Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Nov;67(3):1404–1409. doi: 10.1073/pnas.67.3.1404

Evidence from Chloroplast Fragments for Three Photosynthetic Light Reactions

Daniel I Arnon 1,*, Richard K Chain 1, Berah D McSwain 1, Harry Y Tsujimoto 1, David B Knaff 1
PMCID: PMC283366  PMID: 16591881

Abstract

Previous reports from this laboratory described a new concept of three light reactions in plant photosynthesis comprising two short-wavelength (λ < 700 nm) photoreactions belonging to Photosystem II and one long-wavelength (λ > 700 nm) photoreaction belonging to Photosystem I. Among the electron carriers assigned to Photosystem II were cytochrome b559 and plastocyanin and to Photosystem I, cytochrome f.

According to a widely held view, the light-induced reduction of NADP by water requires the collaboration of Photosystems I and II and involves specifically cytochrome f and P700 (a portion of chlorophyll a peculiar to Photosystem I). By contrast, the new concept ascribes the light-induced reduction of NADP by water solely to the two photoreactions of Photosystem II, without the participation of Photosystem I and its components, cytochrome f and P700.

Further evidence in support of the new concept has now been obtained from chloroplast fragments. Two kinds of chloroplast fragments have been prepared: (a) one with Photosystem II activity, capable—in the presence of plastocyanin—of photoreducing NADP with water but lacking P700 and functional cytochrome f and (b) another having only Photosystem I activity, lacking plastocyanin, and enriched in P700.

Full text

PDF
1405

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARNON D. I., TSUJIMOTO H. Y., MCSWAIN B. D. ROLE OF FERREDOXIN IN PHOTOSYNTHETIC PRODUCTION OF OXYGEN AND PHOSPHORYLATION BY CHLOROPLASTS. Proc Natl Acad Sci U S A. 1964 Jun;51:1274–1282. doi: 10.1073/pnas.51.6.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson J. M., Boardman N. K. Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts. Bibl Laeger. 1966 Mar 14;112(3):403–421. doi: 10.1016/0926-6585(66)90244-5. [DOI] [PubMed] [Google Scholar]
  3. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arnon D. I., Tsujimoto H. Y., McSwain B. D. Ferredoxin and photosynthetic phosphorylation. Nature. 1967 May 6;214(5088):562–566. doi: 10.1038/214562a0. [DOI] [PubMed] [Google Scholar]
  5. Arnon D. I., Tsujimoto H. Y., McSwain B. D. Photosynthetic phosphorylation and electron transport. Nature. 1965 Sep 25;207(5004):1367–1372. doi: 10.1038/2071367a0. [DOI] [PubMed] [Google Scholar]
  6. Boardman N. K., Anderson J. M. Fractionation of the photochemical systems of photosynthesis. II. Cytochrome and carotenoid contents of particles isolated from spinach chloroplasts. Biochim Biophys Acta. 1967 Jul 5;143(1):187–203. doi: 10.1016/0005-2728(67)90120-x. [DOI] [PubMed] [Google Scholar]
  7. HAGIHARA B. Techniques for the application of polarography to mitochondrial respiration. Biochim Biophys Acta. 1961 Jan 1;46:134–142. doi: 10.1016/0006-3002(61)90656-4. [DOI] [PubMed] [Google Scholar]
  8. KATOH S., SHIRATORI I., TAKAMIYA A. Purification and some properties of spinach plastocyanin. J Biochem. 1962 Jan;51:32–40. doi: 10.1093/oxfordjournals.jbchem.a127497. [DOI] [PubMed] [Google Scholar]
  9. Knaff D. B., Arnon D. I. A concept of three light reactions in photosynthesis by green plants. Proc Natl Acad Sci U S A. 1969 Oct;64(2):715–722. doi: 10.1073/pnas.64.2.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knaff D. B., Arnon D. I. LIGHT-INDUCED OXIDATION OF A CHLOROPLAST B-TYPE CYTOCHROME AT -189 degrees C. Proc Natl Acad Sci U S A. 1969 Jul;63(3):956–962. doi: 10.1073/pnas.63.3.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knaff D. B., Arnon D. I. Spectral evidence for a new photoreactive component of the oxygen-evolving system in photosynthesis. Proc Natl Acad Sci U S A. 1969 Jul;63(3):963–969. doi: 10.1073/pnas.63.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McSwain B. D., Arnon D. I. Enhancement effects and the identity of the two photochemical reactions of photosynthesis. Proc Natl Acad Sci U S A. 1968 Nov;61(3):989–996. doi: 10.1073/pnas.61.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sane P. V., Goodchild D. J., Park R. B. Characterization of chloroplast photosystems 1 and 2 separated by a non-detergent method. Biochim Biophys Acta. 1970 Aug 4;216(1):162–178. doi: 10.1016/0005-2728(70)90168-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES