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Abstract
Efficient recognition of odorous objects universally shapes animal behavior and is crucial for
survival. To distinguish kin from non-kin, mate from non-mate, food from non-food, organisms
must be able to create meaningful perceptual representations of odor qualities and categories. It is
currently unknown where, and in what form, the brain encodes information about odor quality. By
combining functional magnetic resonance imaging (fMRI) with multivariate (pattern-based)
techniques, we show that spatially distributed ensemble activity in human posterior piriform
cortex (PPC) coincides with perceptual ratings of odor quality, such that odorants with more (or
less) similar fMRI patterns were perceived as more (or less) alike. Critically, these effects were
not observed in anterior piriform cortex, amygdala, or orbitofrontal cortex, demonstrating that
ensemble coding of odor categorical perception is regionally specific for PPC. These findings
substantiate theoretical models emphasizing the importance of distributed piriform templates for
the perceptual reconstruction of odor object quality.

A key property of the brain is to create coherent, meaningful perceptual constructs from the
complexity of the outside world. These internalized representations of the external
environment provide a neural basis for object recognition, identification, and categorization,
enabling organisms to focus cognitive resources, optimize behavioral responses, and
generalize past experiences to novel events1,2.

Research on object processing has traditionally focused on visual object processing2,3,
which tends to overshadow the critical ecological role of “odor objects” – here defined as
the perceptual quality or character of a smell emitted from an odorous substance. Efficient

*To whom correspondence should be addressed. j-gottfried@northwestern.edu.
Author contributions J.A.G. conceived the experiment, with contributions and methodological suggestions from J.D. Haynes. J.D.
Howard and J.P. collected the imaging and behavioral data. J.D. Howard, J.P., and J.A.G. analyzed the data. M.G., J.D. Haynes, and
J.D. Howard implemented the flat map analysis. J.A.G., J.D. Howard, and J.P. wrote the manuscript.

NIH Public Access
Author Manuscript
Nat Neurosci. Author manuscript; available in PMC 2010 March 8.

Published in final edited form as:
Nat Neurosci. 2009 July ; 12(7): 932–938. doi:10.1038/nn.2324.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



recognition of odor objects universally shapes animal behavior and is crucial for survival.
Indeed, the ubiquity of olfactory-guided adaptive behaviors across vertebrate and
invertebrate species, including maternal bonding4, kinship recognition5, mate selection6, and
territorial defense7, makes it clear that olfactory systems face important challenges to record
and classify odor objects.

Where, and in what form, does the brain encode the perceptual quality of an odor object?
Several elegant studies have demonstrated that odor-evoked spatial activity in the rodent
olfactory bulb correlates with behavioral measures of odor similarity8–11, as indexed via
paradigms of habituation or reinforcement learning, leading to the suggestion that neural
representations of odor quality are reflected in ensemble bulbar activity. However, the
obligatory use of indirect perceptual assays in animal models hampers efforts to establish an
explicit link between neural response patterns and odor quality perception. Such limitations
accentuate the unique advantages of studying human subjects, whose ability to verbalize
their percepts12 and use perceptual rating scales offers an ideal research alternative for
clarifying the neuroscientific underpinnings of odor quality perception.

One plausible location for the encoding and classification of odor quality information is
primary olfactory (piriform) cortex, which receives direct input from the olfactory bulb and
has extensive interconnections with intrinsic and extrinsic fiber systems, including
amygdala, hypothalamus, entorhinal cortex, and orbitofrontal cortex13,14. The privileged
access to sensory, affective, physiological, and motivational features of an olfactory
stimulus perfectly endows piriform cortex with the capacity for weaving together odor
representations with direct relevance for perception and behavior. This hypothesis receives
support from both anatomical15,16 and computational14,17,18 models, which predict that
odor percepts are embodied in spatially distributed patterns of piriform activity, providing a
robust neural substrate for odor coding, memory, and recall. However, direct
neurobiological evidence for this idea is currently not available, such that the functional
architecture of odor object qualities in the olfactory brain remains unknown.

Here we combined high-resolution functional magnetic resonance imaging (fMRI) with
olfactory multivariate analysis techniques19 (Fig. 1) to investigate spatial ensemble coding
of odor qualities and categories in human posterior piriform cortex (PPC). Multivariate
fMRI methods20–22 differ from conventional (univariate) fMRI analyses, in which data are
averaged over space (voxels), time (scans), and subjects, obscuring potentially important
information that may be contained at the level of individual voxels, scans, and subjects.
These pattern-based approaches provide a robust new method for characterizing how (rather
than just where) perceptual information is represented in the human brain23.

The present study consists of two independent experiments centered on the hypothesis that
odor qualities and categories are encoded as distributed spatial ensembles in human PPC. In
Experiment 1 we combined multivariate and cortical flattening techniques to test the
following predictions: (a) qualitatively distinct odorants are associated with unique multi-
voxel fMRI patterns in PPC, in the absence of mean activation differences; (b) odor-evoked
fMRI representations in PPC are distributed and overlapping, without evidence for
topographical clustering; and (c) olfactory ensemble codes of odor quality are regionally
specific for PPC. In Experiment 2 we extended these hypotheses to a wider set of odorants,
which in combination with multidimensional scaling techniques enabled us to examine
whether fMRI ensemble patterns in PPC constitute an olfactory code that aligns with
categorical perception of odor quality.
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RESULTS
Experiment 1: odor-specific ensemble codes in PPC and OFC

In this first experiment we set out to test the hypothesis that neural codes of odor quality
take the form of ensemble fMRI activity in PPC. Our decision to target PPC as a primary
region of interest was based on recent animal and human studies suggesting that neural
representations of odor quality are stored in this brain region24,25. During fMRI scanning,
six subjects sniffed four easily distinguishable odorants [R-(−)-carvone (mint), phenethyl
alcohol (rose), amyl acetate (banana), and citronellol (lemon)] across a total of 24 imaging
runs. Upon each odorant presentation, subjects were visually cued to make a sniff and tacitly
identify the quality of the odor.

