
Cancer Informatics 2010:9 15–30

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.

Open Access
Full open access to this and 
thousands of other papers at 

http://www.la-press.com.

Cancer Informatics 2010:9	 15

Cancer Informatics

O r i g i n al   R e s e a r c h

A Robust Gene Selection Method for Microarray-based Cancer 
Classification

Xiaosheng Wang1 and Osamu Gotoh1,2

1Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan. 
2National Institute of Advanced Industrial Science and Technology, Computational Biology Research Center, Tokyo, Japan.  
Email: david@genome.ist.i.kyoto-u.ac.jp

Abstract: Gene selection is of vital importance in molecular classification of cancer using high-dimensional gene expression data. 
Because of the distinct characteristics inherent to specific cancerous gene expression profiles, developing flexible and robust feature 
selection methods is extremely crucial. We investigated the properties of one feature selection approach proposed in our previous work, 
which was the generalization of the feature selection method based on the depended degree of attribute in rough sets. We compared 
the feature selection method with the established methods: the depended degree, chi-square, information gain, Relief-F and symmetric 
uncertainty, and analyzed its properties through a series of classification experiments. The results revealed that our method was superior 
to the canonical depended degree of attribute based method in robustness and applicability. Moreover, the method was comparable to 
the other four commonly used methods. More importantly, the method can exhibit the inherent classification difficulty with respect to 
different gene expression datasets, indicating the inherent biology of specific cancers.
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Background
One major problem in applying gene expression 
profiles to cancer classification and prediction is that 
the number of features (genes) greatly surpasses the 
number of samples. Some studies have shown that 
a small collection of genes selected correctly can 
lead to good classification results.1–4 Therefore gene 
selection is crucial in molecular classification of 
cancer. Numerous methods of selecting informative 
gene groups to conduct cancer classification have 
been proposed. Most of the methods first ranked the 
genes based on certain criteria, and then selected 
a small set of informative genes for classification 
from the top-ranked genes. The most used gene 
ranking approaches include t-score, chi-square, 
information entropy-based, Relief-F, symmetric 
uncertainty etc.

In,2 we used a new feature selection method for 
gene selection. The feature selection method was 
based on the α depended degree, a generalized concept 
of the canonical depended degree proposed in rough 
sets. Combining this feature selection method with 
decision rules-based classifiers, we achieved accurate 
molecular classification of cancer by a small size of 
genes. As pointed out in,2 our classification methods 
had some advantages over other methods in such as 
simplicity and interpretability. Yet, there remain some 
essential problems to be investigated. For example, 
what properties does the feature selection method 
possess, and what will happen if we compare the 
feature selection method with other feature selection 
methods in terms of identical classifiers?

In this work, we investigated the properties of the fea-
ture selection method based on the α depended degree. 
We mainly studied the relationships between α value, 
classifier, classification accuracy and gene number. 
Moreover, we compared our feature selection method 
with other four feature selection methods often used in 
practice: chi-square, information gain, Relief-F and sym-
metric uncertainty. We chose four popular classifiers: NB 
(Naive Bayes), DT (Decision Tree), SVM (Support Vec-
tor Machine) and k-NN (k-nearest neighbor), to carry out 
classification via the genes selected based on the dif-
ferent feature selection methods. Our study materials 
included the eight publicly available gene expression 
datasets: Colon Tumor, CNS (Central Nervous System) 
Tumor, DLBCL (Diffuse Large B-Cell Lymphoma), 
Leukemia 1 (ALL [Acute Lymphoblastic Leukemia] 

vs. AML [Acute Myeloid Leukemia]), Lung Cancer, 
Prostate Cancer, Breast Cancer, and Leukemia 2 (ALL 
vs. MLL [Mixed-Lineage Leukemia] vs. AML), which 
were downloaded from the Kent Ridge Bio-medical 
Data Set Repository (http://datam.i2r.a-star.edu.
sg/datasets/krbd/).

Materials
Colon tumor dataset
The dataset contains 62 samples collected from Colon 
Tumor patients.5 Among them, 40 tumor biopsies are 
from tumors (labeled as “negative”) and 22 normal 
(labeled as “positive”) biopsies are from healthy parts 
of the colons of the same patients. Each sample is 
described by 2000 genes.

CNS tumor dataset
The dataset is about patient outcome prediction 
for central nervous system embryonal tumor.6 In 
this dataset, there are 60 observations, each of 
which is described by the gene expression levels of 
7129 genes and a class attribute with two distinct 
labels—Class 1 (survivors) versus Class 0 (failures). 
Survivors are patients who are alive after treatment 
while the failures are those who succumbed to their 
disease. Among 60 patient samples, 21 are labeled as 
“Class 1” and 39 are labeled as “Class 0”.

DLBCL dataset
The dataset is about patient outcome prediction for 
DLBCL.7 The total of 58 DLBCL samples are from 
32 cured patients (labeled as “cured”) and 26 refrac-
tory patients (labeled as “fatal”). The gene expression 
profile contains 7129 genes.

Leukemia 1 dataset (ALL vs. AML)
In this dataset,1 there are 72 observations, each of 
which is described by the gene expression levels of 
7129 genes and a class attribute with two distinct 
labels—AML versus ALL.

