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Abstract
Purpose of review—Diabetes results from inadequate functional mass of pancreatic β-cells, and
so replenishing with new glucose-responsive β-cells is an important therapeutic option. In addition
to replication of pre-existing β-cells, new β-cells can be produced from differentiated adult cells using
in vitro or in vivo approaches. This review will summarize recent advances in in vivo generation of
β-cells from cells that are not β-cells (neogenesis) and discuss ways to overcome current limitations
of this process.

Recent findings—Multiple groups have shown that adult pancreatic ducts, acinar and even
endocrine cells exhibit cellular plasticity and can differentiate into β-cells in vivo. Several different
approaches, including misexpression of transcription factors and tissue injury, induced neogenesis
of insulin-expressing cells in vivo and ameliorated diabetes.

Summary—Recent breakthroughs demonstrating cellular plasticity of adult pancreatic cells to form
new β-cells are a positive first step towards developing in vivo regeneration based therapy for
diabetes. Currently, neogenesis processes are inefficient and do not generate sufficient amounts of
β-cells required to normalize hyperglycemia. However, improved understanding of mechanisms
regulating neogenesis of β-cells from adult pancreatic cells and of their maturation into functional
glucose-responsive β-cells can make therapies based on in vivo regeneration a reality.
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Introduction
Replenishing β-cell mass by transplantation, or better yet by in vivo regeneration, is an
important strategy to ameliorate diabetes. Recent demonstrations of pancreatic ducts, acinar
and even endocrine cells to acquire new cell fates in vivo suggests in vivo regeneration could
replenish inadequate β-cell mass (1-5**). Some of these cell types transdifferentiate
[conversion of a differentiated cell of one developmental commitment into a differentiated
cells of another lineage without first reverting to a more primitive stem cell or progenitor
(6-8)] into β-cells, while others achieve this goal by dedifferentiation and redifferentiation
(1-5,9,10). We will briefly review in vitro differentiation strategies and then focus on the
limitations and strengths of recent studies demonstrating in vivo neogenesis of β-cells.
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Cell sources for in vitro generation of β-cells
In vitro differentiation of stem/progenitor cells into β-cells is an important approach to generate
a reliable and replenishable cell source of β-cells. A significant effort is underway to
differentiate embryonic stem cells into glucose-responsive β-cells (11*-19*). Several reports
showed successful isolation and differentiation of putative stem/progenitor cells from adult
and fetal pancreatic tissues into insulin-expressing cells. These include clonal cells isolated
from adult islet and ducts (20) and prospective isolation from adult and fetal pancreas using
FACS (21,22). Progenitors isolated from fetal tissue could be true progenitors/stem cells, but
since the in vivo identity of progenitors isolated from adult pancreas is not known, they may
represent dedifferentiated mature cells.

Interestingly, some fetal and differentiated adult cells from non-pancreatic sources, including
hepatic cells, can differentiate into insulin-expressing cells. Fetal liver cells, adult hepatocytes,
hepatic cell lines, and biliary epithelial cells were shown to induce insulin expression upon
expression of key pancreatic transcription factors (23-30). Similarly, primary intestinal
epithelial cells and cell lines expressing pancreatic transcription factors expressed insulin
mRNA when treated with GLP-1 and betacellulin (31,32). These observations suggest that
expression of pancreatic transcription factors in some non-pancreatic cells in presence of a few
signaling molecules can induce insulin expression. However, the amounts of insulin produced
by these cells were often several orders of magnitude lower than mature β-cells.

Pancreatic ductal cell lines and primary ductal cells have been successfully differentiated into
insulin-expressing cells by in vitro approaches, including treatment with growth factors (e.g.,
EGF, Gastrin, exendin), expression of pancreatic transcription factors, and aggregation (9,10,
33-37). Neogenesis of insulin-producing cells from differentiated pancreatic ductal cells results
from their dedifferentiation into progenitors, expressing markers like PDX1, which
redifferentiate into insulin-producing and other pancreatic cells. Hence, “terminally”
differentiated ductal cells can be considered facultative stem cells (34). Like ductal cells,
lineage-marked acinar cells in response to EGF underwent in vitro differentiation into insulin-
expressing cells (38). A role for acinar-to-ductal transdifferentiation has also been suggested
in conversion of acinar cells into endocrine cells (39). These observations demonstrate that
multiple cell sources can differentiate into insulin-producing cells under in vitro culture
conditions.

Thus, we suggest that like ES cells, adult pancreatic and non-pancreatic cells should be
considered as potential in vitro cell sources for generating insulin-producing cells.