Behavioral ratings of the four odorants, acquired prior to scanning, did not significantly
differ in odor intensity (F3,20 = 0.39, P = 0.76), pleasantness (F3,20 = 1.49, P = 0.25),
pungency (F3,20 = 0.73, P = 0.55), or familiarity (F3,20 = 1.00, P = 0.41) (Fig. 2a).
Moreover, pairwise ratings of odor quality similarity (total of six pairwise comparisons)
indicated that the odorants were equally discriminable (F5, 35 = 1.73, P = 0.15). There were
also no systematic differences in sniff peak amplitude (F3,20 = 2.78, P = 0.11), duration
(F3,20 = 0.53, P = 0.67), or inspiratory volume (F3,20 = 2.04, P = 0.14) between odorants
(Fig. 2b) that might have otherwise confounded the imaging analysis.

We first considered whether wholesale differences in PPC activity between odorant
conditions were detectable using a conventional (univariate) fMRI analysis. After all, if odor
quality-specific information in PPC merely amounts to global changes in mean fMRI
activity, then multivariate methods would not be necessary to confirm our original
hypothesis. By averaging the fMRI signal in PPC across the set of voxels for each subject,
we found no significant difference between odorants for 5/6 subjects (P's > 0.05; one-way
ANOVAs; four levels [odorants]; one ANOVA per subject) (Fig. 2c). The mean fMRI signal
significantly differed between odorants only in subject 5 (F3,92 = 3.71, P = 0.014), though
follow-up pairwise t-tests indicated that not all odorants could be significantly discriminated
from the others (e.g., mint vs. rose, T23 = 1.86, P = 0.076; mint vs. lemon, T23 = 0.28, P =
0.76; banana vs. lemon, T23 = 1.67, P = 0.11). These results indicate that if indeed a neural
code for odor quality exists in PPC, it might be contained in a more fine-grained pattern of
voxel activity that cannot be shown using standard imaging techniques.

To test this hypothesis directly, we extracted odorant-specific voxel-wise patterns of fMRI
ensemble activity within PPC, as determined by an independent odor localizer task. The 24-
run set of spatial patterns, organized as linear vectors of voxel activity, was divided into 12
even and 12 odd runs20 and used to calculate linear correlations (Fig. 1) for all within-odor
(e.g., rose/even vs. rose/odd) and all across-odor (e.g., rose/even vs. banana/odd) pairs. Odor
identification accuracy, calculated as the proportion of within-odor correlations greater than
across-odor correlations, significantly exceeded 50% chance in PPC across subjects (Fig.
3a,b) (T5 = 2.42, P = 0.030). Additionally, the average within-odor correlation was
significantly greater than the average across-odor correlation across subjects in PPC (Fig.
3d) (T5 = 2.99, P = 0.030), an effect that was equally observed across the four odors (F3,20 =
2.10, P = 0.13, one-way ANOVA, four levels [difference between within- and across-odor
correlations for each odorant]). These results demonstrate that odor-specific information is
contained in multi-voxel PPC activity patterns, and that these effects were not driven by any
one particular stimulus.

The above findings indicate that fMRI representations of odor quality are embedded in PPC
ensemble activity. However, these analyses alone cannot reveal the specific topographical
organization of brain activity underlying these putative odor codes (e.g., local vs.
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distributed; discrete vs. overlapping). In order to visualize the complex PPC anatomy in a
single plane, we used cortical flattening (unfolding) techniques26 to generate odor “flat
maps” in PPC. These maps were comprised of the flattened two-dimensional patterns of
BOLD (blood oxygen level-dependent) signal in all odor-active piriform voxels, averaged
across trials for each of the four odorants. Data from two representative subjects (Fig. 4)
reveal that the topographical arrangement of left PPC activity was spatially distributed and
unique for each odorant, in the absence of any obvious local clustering, and without
topographical consistency between subjects. The implication is that olfactory percepts are
represented in overlapping but distinct response profiles across subsets of voxels in PPC.

Is odor quality information encoded within PPC selectively, or are other cortical areas
involved? To answer this question, we extended the analysis to three additional key
olfactory brain regions. In anterior piriform cortex (APC) and amygdala, odor identification
accuracy did not differ from chance (APC, T5 = 1.57, P = 0.089; amygdala, T5 = 0.34, P =
0.37), but interestingly, accuracy in orbitofrontal cortex (OFC) rivalled that in PPC and
significantly exceeded chance (T5 = 2.48, P = 0.028) (Fig. 3a,b). A one-way ANOVA
testing for an effect of region on the identification accuracy was significant (F3,20 = 3.45, P
= 0.036), implying that the observed results are specific for PPC and OFC. Similarly, the
within- vs. across-odor correlation difference was not significant in APC (T5 = 1.70, P =
0.15) or amygdala (T5 = 1.12, P = 0.31), but was highly significant in OFC (T5 = 5.40, P =
0.0029) (Fig. 3d). Once again a one-way ANOVA testing for region effects was significant
(F3,20 = 4.91, P = 0.010), indicating that the correlation findings are specific to PPC and
OFC. These additional results indicate that PPC and OFC both contain distributed odor-
specific ensemble representations, in accord with prior animal and human data highlighting
the role of OFC in olfactory coding27–30. That these patterns were only observed in PPC and
OFC underscores the regional specificity of olfactory ensemble coding and validates the
efficacy of multivariate techniques to delineate odor information processing in the human
brain.

