (2003).
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Figure 10. Estimated viewing distance measured by walking
The distance subjects walked to reach the location where a target had been presented is
plotted against the true distance of the target for three subjects. Solid and open symbols
show results with and without a visible background. Error bars show s.e.m.
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