Cell sources for in vivo generation of β-cells
Over the last decade significant advances have been made in developmental biology of the
pancreas and other endoderm-derived organs (25,40-43). We gained a greater understanding
of transcription factors and signals involved in the formation of β-cells and determined the
molecular events that regulate differentiation of endoderm into pancreas, liver, and intestine.
Analyses of lineage-commitment in transgenic and knockout mice demonstrated that altering
expression of key factors during pancreatic development can alter cell fate decisions (44-46),
and in some cases, cells destined to be part of the pancreas become part of a different organ
(47). These findings show plasticity of pancreatic progenitors in acquiring different cell fates
during embryonic development. Recently in vivo neogenesis of β-cells from pancreatic and
non-pancreatic cells has been reported in adults. We will discuss these results and factors that
can improve the efficiency of in vivo regeneration of glucose-responsive β-cells.
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Neogenesis of β-cells from non-pancreatic cells
Liver represents an attractive in vivo source for generating β-cells due to its related
developmental origin to the pancreas and its ease of genetic and surgical manipulation. In
vivo conversion of pancreatic cells into hepatocyte-like cells was shown in copper-deprived
rats (48,49), while that of hepatic cells into acinar cells was reported in rats treated with
polychlorinated biphenyls (50). Expression of transcription factor Pdx1 in adult mouse liver
triggered the formation of insulin-expressing cells (51), while in liver of Xenopus tadpoles,
expression of Pdx1-VP16, but not Pdx1 alone, formed ectopic pancreas containing both
exocrine and endocrine compartments (52). The VP16 activation domain was essential for
transdifferentiation of liver cells by another key pancreatic transcription Ptf1a, but it only
formed acinar cells. However, expression of Ptf1a alone in stomach and duodenum generated
both pancreatic acinar and endocrine cells (53). Combination of Pdx1, NeuroD1 and MafA
expression, or NeuroD1 expression with betacellulin transdifferentiated liver cells into insulin-
expressing cells, which could ameliorate streptozotocin-induced diabetes (51,54,55). Insulin-
producing cells generated upon Adenoviral-mediated-expression of Pdx1 in the liver improved
the blood sugar levels in 43% of cyclophosphamide-accelerated diabetic NOD mice (56). These
results support the feasibility of using non-pancreatic cells for in vivo generation of insulin-
producing cells.

Plasticity of pancreatic cells and in vivo neogenesis of β-cells
Strong evidence to support the presence in adult pancreas of a population of undifferentiated
stem/progenitor cells that can give rise to all pancreatic cell types is still lacking. It has been
shown that replication of differentiated β-cells contribute new β-cells during normal adult life
(57). However, neogenesis of islets also occurs during normal development (at least during the
first month) and in response to physical and physiological stress (34,58). In this review, we
will limit our discussion to neogenesis of β-cells in adults.

Neogenesis of β-cells from pancreatic ductal cells
Morphological analysis of pancreas following various manipulations, as well as in vitro
differentiation of pancreatic ductal cells, suggest that pancreatic “progenitors” reside in ducts.
In an elegant study using lineage-tracing and pancreatic ductal ligation in adult mice, Xu et al.
demonstrated that the neogenesis of β-cells accompanied the induction of Ngn3-expressing
endocrine progenitors in the ductal lining in the regenerating portion but not in the non-injured
pancreas (4**). However, a recent publication reports a low level expression of Ngn3 in adult
endocrine cells (59*), raising concerns about using Ngn3 expression as a marker of endocrine
progenitors and neogenesis in adult pancreas. Interestingly, the Ngn3-expressing cells seen in
the Xu et al. study did not express hormones, yet the increase in β-cell mass after ductal ligation
depended on Ngn3 expression (4**). These observations confirm that the neogenesis, i.e.,
formation of β-cells from non-islet cells, occurs in adult pancreas.