The above results indicate that PPC ensemble patterns can be used to discriminate odorant
identity, but it remains possible that the mean fMRI activity in PPC could also contain
discriminating information. Therefore, to directly compare classification performance based
on fMRI multivariate and univariate data-sets, we performed a complementary analysis of
the mean fMRI amplitudes, following the same classification methods used to analyze the
fMRI patterns. Specifically, the global fMRI activity level was computed across all voxels in
PPC, for each odorant and each run. The data were then split into even and odd runs, and
pairwise Euclidean distances (as a proxy for linear correlations) were calculated between the
means of within-odorant and across-odorant conditions. Identification accuracy (proportion
of within-odor distances shorter than across-odor distances) did not differ from chance
across the group in PPC, APC, amygdala, or OFC (Fig. 3c) (P's = 0.47, 0.48, 0.42, and 0.33,
respectively). Furthermore, the within-odor distance was not significantly smaller than the
across-odor distance in any of these regions (Fig. 3e) (P's = 0.73, 0.99, 0.47, and 0.67).
These additional data suggest that mean fMRI amplitude does not contain sufficient
information to distinguish between the odorants.

Finally, split-half classification methods were also applied to the trial-specific respiratory
parameters (split into even and odd runs), to rule out potential contributions of sniffing to
the observed PPC patterns. Odor identification accuracy was not significant across the group
when classification was performed on sniff peak, duration, volume, or a linear combination
of the three parameters (P's > 0.18; Supplementary Fig. 1a), demonstrating that any
differences in sniff performance cannot account for the differential activity found in the
PPC.

Howard et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2010 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Experiment 2: categorical odor quality coding in PPC
The results from Experiment 1 are consistent with the idea that information about odor
quality can be extracted from multi-voxel patterns of fMRI activity in human PPC (and
OFC). However, to the extent that only one stimulus exemplar per odor category was used,
the possibility remains that the observed fMRI effects may largely reflect odorant-specific
differences, rather than more generalized differences in odor qualities and categories.
Therefore, we conducted a second independent experiment using a more diverse set of
odorants. This study, in conjunction with additional psychophysical measures and
multidimensional scaling techniques, enabled us to definitively characterize ensemble
coding of odor quality categories, as well as to quantify how well these fMRI codes coincide
with perceived odor quality, on an odorant-by-odorant and subject-by-subject basis.

In this experiment, four additional participants smelled three exemplars per each of three
odor quality categories: minty (R-(−)-carvone, L-menthol, methyl salicylate), woody
(cedrol, methyl cedryl ketone, vetiver acetate), and citrus (citral, citronellol, (R)-(+)-
limonene) (Fig. 5a). Pairwise similarity ratings of odor quality verified that subjects
successfully grouped this nine-odorant set into three odor categories, as assessed using
hierarchical cluster analysis (Fig. 5b). In addition, another ten independent participants,
using a standardized questionnaire31 to rate the applicability of 146 odor descriptors to each
stimulus (Methods), robustly classified the odorants into the relevant perceptual categories
chosen a priori (minty category, χ2 = 16.63, P = 0.0002; woody, χ2 = 16.62, P = 0.0003;
citrus, χ2 = 16.92, P = 0.0002; Friedman test) (Fig. 5c). A weaker category effect was also
observed for the floral descriptors (χ2 = 6.74, P = 0.034), although the “floral” ratings were
significantly lower than the “minty” ratings for minty odorants (Z = 3.67, P = 0.0002,
Wilcoxon test), the “woody” ratings for woody odorants (Z = 3.87, P = 0.0001), and the
“citrus” ratings for citrus odorants (Z = 2.88, P = 0.004). In fact, the “floral” ratings were no
different than the “woody” (Z = 0.51, P = 0.61) or “citrus” (Z = 0.34, P = 0.73) ratings for
the minty odorants, nor were they different from the “minty” (Z = 0.57, P = 0.57) or
“woody” (Z = 0.99, P = 0.32) ratings for the citrus odorants. Together, these data show that
the stimulus set closely conforms to the perceptual categories of odor quality proposed here.
Finally, there were no significant category differences in behavioral ratings, sniffing, or
mean PPC activity (Supplementary Fig. 2).

During fMRI scanning the nine odorants were presented to the subjects 24 times each,
spread over three days. Subjects tacitly identified the quality of the odor on each trial, and
patterns of odor-evoked brain activity, extracted from the same four regions as in
Experiment 1, were organized into vectors of voxel activity. The entire set of pattern vectors
was divided into even and odd runs, and then linear correlations were calculated between
every possible odorant pair (total of 72 unique correlations). Finally, classification accuracy
was computed by testing the proportion of within-category correlations (e.g. mint-1/even vs.
mint-2/odd) that were greater than across-category correlations (e.g. mint-1/even vs.
woody-1/odd). Classification was significantly above chance across the group in PPC (T3 =
2.34, P = 0.050), but not in other regions (APC, T3 = 1.31, P = 0.14; amygdala, T3 = 0.48, P
= 0.33; OFC, T3 = 0.27, P = 0.40) (Fig. 6a). Additionally, the average within-category
correlation was greater than the across-category correlation only in PPC (T3 = 3.46, P =
0.041) (Fig. 6b), but not in APC (T3 = 0.78, P = 0.49), amygdala (T3 = 0.47, P = 0.67), or
OFC (T3 = 0.47, P = 0.67). A one-way ANOVA testing for an effect of quality category on
the within vs. across correlation differences in PPC was not significant (F2,9 = 0.30, P =
0.75), implying that the above results were not driven by one particular category.

