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Abstract
We give a Large Deviation Principle (LDP) with explicit rate function for the distribution of vertex
degrees in plane trees, a combinatorial model of RNA secondary structures. We calculate the typical
degree distributions based on nearest neighbor free energies, and compare our results with the
branching configurations found in two sets of large RNA secondary structures. We find substantial
agreement overall, with some interesting deviations which merit further study.

1 Introduction
In this paper we give a Large Deviation Principle (LDP) for a combinatorial model of RNA
secondary structures. This mathematical result allows us to make quantitative statements about
the expected or “typical” branching configurations for our model of RNA folding. We are
motivated by the question of identifying “unusual” substructures in large RNA molecules,
which is a crucial aspect of searching for putative functional motifs. This is a challenging
biological question since the accuracy of RNA secondary structure prediction methods by free
energy minimization decreases with sequence length [6,8,13,15,26,27]. We address one aspect
of this problem by adopting a statistical mechanics approach to investigate the asymptotic
branching degrees of large random trees under distributions which reflect the thermodynamics
of RNA base pairing. Our goal is not to predict base pairs for a particular RNA sequence, but
to analyze what a typical branching distribution might be for an arbitrary large RNA secondary
structure.

Previous combinatorial results [10] on plane trees suggest that the degree of loop branching is
correlated with thermodynamic stability and functional significance. We refine this analysis
of the branching degree in RNA secondary structures by considering Gibbs distributions based
on the nearest neighbor free energy parameters. We are particularly interested in the interplay
between the energy term, which has dominated previous analyses, and the impact of entropy
considerations in determining “unusual” configurations. Our mathematical results are given as
an LDP for the distribution of vertex degrees among plane trees with N vertices. To the best
of our knowledge, no studies of Gibbs distributions on random trees have been published, and
our analysis of the energy-entropy competition for these random trees model appears to be
new. We also compare our expected configurations as N → ∞ with the branching degrees found
in two sets of RNA secondary structures: large subunit 23S ribosomal structures derived by
comparative sequence analysis from the Gutell Lab at UT Austin and picornaviral structures
predicted by free energy minimization from the Palmenberg Lab at UW Madison. We find
substantial agreement overall between our asymptotic results for large random trees and the
branching distributions found in the RNA secondary structures. This supports our statistical
mechanics approach to developing a reasonable and mathematically tractable model of large

*Partially supported by NSF CAREER DMS-0742424
†Partially supported by a BWF CASI and NIH NIGMS R01 GM083621

NIH Public Access
Author Manuscript
Bull Math Biol. Author manuscript; available in PMC 2010 March 8.

Published in final edited form as:
Bull Math Biol. 2009 January ; 71(1): 84–106. doi:10.1007/s11538-008-9353-y.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



RNA molecules. Conversely, deviations from our predictions indicate an aspect of RNA
folding which is not well covered by the model and which merits further study.

2 Overview
A single-stranded RNA sequence encodes molecular structure and function in a hierarchical
way [22], from primary sequence through secondary structure1 to the tertiary interactions that
determine the three-dimensional structure. Since the primary structure of an RNA molecule is
a nucleotide sequence much like DNA, experimental sequencing techniques can easily
determine its base composition, and there are ever-increasing numbers of known RNA
sequences. RNA molecules also resemble proteins though, since unlike the canonical DNA
double helix, different RNA sequences fold into a variety of three-dimensional structures.
However, there are still only a few hundred solved RNA structures, largely small molecules
or molecular fragments, in contrast to the thousands of known protein structures. Thus,
understanding the relationship between an RNA sequence and the base pairings of its secondary
structure is an essential step in understanding the RNA structure-function hierarchy. Beyond
the computational problem of RNA secondary structure determination, there is the question of
evaluating the significance of the base pairings. In particular, identifying “unusual”
substructures in large RNA molecules is a crucial aspect of searching for putative functional
motifs.

We begin addressing this problem by investigating the typical branching configurations of
large RNA molecules using a statistical mechanics approach with a combinatorial model of
RNA folding. As detailed in [10,11], trees are widely used to represent nested RNA secondary
structures, and as described in Section 3 we model the folding of RNA sequences using plane
trees – ordered, rooted trees [21] which nicely abstract the different substructures in RNA
folding. In Section 4 we consider the set of all plane trees on N vertices and define a Gibbs
distribution on that set using energy functions from the nearest neighbor free energy model for
RNA folding. We analyze these distributions as N → ∞, and give an LDP with explicit rate
function.

Informally, an LDP with nonnegative rate function I for random variables XN taking values in
a set ℳ means that for all p ∈ ℳ and large N, we have

In particular, when the minimal value 0 is attained by I at a unique point p* ∈ ℳ, then for any
neighborhood O of p*, the probability P{XN ∉O} decays exponentially in N. This can also be
restated as a Law of Large Numbers with exponential convergence in probability to the limit
point p*.

As a consequence of this Law of Large Numbers, it makes sense to call a random tree from
our model “typical” if the distribution of its branching degrees is close to p*. More precisely,
the LDP for our model tells us that there is a distribution p* of branching degrees such that the
distribution for a random tree is close to p* with probability approaching 1 as the size of the
tree grows to infinity. Therefore, it also makes sense to consider any tree with a branching
degree distribution considerably deviating from p* to be exotic. In Section 5 we compute p*,
the asymptotically most probable branching sequences for our model. An immediate

1There is a large body of literature on protein secondary structures (amino acid alpha helices and beta sheets). However, this is unrelated
to the nucleotide base-pairing pattern that constitutes an RNA secondary structure.
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implication is that it is unlikely (in the framework of our model) to observe a large RNA
secondary structure with branching degree distribution that significantly differs from p*.
However, if such conformation is observed, the analysis of that conformation should result in
some new insights.