Lung cancer dataset
The dataset is on classification of MPM (Malignant 
Pleural Mesothelioma) versus ADCA (Adenocarci-
noma) of the lung.8 It is composed of 181 tissue sam-
ples (31 MPM, 150 ADCA). Each sample is described 
by 12533 genes.
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Prostate cancer dataset
The dataset is involved in prostate tumor versus 
normal classification. It contains 52 prostate tumor 
samples and 50 non-tumor prostate samples.9 The total 
number of genes is 12600. Two classes are denoted as 
“Tumor” and “Normal”, respectively.

Breast cancer dataset
The dataset is about patient outcome prediction for 
breast cancer.10 It contains 78 patient samples, 34 of 
which are from patients who had developed distant 
metastases within 5 years (labeled as “relapse”), 
the rest 44 samples are from patients who remained 
healthy from the disease after their initial diagnosis for 
interval of at least 5 years (labeled as “non-relapse”). 
The number of genes is 24481.

Leukemia 2 dataset (ALL vs. MLL vs. AML)
The dataset is about subtype prediction for leukemia.11 
It contains 57 samples (20 ALL, 17 MLL and 20 
AML). The number of genes is 12582.

Methods
α Depended degree-based feature 
selection approach
In reality, when we are faced with a collection of new 
data, we often want to learn about them based on 
pre-existing knowledge. However, most of these data 
cannot be precisely defined based on pre-existing 
knowledge, as they incorporate both definite and 
indefinite components. In rough sets, one knowledge 
is formally defined as an equivalence relation. Accord-
ingly, the definite components are represented with 
the concept of positive region.

Definition 1 Let U be a universe of discourse, 
X ⊆ U, and R is an equivalence relation on U. U/
R represents the set of the equivalence class of U 
induced by R. The positive region of X on R is defined 
as pos(R, X ) =  {Y ∈ U/R | Y ⊆ X }.12

The decision table is the data form studied by 
rough sets. One decision table can be represented as 
S = (U, A = C  D), where U is the set of samples, 
C is the condition attribute set, and D is the decision 
attribute set. Without loss of generality, hereafter we 
assume D is a single-element set, and we call D the 
decision attribute. In the decision table, the equiva-
lence relation R(A’) induced by the attribute subset 
A’ ⊆ A is defined as: for ∀x, y ∈ U, xR(A’)y, if and 
only if Ia(x) = Ia( y) for each a ∈ A’, where Ia is the 
function mapping a member (sample) of U to the 
value of the member on the attribute a.

For the cancer classification problem, every col-
lected set of microarray data can be represented as 
a decision table in the form of Table 2. In the micro-
array data decision table, there are m samples and 
n genes. Every sample is assigned to one class label. 
The expression level of gene y in sample x is repre-
sented by g(x, y).

In rough sets, the depended degree of a condi-
tion attribute subset P by the decision attribute D is 
defined as

γ P
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U
( )

|POS ( )|

| |
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where |  |POS DP pos P X
X U R D

( ) | | ( , )
/ ( )

=
∈


 represents 

the size of the union of the positive region of each 
equivalence class in U/R(D) on P in U, and |U| repre-
sents the size of U (set of samples).

Table 1. Summary of the eight gene expression datasets.

Dataset # Original genes Class # Samples
Colon tumor 2000 negative/positive 62 (40/22)
CNS tumor 7129 class 1/class 0 60 (21/39)
DLBCL 7129 cured/fatal 58 (32/26)
Leukemia 1 7129 ALL/AML 72 (47/25)
Lung cancer 12533 MPM/ADCA 181 (31/150)
Prostate cancer 12600 tumor/normal 102 (52/50)
Breast cancer 24481 relapse/non-relapse 78 (34/44)
Leukemia 2 12582 ALL/MLL/AML 57 (20/17/20)
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In some sense, γP(D) reflects the class-discrimination 
power of P. The greater is γP(D), the stronger the clas-
sification ability P is inclined to possess. Therefore, 
the depended degree can be used as the basis of feature 
selection. Actually, it has been applied in microarray-
based cancer classification by some authors.13,14

However, the extremely strict definition has lim-
ited its applicability. Hence, in,2 we defined the 
α depended degree, a generalization form of the 
depended degree, and utilized the α depended degree 
as the basis for choosing genes. The α depended 
degree of an attribute subset P by the decision attribute 

D was defined as γ α
α

P
P

D
D

U
( , )

| ( , ) |

| |
= POS , where 
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  )  and 

pos(P, X, α) =  {Y ∈ U/R(P) | |Y ∩ X|/|Y|  α}. As a 
result, the depended degree became a specific case of 
the α depended degree when α = 1. For the selection 
of indeed high class-discrimination genes, we have 
set the lower limit of α value as 0.7 in practice.2

Comparative feature selection approaches
We compared our proposed feature selection method 
with the following four often used methods: chi-square, 
information gain, Relief-F and symmetric uncertainty.