Following the same methods outlined in Experiment 1, we performed a split-halves
classification analysis to determine whether mean fMRI activity contains reliable
information about olfactory perceptual categories. Identification accuracy, calculated as the

Howard et al. Page 5

Nat Neurosci. Author manuscript; available in PMC 2010 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



proportion of within-category distances shorter than across-category distances, was not
significantly different from chance in any of the four regions of interest (Fig. 6c) (P's = 0.44,
0.39, 0.16, and 0.22, for PPC, APC, amygdala, and OFC, respectively). Furthermore, there
were no significant differences in PPC between within-category and across-category
distances (T3 = −1.23, P = 0.31; Fig. 6d). These data provide persuasive support for the idea
that local (ensemble) fMRI activity in PPC, but not global (mean) fMRI activity, contains
discriminating information about odor quality categories. At the same time, odor
classification accuracy was not greater than chance when trial-specific respiratory
parameters were entered into split-halves analyses (Supplementary Fig. 1b), indicating that
sniff peak amplitude, duration, and volume (and their combination) are unable to account for
the categorical effects in PPC.

In a subsequent analysis, we used multidimensional scaling (MDS) techniques32 to test the
hypothesis that multi-voxel patterns of PPC activity coincide with perceptual ratings of odor
quality, on an odorant-by-odorant basis. There were two related predictions: first, that
odorants sharing a high (or low) degree of spatial overlap in PPC should be perceived as
smelling more (or less) similar in quality; and second, that odorants exhibiting greater
spatial overlap in PPC should be perceived as belonging to the same odor category. To
implement this procedure, we assembled two “distance” matrices out of the nine-odorant
data-set: a 9-by-9 imaging matrix composed of the multi-voxel fMRI correlations (averaged
across subjects) in PPC for every odorant pair; and a 9-by-9 perceptual matrix composed of
perceived differences in odor quality between every odorant pair. We then used classical
MDS to project the distance matrices onto a common three-dimensional space, followed by
a standard linear transformation algorithm (Procrustes alignment) to determine how well the
imaging matrix aligned with the perceptual matrix.

The MDS analysis demonstrated robust spatial correspondence between the projected PPC
imaging map and the projected perceptual map (Fig. 7a): odorants belonging to the same
category clustered together within each map, and clustering of odor quality categories (as
well as of individual odorants) was closely aligned between the imaging and perceptual
maps. Statistical significance of this latter effect was tested by calculating the “goodness-of-
fit” (i.e., the sum of squared errors arising from alignment of the perceptual and imaging
data-sets, where lower values indicate stronger fits). This parameter was plotted against a
distribution of goodness-of-fits, generated by randomly shuffling the identities of each of the
nine odors (10,000 iterations). The observed goodness-of-fit in PPC (0.53) was situated
outside the lower bound of the 95% confidence interval of the randomly generated
distribution (Fig. 7b), demonstrating a significant alignment between imaging and
perception in this region. In contrast, when imaging matrices of APC, amygdala, and OFC
were each aligned to the perceptual matrix, the goodness-of-fit (using the same methods)
was not statistically significant (Fig. 7b). These findings reinforce the idea that ensemble
coding of odor categorical perception is regionally specific for PPC.

It is important to note that the three stimulus exemplars within each of the three odor
categories are chemically and structurally diverse. Nonetheless, the possibility that
unforeseen molecular similarities could explain some of the observed correlation effects still
remains. To examine this issue, we obtained a set of 32 optimized molecular descriptors for
each odorant, which have been shown to account well for variations in neural activity
observed in the olfactory epithelium and olfactory bulb of different animal species33.
Pairwise Euclidean distances between each odorant were calculated from the set of
molecular descriptors and used to assemble a 9-by-9 molecular distance matrix, similar to
the ones assembled for the imaging and perceptual data. We then implemented the
permutation analysis as described above, but this time using the molecular distance matrix
as the alignment target, in place of the perceptual matrix. The observed value of goodness-
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of-fit between imaging and molecular features fell inside of the 95% confidence interval of
the randomly generated distribution in PPC, APC, amygdala, and OFC (Supplementary Fig.
3), indicating that relationships between odorants in molecular space cannot easily account
for relationships between odorants in imaging space, at least with respect to these particular
olfactory brain regions.

Finally, we combined MDS with multiple linear regression analysis to evaluate whether
there is a consistent predictive relationship between PPC ensemble activity and odor quality
perception across subjects. This question was tested by considering the three-dimensional
MDS imaging projections of the PPC correlations as perceptual estimates of odor quality,
closely following methods for predicting odor perception from olfactory bulb (or olfactory
mucosal) activity in rats11,34. Importantly, a “leave-one-subject-out” approach was used to
maintain data independence, such that the average PPC imaging correlation matrix of three
subjects was used to estimate the perceptual matrix of a fourth (test) subject, with four-fold
cross-validation, preventing the test set from influencing its own prediction. Multiple linear
regression analysis showed that there was a highly significant predictive relationship
between estimated odor quality and actual odor quality (R = 0.44; F1,24 = 18.84; P = 0.001),
in the absence of significant across-subject variability (R = 0.16; F3,24 = 0.61; P = 0.615),
suggesting that the capacity of PPC to encode information about odor quality generalizes
across subjects.