Under the nearest neighbor thermodynamic model for RNA folding, the free energy of an RNA
secondary structure is assumed to be the independent sum of the substructure free energies. In
our model of RNA branching configurations, this corresponds to an assumption that the free
energy of the entire tree is equal to the sum of free energies associated with each vertex.
However, it is known from statistical mechanics that free energy is additive if all the
subconfigurations are statistically independent of each other. If this requirement is not satisfied
then additional entropy corrections related to the interdependencies or interactions between
the subsystems or subconfigurations should appear.

We show that this is indeed the case for the systems that we consider. The combinatorial
structure of the trees imposes certain restrictions on branching degrees that lead to their mutual
statistical dependence which in turn induces certain entropy corrections. Due to this interplay
between energy and entropy, the typical trees minimize the free energy corrected by the extra
entropy term resulting from the combinatorics of plane trees, and do not minimize the energy
plainly understood as sum of the energies of all the vertices. Therefore, the entropy correction
is an important factor in determining the branching of typical large trees, which have a broader
distribution of loop degrees than the exotic energy-minimizing configurations.

Based on our results, we have that the percentage of high degree vertices in a typical large tree
is exponentially decreasing, but positive. As we discuss, the exact rate of decay depends on
the specific thermodynamic parameters, and there are interesting differences in the behavior
of our model under the two sets of energy values considered. In Section 6, we compare these
asymptotic degree distributions with the branching found in a set of ribosomal and a set of
picornaviral RNA secondary structures. There are definite qualitative similarities between our
predictions and the secondary structure data, as well as various differences which suggest areas
for future investigations.

3 Modeling RNA folding by trees
As pictured in Figure 1, RNA secondary structures can be modeled as trees by collapsing each
single-stranded loop into a point and replacing the stacked base pairs by an edge connecting
two such points. The tree is rooted at the vertex corresponding to the external loop, which
contains the 5′ and 3′ ends of the sequence, and by imposing a linear ordering on the vertices
of the tree, we maintain the 5′ to 3′ orientation of the RNA molecule. Such an ordered, rooted
tree, known as a plane tree [21], gives a “low-resolution” model of RNA folding; it preserves
information about the basic arrangement of loops and helices in an RNA secondary structure,
and also captures certain essential elements of the free energy thermodynamic model. The free
energy of a particular RNA secondary structure is calculated as the independent sum over the
energies of well-defined substructures [28], namely the helices and different classes of loop
structures. The primary loop classification is according to the number of base pairs, that is
according to the branching degree (the number of children) of the corresponding vertex. Since
we consider only the branching degree of the vertices in our rooted trees, we will frequently
refer to the number of children simply as the degree of the vertex. Hence, there are three basic
types of loops which we consider with the associated free energies given in Table 1. For our
purposes, we consider bulge loops to be a special type of internal/degree 1 loop, loops with
degree ≥ 2 are called “branching” loops rather than “multiloops”, and the exceptional energy
function for the external loop is disregarded.
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Here, we consider two possible energy values for each type of loop structure, corresponding
to the current standard known as dG 3.0 and the former standard dG 2.3. (See “Version 3.0
free energy parameters for RNA folding at 37°” and “Version 2.3 free energy parameters for
RNA folding at 37°” available through the mfold website.) The energy of a loop is a function
of the number of single-stranded bases and the number of base pairs, with an additional
dependency for the stacking interactions [28]. For the purposes of our model, we have chosen
a specific energy value from the unbounded set of possibilities for each of the three types of
loops. These values correspond to loops where any enclosed base pairs are G – C, the closing
base pair is C – G, and the single-stranded segments are A4. These loops occur in the
combinatorial model of RNA folding previously considered in [10], and the dG 3.0
thermodynamic values were used in the results on RNA branching degrees given there. Clearly,
there are many other possible choices and it may be interesting to investigate the impact of
different thermodynamic values – energy minimizing versus maximizing, average against
frequent, etc. – on the behavior of the model. We note that the dG 2.3 parameters were originally
included in our analysis because the picornaviral secondary structures from [19] which are
analyzed in Section 6 were determined using those values. In doing so, though, we noticed
interesting changes in the evolution of the free energy model.

The free energy model is evolving in two significant ways. One type of development is
extending and refining the experimental determination of thermodynamic values for the
entropy and enthalpy of specific base interactions [14,15]. While this has improved the
accuracy of RNA secondary structure prediction, it has also greatly increased the complexity
of the thermodynamic calculations; the free energy model now includes more than 10,000
parameters, nearly all of which pertain to small internal loops. The other evolving component
is changes in the estimation of free energy functions which have not, or worse cannot, be
measured directly. The loop destabilizing energies are the most notable instance of this, and
the major source of change between the previous energy parameters (dG 2.3) and those
currently used (dG 3.0). Through our mathematical results given in the next two sections,
though, we can assess the impact of these changes and the importance of the entropy correction
on the likely configurations of large RNA secondary structures without getting lost in the
thousands of detailed thermodynamic parameters.

4 The Large Deviation Principle
As described above, we consider plane trees as our combinatorial model of RNA folding. Now,
we introduce a family of Gibbs distributions on the trees, and state our main mathematical
results.

We fix a number D ∈ ℕ and for each N ∈ ℕ consider the set  (D) of plane trees on N ∈ ℕ
vertices such that the number of children of each vertex (the branching degree) does not exceed
D. We restrict ourselves to the trees with bounded degrees to simplify the mathematical
treatment. However, if D is suitably large, this does not impose any significant restrictions
since, although the degree of branching in RNA loops is theoretically unbounded, in practice
it is necessarily limited by physical constraints. Moreover, as we shall see in the next section,
the properties of the model stabilize as D → ∞.