By a direct lineage-tracing approach using a duct-specific human CAII promoter driving Cre
or CreERT, one adult pancreatic cell type that gives rise to multipotent progenitors was
identified (5**). CAII expression begins late in gestation (embryonic day 18.5) and is seen
throughout the ductal tree but not in β-cells. Bigenic (CAIICre;R26R) mice at birth had lineage
marker expression restricted to ductal cells, but by four weeks marker was also seen in
endocrine cells (both α- and β-cells) and in acinar cells; 38% of the islets examined showed
expression of the reporter gene. In inducible CAIICreERT;R26R mice ductal ligation after
marking the adult ductal cells resulted in lineage-marked islets and acinar cells. Impressively,
two weeks after duct ligation, 42% of islets and 24% of β-cells had lineage marker. These
results clearly demonstrate that a significant proportion of adult pancreatic ductal cells retain
the potential to differentiate into other pancreatic cell types including β-cells.
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Acinar cell transdifferentiation to β-cells
Acinar and endocrine cells probably have a similar epigenetic profile as they share a common
multipotent progenitor (60), which should make transdifferentiation of acinar cells into β-cells
easier than from non-pancreatic cells. Yet, adult lineage-marked acinar cells were not seen to
transdifferentiate into other pancreatic cell type in several experimental paradigms (61). Acinar
cells can regenerate, as shown in chemical induced pancreatitis (caerulein) model,
predominantly through their dedifferentiation and redifferentiation (62). However,
misexpression of pancreatic developmental regulators in adult acinar cells using adenoviruses
encoding Ngn3, Pdx1, and MafA transduced nearly 20% of acinar cells expressing these factors
into insulin-producing β-cells that were indistinguishable from endogenous islet β-cells in size,
shape and structure (2**). These new β-cells did not organize into islets and remained isolated.
They improved, but not normalized, glycemia in diabetic mice. Additional studies will be
needed to determine why only a fraction of acinar cells transdifferentiate into β-cells.

Transdifferentiation from other endocrine cells
Can pancreatic endocrine cells, like pancreatic ductal and acinar cells, transdifferentiate or
dedifferentiate/redifferentiate into other cell types? Analyses of pancreas from some pancreatic
transcription factor (e.g., Nkx2.2, Pax4, and Arx) knockout mice demonstrate that lineage
commitment of endocrine progenitors can be reprogrammed (44-46). Nkx2.2 knockout mice
lack β-cells and have reduced α- and PP-cells but increased ghrelin-expressing cells (46).
Similarly, the relative expression of transcription factors, Pax4 and Arx, in endocrine
progenitors determined the lineage of a differentiated cell. In Pax4 knockout mice, loss of β-
and δ-cells was compensated by a proportional increase of α-cells (44), while in Arx-deficient
mice the loss of α-cells was compensated by a proportional increase in β- and δ-cells (45).
Interestingly, committed endocrine progenitors can also differentiate into other pancreatic cell
types. In Pax4:constitutively activated Notch mice, Pax4-expressing endocrine progenitors
differentiated into ducts (63). Thus, during embryonic development, lineage commitment of
endocrine progenitors can be regulated.

Altering expression of transcription factors in differentiated endocrine cells can also change
their endocrine fate. Arx misexpression in β-cells, using either an InsCre or in adult β-cells
using an inducible Pdx1CreERT (64), reduced insulin-expressing cells and increased α- and PP-
cells. In both cases, the vast majority of α- and PP-cells contained lineage marker confirming
their derivation from insulin/Pdx1-expressing β-cells. Interestingly, expression of Pax4 in
mature α-cells using GcgCre, increased β-cell mass and dramatically reduced that of α-cells
(3**). The increase could not result from proliferation of new β-cells nor from the normal
number of α-cells in controls. Most β-cells contained the lineage marker indicating their
derivation from α-cells. In spite of increased β-cell mass and initial hypoglycemia, these mice
gradually became hyperglycemic. This system was also able to reconstitute β-cells in
streptozotocin-treated mice of different ages. Younger mice showed preferential survival,
possibly by inducing neogenesis of α-cells in response to reduced glucagon signaling, and
reprogramming them in the presence of Pax4 to β-cells. Thus, these results demonstrate that
adult α-cells, like pancreatic ductal and acinar cells, can serve as in vivo source for generating
β-cells.

Steps to enhance in vivo regeneration of β-cells
As reviewed above, adult cells in response to appropriate in vitro and in vivo factors/signals
can differentiate into new β-cells (Figure 1). Although one should be careful to equate results
from animal studies with human situation, the reviewed literature provides rationale for
developing in vivo regeneration-based treatments for diabetes. Acinar and ductal cells
constitute over 95% of the pancreas, and their ability to proliferate in response to various stimuli
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makes them attractive targets for in vivo regeneration of β-cells. Developing efficient strategies
to deliver regulatory factors to these cells, either on their own or when combined with short-
term growth stimulus, should result in increasing β-cell mass. Transdifferentiation of α-cells
into β-cells is an equally attractive approach for in vivo regeneration due to their location and
the neogenic response of α-cells to impaired glucagon signaling. To realize in vivo regeneration
based on this approach will require developing strategies to induce Pax4 expression in α-cells
and combining it with approaches to inhibit glucagon signaling. However, before we make a
significant investment in developing therapies based on acinar, ductal or α-cells, it will be
important to determine the maximum extent of neogenesis that can be achieved using these
cell types.