Discussion
In this study we have integrated high-resolution olfactory fMRI, cortical flattening
techniques, sensory psychophysical assays, and multivariate analyses to provide
measurements of odor-evoked piriform spatial activity patterns and odor quality perception
within the same set of subjects. Up until now pattern-based techniques had not been
successfully implemented in the context of human olfactory imaging (though see Ref. 19), in
spite of their widespread use to delineate odorant spatial mapping in animal imaging studies
of the olfactory bulb35–37. The methods outlined here have enabled us to consider a new set
of research questions not previously testable, centering around the idea that ensemble fMRI
activity patterns may represent a viable signature of sensory perception that can be used to
infer olfactory perceptual experience. That odor classification could be reliably attained
from multi-voxel fMRI patterns, but not from mean fMRI responses (cf. Figs. 3 and 6),
indicates that multivariate measures of fMRI ensemble activity are particularly suited to
extract discriminating information about odor qualities and categories from the human
olfactory brain.

These results show that the spatial arrangement of fMRI activity in PPC is distributed and
overlapping for each odorant, without any obvious local clustering (Fig. 4), in keeping with
the known anatomical organization of this region15,16. Odorants belonging to the same
perceptual category exhibited similar pattern topography (Fig. 7), suggesting that perceptual
information about odor quality may be reflected in distributed ensemble activity within PPC.
Overall, the present findings suggest that olfactory codes of odor object categories are
arranged much in the same way that visual object categories (houses, cows, chairs) are
organized in inferotemporal cortex20, highlighting the critical sensory-associative nature of
PPC. It is reasonable to speculate that the degree of correlation between odor-evoked PPC
spatial patterns and pre-existing odor “templates”38 would provide a convenient metric by
which the brain could infer similarities among odorants and classify odor objects into
discrete, meaningful categories.

As a point of clarification, references here to “spatially distributed” codes and patterns are
not meant to imply that the brain is abstracting and codifying information about the spatial
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location of odors in the external world. Such definitions are highly relevant to neural coding
of visual and auditory stimuli, but are probably less pertinent to the olfactory modality (for
further discussion of this topic see Ref. 39). Rather, as used in the present context, a “spatially
distributed” olfactory code refers to a spatial ensemble representation of odor-evoked
activity dispersed across a set of fMRI voxels. Ultimately, what matters is the formation of a
unique spatial (or spatiotemporal) pattern of cortical activity that reliably encodes the
perceptual identity of an odorant, in keeping with “content addressable memory” models
that are predicated on unique distributed neuron ensembles in piriform cortex14,18,40,41.

Interestingly, odor-specific fMRI ensemble patterns were also reliably observed in OFC, but
this finding was restricted to the first experiment (Fig. 3b,c). Considering that Experiment 1
included only one stimulus exemplar per odor category, the multivariate data across both
experiments suggest that PPC and OFC each contain fMRI ensemble representations of
individual odorants (odorant “identity”), but that PPC alone contains ensemble
representations of odor perceptual category (odor “quality”). That we observed effects
across diverse odor classes (minty, woody, citrus) substantiates the idea that PPC is a key
substrate where categorical perceptions of odor objects are maintained. On the other hand, it
remains unclear whether OFC may encode some discriminating perceptual feature other than
quality, but the idea that the neural fidelity of individual odorants is preserved in OFC nicely
accords with single-unit recordings in monkeys30 showing that the specificity of odor tuning
also happens to be highest in this region.

Data from Experiment 2 demonstrated a statistically significant relationship between PPC
spatial patterns and subjective similarity ratings of odor qualities and categories. Indeed, to
the extent that PPC ensemble maps correlate with subjective perceptions of odor quality,
these results suggest that it might be possible to read out olfactory percepts from spatially
distributed fMRI activity in PPC. The pattern regression analysis further extended these
findings, by showing that perceptual estimates of odor quality can be inferred from group-
based three-dimensional MDS projections of PPC imaging correlations. That the perception
of odor object categories can be estimated from group-averaged PPC correlations would
fulfill an important criterion42 for establishing an olfactory code with direct relevance for
odor quality perception. The ability of multivariate techniques to draw out these predictive
relationships highlights a novel and robust method for characterizing the direct links
between olfactory codes and odor percepts, and perhaps for assessing (or predicting)
individual human variability in how an odorant's quality is perceived.

Several influential models of olfactory perception14,17,18,38,40 posit that a spatially (or
spatiotemporally) distributed pattern of brain activity satisfies the requirements of an odor
detection system faced with the challenge of extracting perceptual constancy from
environmental inconstancy. Ecological variations in odor background, wind direction, and
sniff sampling phase, as well as physical alterations in the odor source itself, can all degrade
stimulus fidelity of the original input. The prevailing idea that “pattern completion”
mechanisms and “content-addressable memory” systems14,18 can resolve corrupted odor
inputs hinges on the presence of ensemble activity patterns in olfactory cortical structures,
but these theories are principally derived from anatomical data and network simulations, in
the absence of confirmatory functional data. Our findings are among the first to verify the
presence of pattern-based perceptual representations of odor qualities and categories in
human PPC, which would be indispensable for the reconstruction of odor objects, ensuring
perceptual invariance in the wake of fragmentary inputs.
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Methods
Subjects

Twenty subjects (age range: 22–35 years) gave informed consent to participate in this study,
which was approved by the Northwestern University Institutional Review Board. Six
subjects (4 women) participated in Experiment 1, four subjects (3 women) participated in
Experiment 2, and ten subjects (8 women) completed odor questionnaires for Experiment 2.

Behavioral ratings
Prior to the first scanning day, subjects rated odor intensity, valence, pungency, and
familiarity using visual analog scales43,44. Ratings were analyzed in Matlab (Mathworks)
using one-way ANOVAs. Subjects also rated odor quality similarity between all possible
odorant pairs on a visual analog scale (anchors “not alike at all” and “identical”). In
Experiment 2 the 36 pairwise similarity ratings, averaged across subjects, were transformed
into a hierarchical cluster tree using a single-linkage algorithm in Matlab and plotted as a
dendrogram, with linkage distances (reflecting degree of quality similarity between
odorants) indicated on the y-axis.