To define Gibbs distributions on  (D) we associate an energy with each plane tree. In our
model of RNA branching configurations, we assume that the energy associated with each vertex
depends only on its branching degree and is given by a function c: {0, 1, …, D} → ℝ. To a
first approximation, this is consistent with the thermodynamics of RNA folding. The energy
of a tree T ∈  (D) is then given by
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(1)

where dj denotes the branching degree of vertex j, and χk(T) is the number of vertices with k
children in T. Now the Gibbs probability measure on  (D) associated with H is given by

where β > 0 is the inverse temperature parameter and ZN is a normalizing constant known as
the partition function:

There are several interesting questions one could ask about the asymptotic behavior of
measures PN as N → ∞. Here we would like to study the frequencies of branching degrees, so
for each N we introduce a probability measure νN on [0, 1]D+1 defined as the distribution of
the random vector  under PN. Our main result is an LDP for νN.

Let us recall that a sequence of probability measures (μN)N∈ℕ on a compact metric space (E,
ρ) satisfies an LDP with a nonnegative lower-semicontinuous rate function I: E → ℝ if

and

where for a set O, we denote I(O) = infp∈O I(p), see [7, Section II.3] or [5, Section 1.2].

Informally, an LDP means that if we consider random variables XN with distribution μN, then
for all p and large N we have

In particular, if the minimal value 0 is attained by I at a unique point p*, then for any
neighborhood O of p*, μN (Oc) = P{X ∉ O} decays exponentially in N. This can be restated as
a Law of Large Numbers with exponential convergence in probability to the limit point p*.

For our model, it is natural to formulate the LDP for νN on the set
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equipped with Euclidean distance. Though the random vector  does not belong to
ℳ, it is asymptotically close to ℳ:

So instead of formulating an LDP for the sequence of random vectors  we shall
formulate an LDP for a sequence of random vectors that is close to it and belongs to ℳ.

Let us introduce J: ℳ → ℝ via

where

(2)

is the entropy of the probability vector p = (p0, …, pD), and

is the energy associated with p ∈ ℳ.

The function J is strictly convex, and attains its minimum on ℳ at a unique point p*. Let

(3)

For a measure Q on [0, 1]D+1 × ℳ we define Q(1) and Q(2) as the marginal distributions of Q
on [0, 1]D+1 and ℳ respectively.

Theorem 1
There is a sequence of probability measures (QN)N∈ℕ defined on [0, 1]D+1 × ℳ with the
following properties.

1. For each N, we have .

2. For each N,
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3. The sequence  satisfies LDP on ℳ with the rate function I defined in (3).

Remark 1
This theorem says that though the random vector χ/N does not belong to ℳ, one can find another
random vector that is, on the one hand, very close to χ/N and on the other hand belongs to ℳ
and satisfies the LDP.

An immediate consequence is the following Law of Large Numbers:

Corollary 1
As N → ∞,

in probability.

Remark 2
The statements above show that with high probability the degree frequencies are close to p*.
Note that in most cases p* is not the minimizer of the energy E on ℳ.

We shall now give a sketch of the proof of Theorem 1. The proof is based on the fact that trees
with equal branching degree sequences have equal energy. Therefore,

(4)

where n = (n0, …, nD) and C(N, n) is the number of plane trees of order N with nk nodes of
branching degree k:

if n1 + 2n2 + … = N − 1, and 0 otherwise (see e.g. Theorem 5.3.10 in [21]). One can apply the
formula
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which holds true uniformly in n, see e.g. [7, Lemma I.4.4].

Plugging this into (4), we get

which is the desired asymptotics. In fact, the LDP that we claim is a stronger statement and
requires extra work to complete this argument rigorously. The complete proof along with other
random tree models will appear in detail elsewhere [1].

5 Applications to RNA secondary structure
In this section we compute the asymptotically most probable branching sequences for our
model under an additional requirement that the coefficients c(m) are given by

for some numbers A1, A2, A3, A4. Both the dG 2.3 and dG 3.0 thermodynamic values in Table
1 satisfy this requirement, and we shall address these models in detail in the end of this section.

For this choice of c(m) we have

where

k = 1.99 Cal/mole·K being the Boltzmann constant, and T the temperature.

Corollary 1 implies that a typical conformation will have degree frequencies close to the
solution of

where
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It is easy to see that, since the function x ↦ x ln x has infinite negative derivative at zero, the
minimal value of S(p) cannot be attained at the boundary of ℳ. Moreover, S is strictly convex,
so that there is a unique minimizer. Therefore we can solve this problem by the method of
Lagrange multipliers. We set

The optimal vector (p*, λ) must satisfy

We rewrite this as

(5)

where μ = e−λ0−1, ν = e−λ1 and bi = eai, i = 1, …, 4. We notice that

Instead of solving this system explicitly, let us consider the case of D ≫ 1, i.e., rewrite the
limiting system for D → ∞:

Excluding μ we get a quadratic equation on ν and among the two roots we choose
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that satisfies 0 < b4ν < 1.

Now we can express μ as

For the dG 3.0 model, we have A1 = 4.1 KCal/mole, A2 = 2.3 KCal/mole, A3 = 1.9 KCal/mole,
A4 = 1.5 KCal/mole at T = 273 + 37 = 310 K. Then the solution given above, yields

Likewise, for the dG 2.3 model, we have A1 = 3.5 KCal/mole, A2 = 3.0 KCal/mole, A3 = 4.4
KCal/mole, A4 = 0.2 KCal/mole at T = 273 + 37 = 310 K. Then the solution given above, yields

The first several values of pm in both cases are displayed in Figure 2.