The chi-square (χ2) method evaluates features indi-
vidually by measuring their chi-squared statistic with 
respect to the classes.15 The χ2 value of an attribute a 
is defined as follows:
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where V is the set of possible values for a, n the number 
of classes, Ai(a = v) the number of samples in the ith 
class with a = v, and Ei(a = v) the expected value of 

Ai(a = v); Ei(a = v) = P(a = v)P(ci)N, where P(a = v) 
is the probability of a = v, P(ci) the probability of 
one sample labeled with the ith class, and N the total 
number of samples.

Information Gain16 method selects the attribute with 
highest information gain, which measures the differ-
ence between the prior uncertainty and expected poste-
rior uncertainty caused by attributes. The information 
gain by branching on an attribute a is defined as:

Info_Gain(S, a) = E(S) - S
S

i

i=1

n

∑ E(Si    ),

where E(S) is the entropy before split, 
S

S

i

i

n

=
∑

1
E(Si) the 

weighted entropy after split, and {S1, S2, …, Sn} the 
partition of sample set S by a values.

Relief-F method estimates the quality of features 
according to how well their values distinguish between 
examples that are near to each other. Specifically, it 
tries to find a good estimate of the following probability 
to assign as the weight for each feature a:17 wa = P 
(different value of a | different class) − P(different 
value of a | same class). Differing from the majority of 
the heuristic measures for estimating the quality of 
the attributes assume the conditional independence 
of the attributes and are therefore less appropriate in 
problems which possibly involve much feature inter-
action. Relief algorithms (including Relief-F) do not 
make this assumption and therefore are efficient in 
estimating the quality of attributes in problems with 
strong dependencies between attributes.18

Symmetric uncertainty method compensates for 
information gain’s bias towards features with more 
values. It is defined as:
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where H(X) and H(Y) are the entropy of attribute 
X and Y respectively, and IG(X   |Y) = H(X) − H(X   |Y) 
(H(X     |Y) is the conditional entropy of X given Y), rep-
resents additional information about X provided by 
attribute Y. The entropy and conditional entropy are 
respectively defined as:
	 H X P x P xi i
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Table 2. Microarray data decision table.

Samples Condition attributes (genes) 
 

Decision 
attributes 
(classes)

 Gene 1 Gene 2 … Gene n Class label
1 g(1, 1) g(1, 2) … g(1, n) Class (1)
2 g(2, 1) g(2, 2) … g(2, n) Class (2)
… … … … … …
… … … … … …
m g(m, 1) g(m, 2) … g(m, n) Class (m)
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The values of symmetric uncertainty lie between 
0 and 1. A value of 1 indicates that knowing the 
values of either attribute completely predicts the 
values of the other; a value of 0 indicates that X and 
Y are independent.

Classification algorithms
The NB classifier is a probabilistic algorithm based 
on Bayes’ rule and the simple assumption that the fea-
ture values are conditionally independent given the 
class. Given a new sample observation, the classifier 
assigns it to the class with the maximum conditional 
probability estimate.

DT is the rule-based classifier with non-leaf 
nodes representing selected attributes and leaf nodes 
showing classification outcomes. Every path from the 
root to a leaf node reflects a classification rule. We use 
the J4.8 algorithm, which is the Java implementation 
of C4.5 Revision 8.

An SVM views input data as two sets of vectors in an 
n-dimensional space, and constructs a separating hyper-
plane in that space, one which maximizes the margin 
between the two data sets. The SVM used in our experi-
ments utilizes an SMO (Sequential Minimal Optimiza-
tion) algorithm with polynomial kernels for training.

k-NN is an instance-based classifier. The classifier 
decides the class label of a new testing sample by the 
majority class of its k closest neighbors based on their 
Euclidean distance. In our experiments, k is set as 5.

Data preprocess
Because chi-square, information gain, symmetric 
uncertainty and our feature selection methods are 
suitable for discrete attribute values, we need to 
carry out the discretization of attribute values before 
feature selection using these methods. We used the 
entropy-based discretization method, which was 
proposed by Fayyad et al.19 This algorithm recur-
sively applies an entropy minimization heuristic to 
discretize the continuous-valued attributes. The stop 
of the recursive step for this algorithm depends on the 
MDL (Minimum Description Length) principle.

Feature selection and classification
We ranked the genes in a descendent order of their α 
depended degree, and then used the top 100, 50, 20, 
10, 5, 2 and 1 genes for classification with the four 
classifiers, respectively. In addition, we observed 

the classification results with the seven different 
α values: 1, 0.95, 0.9, 0.85, 0.8, 0.75 and 0.7. More-
over, we used the top 100, 50, 20, 10, 5, 2 and 1 genes 
ranked by the other four feature selection methods for 
classification with the four classifiers, respectively. 
Considering that the sample size in every dataset was 
relatively small, we used LOOCV (Leave-One-Out 
Cross-Validation) method to test the classification 
accuracy.

We implemented the data preprocess, feature 
selection and classification algorithms mainly in the 
Weka package.20

Results and Analysis
Classification results using our feature 
selection method
Table 3 shows the classification results based on the 
α depended degree in the Colon Tumor dataset. The 
classification results in the other datasets based on the 
α depended degree were provided in the supplemen-
tary materials (1).