At present these approaches cannot normalize hyperglycemia, and at least in some cases
(3**), animals gradually redeveloped hyperglycemia, demonstrating the inability of these
approaches to generate/maintain sufficient amounts of glucose-responsive β-cells. The limited
success of current approaches could result from: 1) incomplete dedifferentiation of terminally
differentiated cells to a progenitor state, 2) inefficient redifferentiation of dedifferentiated
progenitors into β-cells, and/or 3) inability of insulin-producing cells to survive/proliferate and
mature into glucose-responsive β-cells.

The yield of β-cell neogenesis from ducts is possibly limited by their first acquiring a
dedifferentiated fate and then redifferentiating into multiple cell types (endocrine, acinar and
ducts) (4*,34,58). In case of acinar reprogramming, 20% of infected acinar cells became β-
cells, without significant proliferation or expression of markers of a common embryonic acinar-
endocrine progenitor (2**). However, it is still likely that these cells partially dedifferentiated
and that affected the efficiency of neogenesis. In contrast, the majority of α-cells that expressed
Pax4 transdifferentiated into β-cells possibly without dedifferentiating into a progenitor stage
(3**). Thus, in order to enhance the efficiency of in vivo neogenesis of β-cells, it will be
essential to understand the process of dedifferentiation and redifferentiation and to determine
which of these steps is rate-limiting. Identification of factors that can efficiently dedifferentiate
adult pancreatic cells into progenitors having an epigenetic profile similar to that of pancreatic/
endocrine progenitors will be important. Our ability to monitor at the single cell level the loss
of differentiated phenotype, induction of progenitor and β-cell markers, and changes to the
epigenetic profile will be key to enhancing the efficiency of neogenesis. Such analyses will be
crucial for determining whether all, or only a few, cells can acquire “true” epigenetic makeup
of pancreatic/endocrine progenitor and thus can differentiate into β-cells.

It is also possible that the newly generated β-cells are immature and functionally impaired,
which would limit their ability to normalize hyperglycemia, leading to suppression of several
key genes in β–cells and further exacerbating the impairment. Newly-formed insulin-producing
cells undergo maturation steps that include reduction in the expression of transcription factors
MafB and Pax4 and induction of MafA expression (65,66). MafA knockout mice had impaired
glucose-stimulated insulin secretion (GSIS) and gradually developed diabetes (67).
Furthermore, MafB-expressing insulin-positive cells generated from differentiation of human
ES cells were not glucose-responsive (18). These results suggest a need to examine the newly
generated β-cells whether they underwent proper maturation. An increasing body of evidence
suggests that β-cells in the pancreas are heterogeneous in nature and can be specified by more
than one pathway (65,66,68*,69*). It was recently shown that zebrafish β-cells derived from
the dorsal pancreatic bud are different from those derived from the ventral bud (69*). Dorsal
bud-derived β-cells were quiescent and had reduced expression of insulin, while those from
ventral bud proliferated actively and expressed more insulin, Pdx1, NeuroD1, Pax6 and MafA
mRNA at 12 days-post-fertilization than their dorsal counterpart (69*). Intriguingly, dorsal
bud-derived β-cells expressed more MafB than the β-cells from ventral bud. These results
suggest that the origin of β-cells may govern their ability to proliferate and function. However,
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a study examining the replication potential of adult β-cells showed that all β-cells contribute
equally to islet growth and maintenance (70). This result needs to be reconciled with the
zebrafish data unless the proliferation of newly-formed β-cells differs from that of adult β-
cells. We suggest that understanding of pathways regulating specification and maturation of
β-cells will help determine whether insulin-producing cells generated from differentiation of
adult cells have the same capacity to proliferate and mature into glucose-responsive β-cells.
This knowledge, combined with improved efficiency of dedifferentiation and redifferentiation
of adult pancreatic cells into β-cells, should result in new ways to treat diabetes.

Conclusion
Significant efforts are underway to generate β-cells in vitro for cell-based therapies. Over the
past few years, significant progress has been made that supports the inclusion of in vivo
regeneration of β-cells as a potential therapy for diabetes. These studies successfully
demonstrate that in vivo neogenesis of β-cells could ameliorate STZ-induced and autoimmune
diabetes. Combining an efficient delivery system for regulatory factors with ways to enhance
efficiency of neogenesis of glucose-responsive β-cell from in vivo differentiation of adult cells
will be critical for developing novel therapies for diabetes.
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Figure 1.
Schematic showing different cell sources that under in vitro or in vivo differentiation conditions
transdifferentiate or dedifferentiate/redifferentiate into insulin-producing cells. Numbers in
parenthesis refer to reference numbers.
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