The LDP for our model implies that, typically, the frequency of the loops of degree k decreases
exponentially in k. However, the relative frequency for the first three terms and the exact rate
of decay depends on the specific thermodynamic parameters. We know from previous results
[10] that the trees which minimize the associated free energies in the dG 3.0 model maximize
the number of vertices of degree 2. We see a similar behavior in the asymptotic distribution of
vertex degrees under our LDP with the dG 3.0 thermodynamic values; in a typical large tree,
47.8% of the vertices would have degree 0 and 35.1% would have degree 2. Because of the
impact of the entropy term correction, though, 11.2% of the vertices would have degree 1, and
a vanishingly small but still nonzero percentage would be likely to have some degree ≥ 3. Thus,
under the dG 3.0 model, the frequency of branching degrees in a typical large tree is a refined,
and certainly more reasonable, distribution which still resembles our original calculation of
the energy-minimizing configurations.

In contrast, the relative frequency among the vertices with degree 0, degree 1, and degree ≥ 2
is significantly different for the distribution calculated with the dG 2.3 values. Now, in a typical
large tree, while 41.7% of the vertices would still have degree 0, only 5.5% would have degree
2, and 43.2% would have degree 1. Furthermore, although the percentage of loops with degree
≥ 3 still decreases exponentially, the rate is significantly lower than it was with the dG 3.0
values. The differences in the thermodynamic values are primarily a result of changes in the
loop destabilizing energies for the hairpin and internal loops as well as more significant changes
in the offset, free base penalty, and helix penalty for the multibranched loop energy function.
In particular, the dG 2.3 values for the offset, free base penalty, and helix penalty are 4.60,
0.40, and 0.10 respectively, while the dG 3.0 values are 3.40, 0.0, .40. Intuitively, branching
is significantly more favorable, energetically speaking, under the dG 3.0 thermodynamic model
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than it was in the dG 2.3 version. These changes then have a significant impact on the
distribution among loops of small degrees as well as on the decay rate for the tail of the
distribution.

In our model, we are able to assess the impact of these changes on the distribution of branching
degrees for a typical large tree. However, our low-resolution model of RNA folding does not
permit any assessment of the correctness of the two thermodynamic models, as was done in a
recent analysis [6]. As we shall see, though, it is the dG 2.3 distribution, and not the dG 3.0
model, which more closely resembles the frequency of branching degrees in both the large
subunit 23S ribosomal and the picornaviral RNA secondary structures.

6 Ribosomal and picornaviral branching degrees
We analyze the branching degrees found in two different sets of RNA secondary structures,
and compare them with the typical branching sequences for our large random trees. Our
findings are summarized here in Figure 3 and in the discussion, while more details are given
in Appendix A. Overall, the branching of these secondary structures agrees with the results for
our model, although there are deviations which suggest interesting avenues for further
investigation. Our comparisons are qualitative, rather than quantitative, since it would be
unrealistic to expect precise agreement between our “low-resolution” model of RNA folding
and the branching configurations of large ribosomal and picornaviral secondary structures.
Still, we find some striking similarities between the predictions based on our model and the
data for real RNA sequences.

The first set of results, found in Appendix A.1, is for the large subunit 23S ribosomal RNA
secondary structures determined through comparative sequence analysis by the Gutell Lab.
We give results for 20 of the 77 pseudoknot-free sequences available online through their
Comparative RNA Web (CRW) Site and Project [2]. The chosen sequences were also used in
the analyses of [8] and are representative of the whole set. As seen in Table 2, the average
sequence length is 2756.2 nucleotides, although there is certainly variability among the
different types of ribosomal sequences. Since our results are asymptotic, we disregard the
particular energy function for the external loop, and the degrees of the external loops are listed
separately in Table 2.

In Tables 3 and 4, we give the distribution of loop degrees, where the degree of a loop is one
less than the number of base pairs contained in the loop. We see that the most prevalent loops
(46.81% overall) are the internal loops with degree 1, followed by the hairpin structures with
degree 0. Most of the branching loops have degree 2, which agrees with the previous
combinatorial analysis [10], although there is a distribution extending out to branching loops
of degree 12. We note that the distribution of branching loops tails off much as we expected,
although there is an interesting peak of degree 6 loops as well as smaller peaks at 4, 8, and of
course 12. We find this correlation between loop parity and frequency interesting, although
since ribosomal structure is highly conserved across various organisms, the distribution of loop
degrees for these 23S RNA secondary structures are by no means independent.

As we do for the picornaviral sequences, discussed below, we investigate in more detail the
distribution of sizes among the internal loops. As we see from Table 5, with only a few
exceptions, the internal loops contain fewer than 16 unpaired bases, and a substantial fraction
(48.36% on average) contain at most 2. It is reasonable [27] to consider two helices which are
interrupted by an internal loop of fewer than 3 bases as one contiguous stem. When we adjust
the count of loop degrees accordingly, by excluding internal/degree 1 loops with at most 2
unpaired bases as in Tables 6 and 7, then we see a distribution with different relative numbers
of hairpin/degree 0, internal/degree 1, and branching/degree ≥ 2 loops. For these 23S ribosomal
secondary structures, our prediction branching distributions for dG 2.3 are closer to the original
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unfiltered distribution, although the opposite will be true for the picornaviral secondary
structures.

The second set of results is found in Appendix A.2. We consider the 11 picornaviral sequences
analyzed in [19], which are available online from the Palmenberg Lab through
http://www.virology.wisc.edu/acp/RNAFolds. The predicted secondary structures were
computed by the mfold program v2.2, using the default values [19]. The average length for
these sequences, as seen from Table 8, is 7566.27 bases – considerably longer than the large
subunit 23S ribosomal sequences. We also list the external loop degrees separately in Table 8,
since this special energy function is not considered in our asymptotic results.