Comparison of classification performance  
for different classifiers
Table 3 shows that there are in total 12, 19, 11 and 20 
best classification cases for NB, DT, SVM and k-NN, 
respectively. Table 4 shows the number of the best clas-
sification cases achieved by among the different clas-
sifiers under the identical α value and gene number 
for each dataset. Figure 1 presents the best classifi-
cation accuracy of each classifier using our feature 
selection algorithm. From Table 4 and Figure 1, we 
noticed that combining our feature selection method 
with the NB classifier was inclined to achieve the best 
classification accuracy.

In addition, we considered the average classifi-
cation performance. Table 5 shows the respective 
average classification accuracy of the four classifiers 
under different α values in the Colon Tumor dataset. 
The results revealed that the k-NN classifier had six 
best average classification performances under the 
seven α values, and it also had the best total average 
performance. Table 6 summarized the number of the 
best average classification performances achieved 
by each classifier under various α values for each 
dataset and the corresponding average number 
for each classifier within all of the eight datasets. 
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Figure 2 lists the average classification accuracy 
of each classifier for each dataset, indicating that 
k-NN had the highest average accuracy in the Colon 
Tumor, CNS Tumor, Prostate Cancer and Breast 
Cancer datasets, while NB had the highest average 
accuracy in the other four datasets. Taken together, 
NB and k-NN possessed better classification 
performance with our feature selection approach 
than DT and SVM did. One possible explanation is 
that NB is the statistics-based classifier and k-NN 
is the instance-based classifier, while our feature 
selection method is concerned with both statistical 
and instantial factors.

The optimum gene size for classification depends 
on different classification algorithms. We found DT 
generally used fewer genes to reach the best accuracy 
compared with the other classification algorithms. 
This is one advantage of DT learning algorithm in 
that DT is a rule-based classifier and fewer genes 
will induce simpler classification rules, which in turn  
facilitate the interpretability of DT models.

Depended degree vs. a depended 
degree
The depended degree was commonly applied in feature 
selection in rough sets-based machine learning and 
data mining. However, our recent studies have revealed 
that for the microarray-based cancer classification 
problem, the application of the depended degree was 

Table 3. Classification accuracy (%) in the Colon tumor 
dataset based on the α depended degree.

α Gene 
number

NB DT SVM k-NN

1 100 74.19 88.71 87.10 88.71
50 77.42 74.19 83.87 85.48
20 79.03 83.87 88.71 85.48
10 80.65 79.03 82.26 82.26
5 75.81 61.29 59.68 67.74
2 74.19 70.97 64.52 79.03
1 74.19 70.97 64.52 72.58

0.95 100 75.81 88.71 83.87 83.87
50 77.42 80.65 83.87 82.26
20 80.65 77.42 72.58 72.58
10 74.19 75.81 67.74 69.35
5 72.58 75.81 56.45 75.81
2 74.19 75.81 64.52 72.58
1 74.19 77.42 64.52 67.74

0.90 100 77.42 88.71 85.48 87.10
50 75.81 80.65 85.48 85.48
20 80.65 74.19 85.48 87.10
10 82.26 77.41 88.71 88.71
5 72.58 85.48 79.03 88.71
2 85.48 91.93 85.48 88.71
1 75.81 82.26 72.58 77.42

0.85 100 79.03 87.10 87.10 85.48
50 79.03 80.65 85.48 83.87
20 80.65 80.65 87.10 87.10
10 88.71 85.48 87.10 87.10
5 87.10 87.10 85.48 88.71
2 85.48 79.03 80.65 82.26
1 85.48 85.48 77.42 85.48

0.80 100 80.65 87.10 87.10 85.48
50 83.87 87.10 85.48 85.48
20 85.48 80.65 87.10 88.71
10 85.48 83.87 82.26 87.10
5 83.87 80.65 82.26 82.26
2 82.26 85.48 82.26 82.26
1 83.87 82.26 75.81 80.65

0.75 100 79.03 87.10 85.48 85.48
50 85.48 87.10 85.48 85.48
20 87.10 82.26 83.87 85.48
10 85.48 79.03 82.26 82.26

(Continued)

Table 3. (Continued)

α Gene 
number

NB DT SVM k-NN

5 85.48 85.48 82.26 82.26
2 61.29 58.06 64.52 72.58
1 67.74 67.74 64.52 72.58

0.70 100 82.26 87.10 85.48 85.48
50 83.87 87.10 88.71 87.10
20 87.10 90.32 87.10 85.48
10 83.87 83.87 85.48 85.48
5 83.87 69.35 83.87 85.48
2 82.26 79.03 80.65 82.26
1 67.74 67.74 64.52 72.58