Ten independent participants completed a 146-item Odor Quality Evaluation questionnaire31

for each odorant. Ratings of the applicability of odor descriptors on the questionnaire range
from 0 (“Absent”) to 5 (“Extremely”). Before acquiring ratings, and following prior
techniques24,45, we identified the descriptors best fitting the three perceptual categories
(minty, woody, citrus), plus three control categories (floral, berry, spicy) (Supplementary
Table 1). For each descriptor category, odorant-specific ratings were averaged across
descriptors belonging to that category, and then were averaged across the three odorants pre-
assigned to each perceptual group. For example, all of the “minty” descriptor ratings were
averaged together for each odorant, and then averaged across the three putative minty
odorants, the three putative woody odorants, and the three putative citrus odorants, to form
mean ratings for each odorant perceptual category. The applicability of each descriptor
rating to each perceptual category was tested (Friedman tests for related samples and
Wilcoxon sign-rank tests for paired samples).

Respiratory monitoring and analysis
Subjects were affixed with breathing belts to monitor respirations during scanning43. Sniff
peak amplitude, duration, and inspiratory volume were computed for each trial, averaged
across conditions and runs, normalized within subjects by subtracting the mean parameter
value (across conditions) from each condition-specific value, and then entered into
individual one-way ANOVAs for statistical analysis.

fMRI data acquisition
Gradient-echo T2-weighted echoplanar images (EPI) were acquired with a Siemens Trio 3T
scanner using parallel imaging19, an eight-channel head-coil, and the following parameters:
TR, 2 s; TE, 20 ms; matrix size, 128 × 120 voxels; field-of-view, 220 × 206 mm; in-plane
resolution, 1.72 × 1.72 mm. slice thickness, 2 mm; gap, 1 mm; acquisition angle, 30° rostral
to the intercommissural line. A 1-mm3 T1-weighted MRI scan was obtained to define
anatomical regions of interest (ROIs).

Multivariate fMRI paradigm
In both experiments, there were eight fMRI runs on each of three consecutive days (total of
24 runs). In Experiment 1 each odorant was presented once per run for 10 s, with 20-s rest
between odorants (Fig. 1). In Experiment 2 each odorant was presented once per run for 6 s
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with 12-s rest. Odorants were presented using an MRI-compatible olfactometer (airflow, 2.5
L/min)24. Upon odorant presentation, subjects were visually cued to sniff and to identify the
odor quality covertly. Each run was separated by approximately 180 s to minimize olfactory
fatigue. Odorant presentation was counterbalanced across runs such that each possible
stimulus order was used once in Experiment 1, and each odorant appeared only once per run
and a different stimulus order was used for each run in Experiment 2.

Odor localizer scan
We used an independent “odor localizer” fMRI scan (using the same imaging parameters as
the main experiment) as an unbiased way to identify odor-active voxels44. In Experiment 1,
on each scanning day, subjects underwent an odor detection task consisting of 12 odor and
12 no-odor (air only) trials, using four odorants (butanol, anisole, heptanol, and α-ionone).
In Experiment 2, two odor localizer runs were performed on a fourth day of scanning. Odor
and no-odor trials were presented for 2 s (stimulus-onset asynchrony, 12 s), followed by a
button press to indicate whether an odor was present or absent. Images were spatially
realigned, smoothed (6-mm full-width-half-maximum), and then analyzed using the general
linear model (GLM) in SPM2 (www.fil.ion.ucl.ac.uk/spm/). After model estimation, we
contrasted odor vs. no-odor conditions, collapsed across runs, to generate subject-specific
statistical parametric maps of odor-active cortex.

Voxel selection procedure
Voxels included in the multivariate analyses were selected from anatomically defined ROIs,
manually drawn on each subject's structural MRI scan using MRIcroN software
(www.mricro.com) (Supplementary Fig. 4). Anatomical definition of PPC, APC, and
amygdala was guided by a human brain atlas46. Delineation of OFC was based on an
olfactory fMRI meta-analysis27. Subsequently, the voxels within each subject's ROI were
functionally ranked, according to their T-values (obtained from the independent odor
localizer scans), and specifically without reference to the pattern-based fMRI data or to odor
classification performance. For each ROI, we considered the N most odor-active voxels for
which anatomical data were maximally available from all subjects, such that N was set based
on the subject with the smallest anatomical ROI. Thus, if the PPC of Subjects 1, 2, and 3
contained 200, 150, and 300 voxels, respectively, then N = 150 voxels. In this manner, the
size of each ROI was different across regions, but the same across subjects for a given ROI.
The respective voxel numbers used for analysis of PPC, APC, amygdala, and OFC in
Experiment 1 were 186, 138, 312, and 195, and in Experiment 2 were 228, 155, 339, and
239.

Multivariate fMRI data pre-processing
After discarding the first six “dummy” volumes of each run, all functional images were
spatially realigned to the first volume of the first run using SPM2. Subsequent steps,
including (a) extraction of fMRI signal intensity from each voxel within an ROI for each
run, (b) temporal detrending with a second-order polynomial47, and (c) assembly into linear
vectors of odor-specific voxel activity, were done outside of SPM2, using customized scripts
in Matlab. To preserve the native spatial fidelity of the fMRI signal, image normalization
and smoothing were not performed. Control analyses indicated that spatial realignment
across the three scanning days was robust (Supplementary Fig. 5, Supplementary Data).