Again, the most prevalent loops have degree 1, as seen in Tables 9 and 10, and the most common
type of internal loops (48.14% on average) are those containing at most 2 unpaired bases.
However, the relative number of hairpin/degree 0, internal/degree 1, and branching/degree ≥
2 loops given in Tables 9 and 10 differs significantly from the LDP distribution. A large part
of this deviation is resolved after further investigation into the distribution of internal loop
sizes. As seen in Tables 11 and 12, there is a much broader distribution for the sizes of internal
loops. While most contain fewer than 16 unpaired bases, the number of “large” internal loops
does not drop off as sharply for the picornaviral secondary structures as it did for the 23S
ribosomal ones. When we filter the data by excluding the smallest internal loops, as in Tables
13 and 14, then we see a distribution that agrees even more closely with our LDP probabilities.
In this case, though, we have nearly equal numbers of hairpin/degree 0 loops and internal/
degree 1 loops, while the numbers of branching/degree ≥ 2 loops drop off almost by a factor
of 2. Thus, the predicted picornaviral configurations are less extensively branched than the
ribosomal secondary structures, and the degree of branching more closely agrees with our LDP
probabilities for the dG 2.3 model.

7 Discussion of related results
We adopt here a statistical mechanics approach, not to predict base pairs for a particular RNA
sequence, but to analyze what a typical branching distribution might be for an arbitrary large
RNA secondary structure. This work joins a growing body of results which analyze different
general characteristics of RNA secondary structures, both theoretically [4,12,17,18] and
computationally [3,9,16,20,23,24]. The qualities investigated have been the free energy and
molecular stability [3,16,20,23,24] as well as the number and type of different substructural
elements [4,9,12,17,18]. Asymptotics of the expected maximum number of base pairs are
studied in [4], but the overall molecular configurations are not addressed.

Statistics for different structural elements are computed for short RNA sequences ≤ 100 bases
in [9]. The unfiltered distribution of picornaviral degrees agrees closely with their statistical
reference probability densities, whereas the distribution of the 23S ribosomal degrees
resembles their “natural” sequence distribution by having slightly more hairpin/degree 0 loops
and fewer internal/degree 1 loops. The statistics of average branching degree given in [9] reflect
the fact that for large RNA sequences the size N of the associated tree is, typically, also large.
Therefore, the average branching degree is close to 1 due to the identity

This also agrees with the theoretical limit given in [12]; the asymptotic average branching
degree of 1 was derived for non-root vertices using a model of RNA secondary structures at

Bakhtin and Heitsch Page 12

Bull Math Biol. Author manuscript; available in PMC 2010 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.virology.wisc.edu/acp/RNAFolds


the base level and complicated recursion formulae depending on n, the number of bases in the
sequence. We have not yet investigated the other characteristics analyzed in [9] and [12],
however it may be possible to extend our low-resolution model of RNA folding and this
statistical mechanics approach to other properties of RNA secondary structures.

In [17], the typical configuration of large subunit ribosomal RNA is investigated using a
approach based on generating functions and stochastic context-free grammars. This approach
yields explicit formulas for the frequency of different structural elements as a function of the
sequence length n. Using the average sequences lengths for the 23S ribosomal and picornaviral
secondary structures as n1 and n2, we computed the predicted number of hairpin, internal, and
branching loops as well as the average degree of a branching loop. As in [17], we compare the
averages from the RNA secondary structures and the predicted frequencies, and find reasonably
good agreement for the 23S ribosomal structures. The relative differences for the predicted
frequencies from the unfiltered 23S ribosomal averages are: −3.28% for hairpin loops,
−13.05% for internal loops, 1.09% for branching loops, −6.35% for the total number of loops,
and 1.84% for the average branching degree. In contrast, the comparisons for the picornaviral
secondary structures are not as good. The relative differences for the predicted frequencies
from the unfiltered picornaviral averages are: 21.67% for hairpin loops, −31.46% for internal
loops, 6.94% for branching loops, −10.52% for the total number of loops, and 19.42% for the
average branching degree. Since the equations in [17] were derived by training the grammar
on a database of large subunit ribosomal RNA, it is perhaps not surprising that the predictions
of the model do not correspond as well to the picornaviral secondary structures. The paper
[18] provides related results by considering a model of RNA folding where two bases pair with
probability p and investigates different properties of the RNA secondary structures, but not
does not include an analysis of branching degrees.

8 Conclusions
We considered Gibbs distributions for our plane tree model of RNA folding based on the nearest
neighbor thermodynamics. An important feature of our model is that we can describe the typical
branching configurations of the trees by calculating the asymptotic degree sequences via a
Large Deviation Principle (LDP). As discussed, this has at least two implications for the
branching of large RNA secondary structures, such as the large subunit 23S ribosomal
molecules or RNA viral genomes like picornaviruses.

One implication concerns the asymptotic distribution of vertex degrees in a large random tree
from our model. The LDP for our model implies that, typically, the frequency of the loops of
degree k decreases exponentially in k. The exact rate of decay depends on the specific
thermodynamic parameters, however, and we considered two sets of energy values, the current
standard dG 3.0 and the former standard dG 2.3. Surprisingly, we find that the typical
distribution based on the dG 2.3 parameters corresponds more closely to the branching degrees
of both the picornaviral and ribosomal RNA secondary structures. The differences in the
thermodynamic values are primarily a result of changes in the loop destabilizing energies for
the hairpin and internal loops as well as more significant changes in the offset, free base penalty,
and helix penalty for the multibranched loop energy function. These changes then have a
significant impact on the distribution among loops of small degrees as well as on the decay
rate for the tail of the distribution. To be able to distinguish unusual substructures against the
background of a typical configuration, we will need to understand better the impact of different
thermodynamic values on the behavior of the model.