The maximum numbers in each row are highlighted in boldface, indicating 
the highest classification accuracy achieved by among the different 
classifiers under the identical α value and gene number.
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severely limited because of its overly rigor definition. 
In contrast, its generalized form-α depended degree, had 
essentially improved utility.2 To explore how the classi-
fication quality was improved by using the α depended 
degree relative to the depended degree, we compared 
the classification results obtained under different α 
values while based on the identical classifiers. Figure 
3 lists the average classification accuracies for differ-
ent α values under the four different classifiers in the 
Colon Tumor dataset. The results shows that when NB 
was used for classification, the average classification 
accuracy in the case of the depended degree (α = 1) 
was only slightly better than the case of α = 0.95 and 
worse than all the other cases; when DT was used for 
classification, the average classification accuracy with 

the depended degree was the poorest; When SVM 
or k-NN was utilized as the classifier, the average 
classification performance in the case of the depended 
degree were both the second worst. When averaging the 
average classification accuracy of the four classifiers 
for each α value, we found that the result in the case 
of the depended degree was still the second worst. For 
the other datasets, the similar results were obtained. 
In fact, among the total of 32 average classification 
accuracy comparisons (4 classifiers × 8 datasets), the 
highest average classification accuracy was obtained 
with α  = 1 only in three cases, wherein once shared 
by two different α values (see Fig. 3, and Fig. S1–7 in 
the supplementary materials (2)).

Further, we compared the best classification 
situations obtained under different α values. As 
shown in Table 7 and Figure 4, for the Colon Tumor 
dataset, in the cases of NB and DT, the best results 
were obtained when α = 0.85 and α = 0.9, respec-
tively, although in the cases of SVM and k-NN, the 
best classification results were shared by several dif-
ferent α values including α = 1. When considering the 
average of the best classification accuracies for the 
four classifiers, as shown in the “Average” column, 
we found that the average best classification perfor-
mance with α = 1 ranked fifth among the total of seven 
different α values; when considering the maximum 
of the best classification accuracies for the four clas-
sifiers, as shown in the “Max” column, we found 
that the maximum best classification performance 
with α = 1 was smaller than that with α = 0.9 or 0.7. 

Table 4. Number of best classification cases among the 
different classifiers.

Dataset/Classifier NB DT SVM k-NN
Colon tumor 12 19 11 20
CNS tumor 4 13 20 20
DLBCL 18 11 16 13

Leukemia 1 24 13 14 10

Lung cancer 19 5 17 11

Prostate cancer 9 9 25 16

Breast cancer 3 27 3 19

Leukemia 2 26 11 15 13
The maximum numbers in each row are highlighted in boldface.
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Figure 1. Best classification accuracy of each classifier.

http://www.la-press.com


Wang and Gotoh

22	 Cancer Informatics 2010:9

The comparisons of the best classification results in 
the other datasets were provided in the supplementary 
materials (3).

All together, the α depended degree is a more 
effective feature selection method compared to the 
conventional depended degree.

Interrelation between classification 
accuracy and α value
In the previous studies,2 we intuitively felt that the α 
value had some connections with inherent characters 
of related datasets. If the best classification accuracy 
was achieved only under relatively low α values, 
the dataset might be involved in relatively difficult 
classification and high classification accuracy would 
be hard to achieve. To prove this conjecture, we first 
detected the highest classification accuracies and 

their corresponding α values for each classifier, and 
calculated the averages of the accuracies and the 
averages of the α values under the four classifiers. 
For example, from Table 3, we knew that in the 
Colon Tumor dataset, NB had the highest accuracy 
of 88.71% accompanying with α = 0.85; DT had 
the highest accuracy of 91.93% accompanying with 
α = 0.9; SVM had the highest accuracy of 88.71% 
accompanying with α = 1, 0.9 and 0.7; k-NN had 
the highest accuracy of 88.71% accompanying with 
α = 1, 0.9 (occurring for three times), 0.85 and 0.8. We 
calculated the average of the accuracies as follows:

(88.71% * 3 + 91.93%)/4 = 89.52%;

and the average of the α values as follows:

(0.85 + 0.9 + (1 + 0.9 + 0.7)/3 
+ (1 + 0.9 * 3 + 0.85 + 0.8)/6)/4 = 0.8771.

We call this kind of average accuracies the average 
highest accuracy (AHA).

In addition, we calculated the average classification 
accuracy for each α-classifier pair, and found the best 
average accuracy and its corresponding α value for 
each classifier. Likewise, we calculated their averages 
under the four classifiers. For example, from Table 5, 
we knew that in the Colon Tumor dataset, α-NB had 
the best average accuracy of 83.64% with α = 0.8 and 
0.85; α-DT had the best average accuracy of 83.87% 
with α = 0.8; α-SVM had the best average accuracy of 
84.33% with α = 0.85; α-k-NN had the best average 
accuracy of 86.18% with α = 0.9. We calculated the 
average of the best average accuracies as follows:

(83.64% + 83.87% + 84.33% + 86.18%)/4 = 89.52%;

and the average of the α values as follows:

((0.8 + 0.85)/2 + 0.8 + 0.85 + 0.9)/4 = 0.8771.

We call this kind of average accuracies the 
average best average accuracy (ABAA). The AHAs 
and ABAAs, and their corresponding α values in the 
other datasets were calculated in the same way. These 
results were presented in Table 8.

Figure 5 and Figure 6 reflect the alteration ten-
dencies of AHA and ABAA along with the varia-
tion of α value, respectively. In general, AHA and 
ABAA increase with the growth of α value except 
for a few exceptions. Therefore, to a certain degree, 
the α depended degree can reflect the classification 

Table 5. Average classification accuracy (%) for the different 
classifiers and α values in the Colon tumor dataset.