Multivariate fMRI analysis
Ninety-six pattern vectors (Fig. 1) were extracted for Experiment 1 (one vector for each of
the four odorants across 24 runs), and 216 pattern vectors were extracted for Experiment 2
(nine odorants, 24 runs). In both experiments, pattern vectors were split into even and odd
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halves, and the mean activity across all conditions was subtracted from each vector in that
half20. These mean-corrected vectors were averaged across runs within each half, producing
one pattern vector per condition per half, which were then used to calculate pairwise
correlation coefficients within and between odorants (Experiment 1) and odor quality
categories (Experiment 2).

Within-odor and across-odor correlations were compared directly, and were also used to
estimate identification accuracy20. In Experiment 1, identification accuracy was calculated
such that, for odor A, if (Aeven vs. Aodd) was greater than (Aeven vs. Bodd), it was counted as
a correct identification. There were 6 such comparisons for each odor (given four unique
odor types), resulting in 24 comparisons. In Experiment 2, identification accuracy was
calculated such that if a within-category correlation (e.g. Mintyeven vs. Mintyodd) was
greater than an across-category correlation (e.g. Mintyeven vs. Woodyodd), it was counted as
a correct identification. Thus, for each of the three odor quality categories there were three
within-category correlations and 18 across-category correlations, resulting in 54
comparisons per quality category. Note, the pairwise correlations (total of 72 correlations,
excluding on-diagonal correlations to prevent estimation bias of the within-category
correlations) were calculated before mean within- and across-category correlation
coefficients were computed. Chance identification accuracy was 50%.

Piriform flat maps
In the first step, we specified a GLM using SPM2 software that included odor onset times
from Experiment 1 as regressors of interest (collapsed across runs). Percent signal change
was then estimated for each condition. Flattened cortical maps were made using mrVista
software (http://white.stanford.edu/software/). In this process, each subject's T1-weighted
anatomical image was segmented to isolate grey matter in PPC, followed by spatial
flattening into a two-dimensional map. The functional volumes containing voxel-wise
percent signal change information from the GLM were then coregistered to the T1 volume
and flattened to two dimensions using the same transformation parameters.

Multidimensional scaling
Multidimensional scaling (MDS) is commonly employed to measure similarities among
complex, high-dimensional datasets containing non-independent elements32. Here it was
used to facilitate comparisons and statistical analysis between fMRI and perceptual data
acquired in Experiment 2. First, a 9-by-9 imaging dissimilarity (distance) matrix for each
ROI was created for each subject by subtracting the pairwise linear correlation coefficients
from a value of 1, and scaling from 0 to 10. Second, a 9-by-9 perceptual dissimilarity
(distance) matrix was created using each subject's similarity ratings of perceived odor
quality for every odorant pair. These distance matrices were each averaged across subjects
and entered into classical MDS analyses (Matlab). This generated three-dimensional maps
(one for the imaging data, one for the perceptual data), with each odorant represented by a
unique coordinate in x-y-z space. Finally, the three-dimensional map of imaging coordinates
was aligned to the perceptual map using Procrustes analysis, which provides a quantitative
measure of similarity (“goodness-of-fit”) between two sets of coordinates (ranging between
0 and 1, where lower values indicate better alignment). Selection of a three-dimensional
MDS space was based on a “scree plot” of the perceptual data-set indicating that a three-
dimensional projection best captured the variance in the nine-dimensional matrix.

To estimate the significance of goodness-of-fit, a random permutation (Monte Carlo)
procedure was implemented, whereby the actual (measured) fit was compared to a
distribution of fits generated by randomizing the odor condition assignments prior to MDS
analysis and Procrustes alignment (10,000 iterations). This procedure scrambles the
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assignment of odorant condition (and category) in advance of MDS, preserving the values of
all pairwise distances and minimizing overfitting of the data. Randomization statistics have
been applied to studies comparing multivariate response profiles between different brain
regions or between neural and perceptual data-sets48–50. An observed fit between imaging
and perception was considered significant at P < 0.05, meaning that the observed fit was
smaller (better fit) than 95% of randomly generated fits.

For presentation the goodness-of-fits, d, were transformed to normal values using Fisher z-
transformation:

Odor classification: mean fMRI activity
To test whether odor-specific information is reliably contained in the mean fMRI signal
amplitude, we performed a “split-halves” classification analysis that closely paralleled the
methods employed to analyze fMRI ensemble activity. First, the raw BOLD signal elicited
by each odorant presentation was averaged across all voxels from each ROI for each trial,
resulting in 24 values per condition (corresponding to the 24 runs of data acquisition). Mean
signal across conditions within each run was subtracted from the condition-specific values
within that run for normalization. Normalized signals were split into halves, one containing
values from even runs and one from odd runs. Data within each condition and half were
averaged across runs, and pairwise Euclidean distances were calculated within and between
conditions.

Odor classification: sniff parameters
To test whether trial-specific sniff parameters could be used to successfully classify the
odors, a “split-halves” analysis was performed on sniff peak, duration, and inspiratory
volume. Additionally, the three sniff parameters were combined into one three-component
vector (analogous to vectors of voxel activity used in the pattern-based fMRI analyses) to
test whether the combination of these parameters might contain odor-specific information.
Data were normalized by subtracting the mean parameter value across conditions within
each run from the condition-specific values. Data were then split into halves according to
even and odd runs and averaged across runs in each half. Pairwise Euclidean distances were
calculated within and across conditions.