A second implication to emerge from our current analysis is that combinatorial constraints lead
to important entropy considerations in determining the most likely branching distributions in
large random trees. The nontrivial combinatorics of the plane trees implies that typical trees
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are minimizers of the free energy corrected by an extra entropy term. Thus, although the typical
trees in the dG 3.0 model are structurally, and therefore energetically, related to the trees which
have minimal energy, a typical large tree will not be a minimizer of the free energy understood
as the sum of the energies of individual loops. In fact, the LDP tells us that, in our combinatorial
model of RNA folding, the energy-minimizing trees are extremely improbable. Thus, when
modeling the folding of large RNA molecules, it is important to include entropy considerations
which distinguish the most likely configurations from those which simply minimize the
additive free energy.
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A Analysis of RNA Branching Degrees

A.1 23S Ribosomal RNA
Table 2

Sequence information, including the degree of the external loop, for 20 of the 77 pseudoknot-
free 23S ribosomal RNA secondary structures from the CRW [2]. The 20 selected were also
used in the analyses of [8], and are representative of the whole set. The different types of
sequences are (a) Archae, (b) Eubacteria, (c) Choloroplast, (m) Mitochondria, and (e) Eucarya.

Index Type Organism Name GenBank Accession # Length Degree

1 a Haloarcula marismortui X13738 2925 1

2 a Thermococcus celer M67497 3029 1

3 b Thermotoga maritima M67498 3023 1

4 b Thermus thermophilus X12612 2915 1

5 b Borrelia burgdorferi M88330 2926 1

6 b Escherichia coli J01695 2904 1

7 b Pseudomonas aeruginosa Y00432 2893 1

8 b Bacillus subtilis K00637
AF008220 Z99119

2927 1

9 b Mycobacterium leprae X56657 3122 1
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Index Type Organism Name GenBank Accession # Length Degree

10 c Chlamydomonas reinhardtii X15727 2902 1

11 c Zea mays Z00028 2985 1

12 m Chlamydomonas eugametos AF008237 1915 13

13 m Saccharomyces cerevisiae J01527 3273 1

14 m Zea mays K01868 3514 6

15 m Caenorhabditis elegans X54252 953 8

16 m Drosophila melanogaster X53506 1335 9

17 m Xenopus laevis M10217 1640 12

18 e Giardia intestinalis X52949 2850 10

19 e Saccharomyces cerevisiae U53879 3554 7

20 e Arabidopsis thaliana X52320 3539 12

Table 3

Degree distributions of loops.

Index sum 0 1 2 3 4 5 6 7 8 9 10 11 12

1 197 70 93 14 9 9 2

2 191 73 88 13 7 6 1 1 1 1

3 201 72 94 15 9 9 1 1

4 192 72 91 12 7 6 1 1 1 1

5 201 71 95 15 9 9 2

6 199 70 95 14 10 8 1 1

7 199 70 95 14 10 8 1 1

8 207 71 102 14 9 9 1 1

9 205 74 100 14 7 6 1 1 1 1

10 202 70 98 14 9 9 2

11 206 71 100 15 9 9 2

12 115 49 50 6 3 5 1 1

13 157 59 73 12 6 3 1 2 1

14 180 65 85 15 6 6 1 2

15 49 23 18 4 1 3

16 77 33 33 4 1 6

17 101 41 46 6 3 3 2

18 190 74 82 17 7 8 1 1

19 221 80 102 21 8 8 1 1

20 218 80 102 20 7 6 1 1 1

total 3508 1288 1642 259 137 136 10 23 4 5 0 0 0 4
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Table 4

Degree distributions of loops as percentages.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12

1 35.5 47.2 7.1 4.6 4.6 1.0

2 38.2 46.1 6.8 3.7 3.1 0.5 0.5 0.5 0.5

3 35.8 46.8 7.5 4.5 4.5 0.5 0.5

4 37.5 47.4 6.2 3.6 3.1 0.5 0.5 0.5 0.5

5 35.3 47.3 7.5 4.5 4.5 1.0

6 35.2 47.7 7.0 5.0 4.0 0.5 0.5

7 35.2 47.7 7.0 5.0 4.0 0.5 0.5

8 34.3 49.3 6.8 4.3 4.3 0.5 0.5

9 36.1 48.8 6.8 3.4 2.9 0.5 0.5 0.5 0.5

10 34.7 48.5 6.9 4.5 4.5 1.0

11 34.5 48.5 7.3 4.4 4.4 1.0

12 42.6 43.5 5.2 2.6 4.3 0.9 0.9

13 37.6 46.5 7.6 3.8 1.9 0.6 1.3 0.6

14 36.1 47.2 8.3 3.3 3.3 0.6 1.1

15 46.9 36.7 8.2 2.0 6.1

16 42.9 42.9 5.2 1.3 7.8

17 40.6 45.5 5.9 3.0 3.0 2.0

18 38.9 43.2 8.9 3.7 4.2 0.5 0.5

19 36.2 46.2 9.5 3.6 3.6 0.5 0.5

20 36.7 46.8 9.2 3.2 2.8 0.5 0.5 0.5

total 36.72 46.81 7.38 3.91 3.88 0.29 0.66 0.11 0.14 0 0 0 0.11

Table 5

Number of internal loops of different sizes, given as the distribution of loops with at most 15
unpaired bases and as a list of large internal loop sizes with multiplicity.