α/Classifier NB DT SVM k-NN
1 76.50 75.58 75.81 80.18
0.95 75.58 78.80 70.51 74.88
0.9 78.57 82.95 83.18 86.18
0.85 83.64 83.64 84.33 85.71
0.80 83.64 83.87 83.18 84.56
0.75 78.80 78.11 78.34 80.87
0.7 81.57 80.64 82.26 83.41
Total average 79.76 80.51 79.66 82.26

The maximum numbers in each row are highlighted in boldface.

Table 6. Number of the best average classification 
performances achieved by each classifier under various 
α values for each dataset.

Dataset/Classifier NB DT SVM k-NN
Colon tumor 0 1 0 6
CNS tumor 0 1 1 5
DLBCL 4 0 0 3
Leukemia 1 7 0 0 1
Lung cancer 4 0 3 0
Prostate cancer 1 0 2 4
Breast cancer 0 0 4 3
Leukemia 2 7 0 0 0
Total average 2.875 0.25 1.25 2.75

The maximum numbers in each row are highlighted in boldface.
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difficultness for a certain dataset, indicating the inherent 
biology of specific cancers. Indeed, the classification 
of  Leukemia 1, Lung Cancer, Prostate Cancer and Leu-
kemia 2 has been commonly recognized as relatively 
easy while the classification of Breast Cancer and 
DLBCL relatively difficult. Our results lend support 
to these findings.

To further investigate the relationship between clas-
sification difficultness and α, we used the co-ordinates 
graph to show under different α values, the average 
and best classification results using every classifier. 
Figure 7 and Figure 8 show the results for the Colon 
Tumor dataset. From both figures, we inferred that in 
the dataset, the α values of between 0.8 and 0.9 would 
result to the best classification accuracy generally. We 
stated such α value the optimum α value. The optimum 
α values for the other datasets can be detected through 
the similar co-ordinates graphs, which were presented 
in the supplementary materials (4). Figure S15 

and Figure S16 show that for the CNS Tumor, the 
optimum α value is around 0.8 or 1; Figure S17 and 
Figure S18 show that for the DLBCL, the optimum α 
value is around 0.7 or 0.8; Figure S19 and Figure S20 
show that for the Leukemia 1, the optimum α value is 
between 0.95 and 1; Figure S21 and Figure S22 show 
that for the Lung Cancer, the optimum α value is 
around 0.95; Figure S23 and Figure S24 show that for 
the Prostate Cancer, the optimum α value is around 
0.95; Figure S25 and Figure S26 show that for the 
Breast Cancer, the optimum α value is around 0.75; 
Figure S27 and Figure S28 show that for the Leuke-
mia 2, the optimum α value is around 0.9.

Table 9 presents the overall average and best classi-
fication performance, as well as the optimum α value 
for every dataset in terms of all of the four classifiers. 
Clearly, those datasets with higher classification accu-
racies have the bigger optimum α values in general. 
For example, the Leukemia 1, Lung Cancer, Prostate 
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Cancer and Leukemia 2 datasets with relatively 
higher average and best classification accuracies have 
obviously larger optimum α values than the other 
datasets. In contrast, the DLBCL and Breast Cancer 
datasets have worse classification results, and smaller 
optimum α values. The conditions of Colon and CNS 
Tumor datasets are just lying between. These results 
again proved our conjecture that the α value was con-
nected with the inherent classification property that a 
dataset possesses. Therefore, to achieve better classi-
fication of different datasets, the flexible tuning of α 
parameter is necessary. It is just the main advantage 
of the α depended degree over the depended degree.

Classification results based on other 
feature selection methods
Table 10 lists the classification results based on Chi 
(chi-square), Info (information gain), RF (Relief-F) 

and SU (symmetric uncertainty) in the Colon Tumor 
dataset. The classification results in the other datas-
ets based on the same feature selection methods were 
provided in the supplementary materials (5). To verify 
the aforementioned inherent classification difficult-
ness of related datasets, we calculated the highest and 
average of all of the classification results obtained by 
the different feature selection methods except the α 
depended degree, gene numbers and classifiers for 
each dataset. The results were listed in Table 11, indi-
cating again that the Leukemia 1, Lung Cancer, Pros-
tate Cancer and Leukemia 2 datasets can be classified 
with relatively high accuracy; the DLBCL and Breast 
Cancer datasets can be classified with relatively low 
accuracy; the Colon and CNS Tumor datasets can be 
classified with intermediate accuracy.

Comparison between α depended 
degree and other feature selection 
methods
We compared the α depended degree with the other 
feature selection methods in the average and best 
classification accuracy. Table 12 lists the average 
classification accuracies resulted from different 
feature selection methods in the Colon Tumor dataset. 
When α = 0.85 and α = 0.80, we obtained 84.33% and 
83.81% accuracy (shown in boldface), respectively. 
Both results exceed the results derived from Chi, Info, 
RF and SU.

Table 13 lists the best classification accuracy 
obtained by different feature selection methods in 

Table 7. Best classification accuracy (%) for the different 
classifiers and α values in the Colon tumor dataset.