Statistical analyses
Results are shown as means ± s.e.m. for participants or conditions. Where not otherwise
indicated, statistical significance was determined using one-tailed t-tests (when comparing
identification accuracy to chance), two-tailed t-tests (when comparing two conditions), or
ANOVAs (when comparing more than two conditions). Results were considered significant
at P < 0.05.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Schematic diagram of the correlation analysis. (a) The condition-specific spatial patterns of
voxel activity in the PPC were transformed into linear vectors of voxel activity (pattern
vectors). Voxels are represented by shaded squares on an axial slice of an anatomical MRI
scan. The level of grey-scale intensity represents the blood oxygen level-dependent (BOLD)
signal intensity. (b) Pattern vectors were composed of the peak BOLD activity across the
stimulus presentation, shown here in the context of Experiment 1, for one run (150 s). (c)
The entire dataset of pattern vectors was split into halves, one containing data from the 12
even runs and one from the 12 odd runs, and then averaged across runs, producing one mean
pattern vector per odorant in each half of the data. (d) Averaged pattern vectors were used to
calculate within-odorant (orange arrow) and across-odorant (blue arrow) pairwise
correlation coefficients.
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Fig. 2.
Behavioral data and univariate imaging analysis for Experiment 1. (a) Group-averaged
behavioral ratings of odor intensity, pleasantness, pungency, and familiarity are depicted as
boxplots indicating median (central line) and upper and lower quartiles (top and bottom of
box, respectively) for each odorant. Whiskers denote extent of data between 10th and 90th
percentiles. Outliers are indicated by crosses. Ratings did not significantly differ across any
of these measures. (b) Mean normalized values (± between-subjects s.e.m.) for sniff peak
amplitude, duration, and inspiratory volume (insp. vol.) did not significantly differ between
the four odorants. (c) Plots of mean fMRI signal in PPC for each subject and odorant (±
within-subject s.e.m.) revealed no significant difference except for subject 5 (S5).
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Fig. 3.
Pattern discrimination of odor quality in human PPC and OFC. (a) Axial slice of a T1-
weighted structural scan showing anatomically defined regions of interest. Subsets of voxels
from these brain regions (see Methods) were used in the pattern analyses. (b) Odor
identification accuracy (mean ± between-subjects s.e.m; N = 6) calculated using fMRI
patterns of ensemble activity exceeded chance (dashed line) across subjects in PPC and
OFC, and the within-odor correlations (dark-grey bars) were greater than the across-odor
correlations (light-grey bars) in both regions (d). In contrast, identification accuracy based
on mean fMRI activity levels did not significantly differ from chance in any of the measured
regions (c), nor were there significant differences between within-odor and across-odor
Euclidean distances (e). *, P < 0.05.
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Fig. 4.
Odorant-specific spatial maps in PPC. The three-dimensional representations of odorant-
evoked activity in PPC from two subjects were projected onto two-dimensional (flat) maps,
allowing visualization of voxel-wise odor patterns within a single plane. Maps depict the
odorant-evoked BOLD percent signal change in all odor-active voxels (liberally thresholded
at P < 0.5), averaged across trials for each of the four odorants. The pseudocolor scale spans
the full range of BOLD percent signal change within each map, from minimum (deep blue)
to maximum (bright red). Each odorant elicited a distributed pattern of fMRI activity within
left PPC (white outline) that overlapped with, but was distinct from, the other odorants.
Unique distributed, overlapping profiles were also observed in right PPC (not shown). A,
anterior; L, lateral; M; medial; P, posterior.
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Fig. 5.
Odor stimuli and psychophysical ratings for Experiment 2. (a) The nine odorants included
three stimuli per each of three quality categories (minty, woody, and citrus). (b) A
dendrogram plot obtained from cluster analysis of the mean pairwise similarity ratings of
odor quality revealed that the nine odorants sorted into three quality categories. Shorter
distances indicate greater similarity. (c) Ratings of the applicability of 146 odor descriptors
to the odor stimuli (descriptors pre-sorted into six different quality categories) indicated that
subjects classifed the odorants into the appropriate categories (mean ± between-subjects
s.e.m; N = 10). Non-parametric Friedman tests for related samples were separately
conducted on each category (*, P < 0.05; **, P < 0.005).
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Fig. 6.
fMRI pattern discrimination of odor categorical perception in PPC. (a, b) Classification
performance calculated using fMRI patterns of ensemble activity. (a) Odor identification
accuracy (mean ± between-subjects s.e.m; N = 4) was significantly greater than chance in
PPC only. *, P < 0.05. (b) The within-category correlation was greater than the across-
category correlation in PPC for all three odor quality categories, an effect that was
separately observed for each category. (c, d) Classification performance calculated using
fMRI mean activity. (c) Identification accuracy did not significantly differ from chance in
any of the four regions, and there was no significant group difference between within-
category and across-category Euclidean distances in PPC (d), or in APC, amygdala, or OFC
(data not shown).

Howard et al. Page 21

Nat Neurosci. Author manuscript; available in PMC 2010 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Alignment of fMRI spatial patterns and perceived odor quality. (a) The group-averaged
imaging and perceptual data-sets were each projected onto a common three-dimensional
space using multidimensional scaling (MDS), revealing that the imaging maps of PPC linear
correlations (filled circles) closely overlapped with the perceptual maps of odor quality
similarity (empty circles), both for individual odorants and for odor quality categories.
Squares labelled “M” (minty), “W” (woody), and “C” (citrus) represent centroids of each
category for the imaging (solid squares) and perceptual (empty squares) data. (b) The
observed goodness-of-fit in PPC (red line) fell outside the lower bound of the 95%
confidence interval (dashed lines) of a randomly permuted distribution of goodness-of-fits,
demonstrating a significant alignment between PPC activity and perception in this region.
Alignment between imaging and perception was not significant in APC, amygdala, or OFC.
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