Index

Number of internal loops with 1 ≤ size ≤ 15 List of
large

loop sizes1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 27 13 6 7 4 7 4 6 10 4 1 1 1 1 37

2 26 15 2 8 5 6 5 6 9 2 1 1 1 35

3 24 17 4 10 4 10 7 4 6 4 2 1 31

4 27 17 4 11 6 8 4 3 5 2 2 1 31

5 26 18 4 10 7 8 5 4 7 2 1 1 1 30

6 24 19 3 11 8 7 3 5 9 2 2 1 30

7 26 17 5 11 6 8 5 4 7 2 2 1 31

8 32 18 4 10 7 9 5 4 6 2 2 1 1 30

9 29 19 3 10 8 9 6 3 5 3 2 1 1 31

10 29 19 3 9 6 10 4 4 7 2 2 1 29, 41
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Index

Number of internal loops with 1 ≤ size ≤ 15 List of
large

loop sizes1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 28 18 6 10 7 6 7 5 7 1 2 1 20, 29

12 15 9 4 4 1 4 2 1 2 3 1 1 18, 20, 27

13 27 12 4 6 3 5 4 4 2 1 1 28, 36,
50, 64

14 26 16 4 9 3 5 5 4 7 2 1 1 1 31

15 4 8 2 1 1 2

16 10 9 3 3 1 1 4 17, 20

17 15 9 5 4 2 3 1 2 1 1 18, 33, 47

18 27 14 4 9 2 5 5 5 3 3 1 1 1 25, 27

19 34 19 3 11 5 7 7 4 5 3 1 1 1 36

20 35 17 4 9 5 7 7 3 5 3 1 1 3 16, 37

Table 6

Degree distributions of loops with contiguous stems.

Index sum 0 1 2 3 4 5 6 7 8 9 10 11 12

1 157 70 53 14 9 9 2

2 150 73 47 13 7 6 1 1 1 1

3 160 72 53 15 9 9 1 1

4 148 72 47 12 7 6 1 1 1 1

5 157 71 51 15 9 9 2

6 156 70 52 14 10 8 1 1

7 156 70 52 14 10 8 1 1

8 157 71 52 14 9 9 1 1

9 157 74 52 14 7 6 1 1 1 1

10 154 70 50 14 9 9 2

11 160 71 54 15 9 9 2

12 91 49 26 6 3 5 1 1

13 118 59 34 12 6 3 1 2 1

14 138 65 43 15 6 6 1 2

15 37 23 6 4 1 3

16 58 33 14 4 1 6

17 77 41 22 6 3 3 2

18 149 74 41 17 7 8 1 1

19 168 80 49 21 8 8 1 1

20 166 80 50 20 7 6 1 1 1

total 2714 1288 848 259 137 136 10 23 4 5 0 0 0 4
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Table 7

Degree distributions of loops as percentages with contiguous stems.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12

1 39.3 29.8 7.9 5.1 5.1 1.1

2 41.2 26.6 7.3 4.0 3.4 0.6 0.6 0.6 0.6

3 40.7 29.9 8.5 5.1 5.1 0.6 0.6

4 41.4 27.0 6.9 4.0 3.4 0.6 0.6 0.6 0.6

5 40.8 29.3 8.6 5.2 5.2 1.1

6 40.0 29.7 8.0 5.7 4.6 0.6 0.6

7 40.0 29.7 8.0 5.7 4.6 0.6 0.6

8 42.3 31.0 8.3 5.4 5.4 0.6 0.6

9 43.5 30.6 8.2 4.1 3.5 0.6 0.6 0.6 0.6

10 41.2 29.4 8.2 5.3 5.3 1.2

11 41.3 31.4 8.7 5.2 5.2 1.2

12 25.3 13.4 3.1 1.5 2.6 0.5 0.5

13 33.0 19.0 6.7 3.4 1.7 0.6 1.1 0.6

14 36.9 24.4 8.5 3.4 3.4 0.6 1.1

15 11.2 2.9 1.9 0.5 1.5

16 16.6 7.0 2.0 0.5 3.0

17 21.1 11.3 3.1 1.5 1.5 1.0

18 41.8 23.2 9.6 4.0 4.5 0.6 0.6

19 48.5 29.7 12.7 4.8 4.8 0.6 0.6

20 48.2 30.1 12.0 4.2 3.6 0.6 0.6 0.6

total 47.46 31.25 9.54 5.05 5.01 0.37 0.85 0.15 0.18 0 0 0 0.15

A.2 Picornaviral RNA
Table 8

Sequence information, including the degree of the external loop, for the 11 picornaviral
sequences analyzed in
[19], available online through http://www.virology.wisc.edu/acp/RNAFolds.

Index Virus Name GenBank Acc. # Length Degree

1 coxsackievirus B3 M33854 7396 13

2 ECHO virus-22 L02971 7339 17

3 encephalomyocarditis virus-A M81861 7735 25

4 foot-and-mouth disease virus-A12 M10975 8214 1

5 hepatitis A virus-Hml75 M14707 7478 20

6 rhinovirus-14 K02121 7212 16

7 rhinovirus-16 L24917 7124 11

8 Mengovirus-M L22089 7761 26

9 poliovirus 1-Mahoney J0228140 7440 20

10 poliovirus 3-Sabin X00596 7432 22
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Index Virus Name GenBank Acc. # Length Degree

11 Theiler’s murine encephalomyelitis virus-
Bean

M16020 8098 37

Table 9

Degree distributions of loops.

Index sum 0 1 2 3 4 5 6 7

1 499 142 281 41 20 12 3

2 478 130 275 42 23 7 1

3 530 138 320 44 16 11 1

4 594 167 337 45 25 14 3 1 2

5 482 136 267 58 12 4 3 2

6 454 126 259 37 25 5 2

7 456 140 237 46 23 6 1 3

8 494 130 300 37 17 8 1 1

9 485 143 267 43 21 8 2 1

10 507 137 293 50 20 4 2 1

11 537 157 309 38 21 9 2 1

total 5516 1546 3145 481 223 88 21 9 3

Table 10

Degree distributions of loops as percentages.