α/Classifier NB DT SVM k-NN Average Max
1 80.65 88.71 88.71 88.71 86.70 88.71
0.95 80.65 88.71 83.87 83.87 84.28 88.71
0.9 85.48 91.93 88.71 88.71 88.71 91.93
0.85 88.71 87.1 87.1 88.71 87.91 88.71
0.80 85.48 87.1 87.1 88.71 87.10 88.71
0.75 87.1 87.1 85.48 85.48 86.29 87.1
0.7 87.1 90.32 88.71 87.1 88.31 90.32

The maximum numbers in each column are highlighted in boldface.
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the Colon Tumor dataset. For the classifier NB, the 
maximum best classification accuracy of 88.71% 
was obtained under chi and α = 0.85; for DT, the 
maximum was obtained under SU and α = 0.9; for 
SVM, the maximum was achieved under α = 1, 
0.9 and 0.7; for k-NN, the maximum was achieved 
under SU and α = 1, 0.9, 0.85 and 0.8. The maxi-
mum of the average best classification accuracies 
was obtained under SU and α = 0.9. Overall, the best 
classification accuracy in the Colon Tumor dataset 
was 91.94%, which was gained with SU and α = 0.9. 
To sum up, using any one of the four classifiers, our 
feature selection method was capable of achieving 
the highest average classification accuracy among 
all of the compared feature selection methods. It was 
notable that we reached the best results in five of the 
six comparisons (six columns) with α = 0.9 (see 
Table 13).

Figure 9 and Figure 10 contrast the average and 
best classification accuracies in all of the eight 
datasets for different feature selection methods. In the 
average accuracy, the α depended degree attained the 
best results in four datasets; in the best accuracy, 
the α depended degree attained the best results in six 
datasets. Taken together, the classification perfor-
mance with the α depended degree are superior to or 
at least match that with the other four popular feature 
selection approaches.

Discussion and Conclusions
Because of the severe imbalance between feature 
numbers and instance numbers in microarray-based 
gene expression profiles, feature selection is essen-
tially crucial in addressing the problem of molecular 
classification and identifying important biomarkers 
of cancer. To better molecularly classify cancers and 
detect significant marker genes, developing flexible 
and robust feature selection methods are of extreme 
importance. However, the conventional rough sets 
based feature selection method, the depended degree 
of attributes, was deficient in flexibility and robust-
ness. Some indeed important genes may be missed 
just as their exceptional expression in a small num-
ber of samples if the depended degree criterion is 
used for gene selection. In contrast, we can avoid 
this kind of situations by the utility of the α depended 
degree criterion, which shows strong robustness by 
the flexible tuning of the α value. The α depended 
degree has been proven to be more efficient than the 
depended degree in gene selection through a series of 
classification experiments. Moreover, the α depended 
degree was comparable with the other established 
feature selection standards: chi-square, information 

Table 8. Average highest and best average classification 
accuracy (%).

Dataset AHA (α) ABAA (α)
Colon tumor 89.52 (0.8771) 84.51 (0.8438)

CNS tumor 86.25 (0.9563) 76.07 (0.925)

DLBCL 84.48 (0.8181) 72.91 (0.8563)

Leukemia 1 98.26 (0.9063) 93.80 (0.95)
Lung cancer 99.31 (0.9594) 97.61 (0.95)
Prostate cancer 95.11 (0.9125) 91.46 (0.9438)
Breast cancer 80.77 (0.8015) 74.08 (0.7688)

Leukemia 2 94.74 (0.9096) 87.47 (0.925)
The relatively bigger AHA, ABAA, α values and their corresponding 
datasets are highlighted in boldface, while the relatively smaller ones are 
highlighted in italic.
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gain, Relief-F and symmetric uncertainty, which 
was also demonstrated by the classification experi-
ments. It should be noted that the classification 
results exhibited in this work might be biased 
towards higher estimates since the feature selections 
were ahead of LOOCV. However, the comparisons 
were generally just because all of the classifi-
cation results were obtained based on the same 
procedures.

An interesting finding in the present study was 
that the α depended degree could reflect the inherent 
classification difficultness of one microarray dataset. 

Generally speaking, when the α depended degree 
was used for gene selection, if we could achieve the 
comparatively good classification accuracy in some 
cancerous microarray dataset, the corresponding 
α value would be relatively high, regardless of what 
classifier being used; otherwise, it would be relatively 
low. Moreover, once some dataset has been identified 
as difficultly-classified or easily-classified through 
the α depended degree, the dataset would be equally 
difficultly-classified or easily-classified using other 
gene selection methods, irrespective of classifiers. 
Therefore, if we want to gauge the difficultness of 
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Table 9. Overall average and best classification accuracy (%) and optimum α value.

Dataset Average accuracy Best accuracy Optimum α value

Colon tumor 80.55 91.93 0.8–0.9
CNS tumor 72.94 91.67 0.8 or 1
DLBCL 69.33 84.48 0.7 or 0.8
Leukemia 1 88.82 100 0.95–1
Lung cancer 90.01 100 0.95
Prostate cancer 87.84 98.04 0.95
Breast cancer 68.65 85.9 0.75
Leukemia 2 84.24 98.25 0.9
The relatively higher average accuracies, best accuracies, optimum α values and their corresponding datasets are highlighted in boldface, while the 
relatively lower ones are highlighted in italic.

Table 10. Classification results in the Colon tumor dataset based on the other feature selection methods.

Feature selection Gene number NB DT SVM k-NN
Chi 100 80.65 90.32 85.48 87.10

50 83.87 83.87 85.48 83.87
20 88.71 83.87 87.10 85.48
10 87.10 85.48 82.26 85.48
5 85.48 85.48 83.87 83.87
2 85.48 85.48 77.42 85.48
1 56.45 85.48 64.52 87.10

Info 100 80.65 85.48 87.10 85.48
50 85.48 83.87 87.10 87.10
20 80.65 85.48 87.10 87.10
10 85.48 85.48 85.48 83.87
5 85.48 74.19 82.26 87.10
2 85.48 85.48 77.42 85.48
1 56.45 85.48 64.52 87.10

RF 100 87.10 79.03 85.48 87.10
50 85.48 83.87 87.10 85.48
20 83.87 83.87 83.87 83.87
10 85.48 79.03 82.26 85.48
5 85.48 85.48 79.03 85.48
2 82.26 82.26 83.87 80.65
1 82.26 82.26 75.81 80.65

SU 100 79.03 91.94 85.48 87.10
50 83.87 83.87 87.10 87.10
20 82.26 85.48 87.10 88.71
10 87.10 85.48 80.65 82.26
5 87.10 85.48 82.26 83.87
2 80.65 85.48 79.03 80.65
1 56.45 85.48 64.52 87.10

The best classification accuracies on each combination of feature selection methods and classifiers are indicated by boldface.
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Table 11. Highest and average classification accuracy (%) for each dataset.

Dataset Highest accuracy Average 
accuracy

Colon tumor 91.94 83.1074

CNS tumor 90 72.3362

DLBCL 87.93 70.7054

Leukemia 1 97.22 92.013
Lung cancer 100 97.9547
Prostate cancer 96.08 90.9766
Breast cancer 88.46 69.3911

Leukemia 2 98.25 87.5938
The relatively higher highest accuracies, average accuracies and their corresponding datasets are highlighted in boldface, while the relatively lower ones 
are hightlighted in italic.

Table 12. Comparison of average classification accuracy in Colon tumor dataset.

Classifier/Feature selection NB DT SVM k-NN Average
Chi 81.11 85.71 80.88 85.48 83.30

Info 79.95 83.64 81.57 86.18 82.84

RF 84.56 82.26 82.49 84.10 83.35

SU 79.49 86.18 80.88 85.25 82.95

α DD (α depended degree) 1 76.50 75.58 75.81 80.18 77.02

0.95 75.58 78.80 70.51 74.88 74.94

0.9 78.57 82.95 83.18 86.18 82.72

0.85 83.64 83.64 84.33 85.71 84.33
0.80 83.64 83.87 83.18 84.56 83.81
0.75 78.80 78.11 78.34 80.87 79.03

0.7 81.57 80.64 82.26 83.41 81.57
The two largest average values are highlighted in boldface.

the cancer-related classification based on a new 
microarray dataset, the α depended degree can be 
used for addressing the problem. In fact, if excluding 
the quality factor of a cancerous microarray dataset, 
the classification difficultness of the dataset might 
reflect the essential biological properties of the 
relevant cancer.

The size of the selected gene subset by which a 
good classification is achieved is also an important 
factor in assessing the quality of a feature selection 
approach. In general, the accurate classification with 

a small size of genes is the better classification than 
that with a large number of genes. Our experiments 
did not exhibit substantial differences in the optimum 
gene numbers concerned with every feature selection 
method, partly because finding the optimum gene 
sizes need more delicate feature selection strategies 
instead of simply selecting a few top-ranked genes. 
One of our future work is to develop more favorable 
gene selection methods by merging the α depended 
degree based feature ranking with some heuristic 
strategies.
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Figure 9. Contrast in average accuracy for different feature selection methods.

Table 13. Comparison of best classification accuracy in Colon tumor dataset.

Classifier/ 
Feature selection

NB DT SVM k-NN Average Max

Chi 88.71 90.32 87.10 87.10 88.31 90.32

Info 85.48 85.48 87.10 87.10 86.29 87.10

RF 87.10 85.48 87.10 87.10 86.70 87.10

SU 87.10 91.94 87.10 88.71 88.71 91.94

α DD 1 80.65 88.71 88.71 88.71 86.69 88.71

0.95 80.65 88.71 83.87 83.87 84.27 88.71

0.9 85.48 91.94 88.71 88.71 88.71 91.94
0.85 88.71 87.10 87.10 88.71 87.90 88.71

0.80 85.48 87.10 87.10 88.71 87.10 88.71

0.75 87.10 87.10 85.48 85.48 86.29 87.10

0.7 87.10 90.32 88.71 87.10 88.31 90.32
The maximums of each column are shown in boldface, indicating the highest best classification accuracies obtained among the different feature selection 
methods using the identical classifiers.
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