Index 0 1 2 3 4 5 6 7

1 26.4 52.3 7.6 3.7 2.2 0.6

2 24.2 51.2 7.8 4.3 1.3 0.2

3 25.7 59.6 8.2 3.0 2.0 0.2

4 31.1 62.8 8.4 4.7 2.6 0.6 0.2 0.4

5 25.3 49.7 10.8 2.2 0.7 0.6 0.4

6 23.5 48.2 6.9 4.7 0.9 0.4

7 26.1 44.1 8.6 4.3 1.1 0.2 0.6

8 24.2 55.9 6.9 3.2 1.5 0.2 0.2

9 26.6 49.7 8.0 3.9 1.5 0.4 0.2

10 25.5 54.6 9.3 3.7 0.7 0.4 0.2

11 29.2 57.5 7.1 3.9 1.7 0.4 0.2

total 28.03 57.02 8.72 4.04 1.60 0.38 0.16 0.05
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Table 11

Distribution of internal loops with at most 15 unpaired bases.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 68 65 45 29 9 9 9 3 6 6 8 4 3 7 2

2 68 60 33 26 15 11 8 5 9 11 3 1 4 4 1

3 83 66 52 32 20 8 9 5 9 5 5 5 4 7 2

4 99 90 48 26 16 13 9 7 6 6 2 3 3 3 2

5 51 90 34 23 10 12 6 5 7 7 8 3 2 4 1

6 67 59 33 19 12 15 4 3 6 3 4 5 6 1 6

7 49 66 21 30 12 8 7 3 5 2 3 2 2 2 4

8 63 68 38 25 29 14 6 10 10 10 3 2 4 1 5

9 55 69 36 20 14 7 12 5 12 4 2 4 3 2 4

10 68 65 34 35 15 9 10 9 13 8 4 5 3 4 1

11 79 66 42 32 20 8 10 9 6 6 5 4 4 2 1

Table 12

Distribution of large (≥ 15 unpaired bases) internal loop sizes.

Index 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 1 4 3

2 2 2 2 3 1 1 1 1 1 1 1

3 3 1 1 1 1 1

4 3 1

5 1 2 1

6 2 1 3 3 1 2 1 1 1 1

7 3 1 5 2 2 1 3 1 1 2

8 1 4 1 1 1 2 1 1

9 5 3 5 2 1 1 1

10 3 2 1 1 1 1 1

11 2 3 2 3 1 1 2 1

Table 13

Degree distributions of loops with contiguous stems.

Index sum 0 1 2 3 4 5 6 7

1 366 142 148 41 20 12 3

2 350 130 147 42 23 7 1

3 381 138 171 44 16 11 1

4 405 167 148 45 25 14 3 1 2

5 341 136 126 58 12 4 3 2

6 328 126 133 37 25 5 2

7 341 140 122 46 23 6 1 3
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Index sum 0 1 2 3 4 5 6 7

8 363 130 169 37 17 8 1 1

9 361 143 143 43 21 8 2 1

10 374 137 160 50 20 4 2 1

11 392 157 164 38 21 9 2 1

total 4002 1546 1631 481 223 88 21 9 3

Table 14

Degree distributions of loops as percentages with contiguous stems.

Index 0 1 2 3 4 5 6 7

1 35.1 36.6 10.1 5.0 3.0 0.7

2 31.8 35.9 10.3 5.6 1.7 0.2

3 35.6 44.1 11.3 4.1 2.8 0.3

4 48.0 42.5 12.9 7.2 4.0 0.9 0.3 0.6

5 34.3 31.8 14.6 3.0 1.0 0.8 0.5

6 30.7 32.4 9.0 6.1 1.2 0.5

7 33.2 28.9 10.9 5.5 1.4 0.2 0.7

8 32.0 41.6 9.1 4.2 2.0 0.2 0.2

9 34.6 34.6 10.4 5.1 1.9 0.5 0.2

10 33.9 39.6 12.4 5.0 1.0 0.5 0.2

11 40.1 41.8 9.7 5.4 2.3 0.5 0.3

total 38.63 40.75 12.02 5.57 2.20 0.52 0.22 0.07
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Figure 1.
The secondary structure, generated by the mfold Web Server available through
http://frontend.bioinfo.rpi.edu/zukerm/home.html, for a 79 base fragment from the 3′ UTR of
the 7440 nucleotide RNA virus poliovirus 1-Mahoney, Genbank Accession No. J0228140
[19]. The structure has two hairpin loops, two internal loops (one of which is a bulge loop of
size 2), one branching (multi) loop, and an external loop. The adjacent plane tree (rooted at the
bottom) models the configuration of the RNA secondary structure, preserving information
about the basic arrangement of loops/vertices and helices/edges.
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Figure 2.
The first 11 values of pm for both the dG 3.0 model and the dG 2.3 model, where the right-
hand graph shows the logarithm of the values.
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Figure 3.
The distribution of loop degrees as fractions of the total. Each graph shows both the averages
over the data set, as given in Tables 4 and 10, and the filtered averages, as given in Tables 7
and 14, after the smallest internal loops have been removed.
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Table 1

Loop structures and associated free energies at 37° [15,25].

Name Branching degree dG 2.3 dG 3.0

Hairpin 0 3.5 4.10

Internal 1 3.0 2.3

Branching d ≥ 2 4.6 - 0.2 (d + 1) 3.4 - 1.5 (d + 1)
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