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Abstract

The spatial variability of three indicators of learning and developmental disability (LDD) was assessed for Cape Cod,
Massachusetts. Maternal reports of receiving special education services, attention deficit hyperactivity disorder, and
educational attainment were available for a birth cohort from 1969-1983. Using generalized additive models and
residential history, maps of the odds of LDD were produced that also controlled for known risk factors. While
results were not statistically significant, they suggest that children living in certain parts of Cape Cod were more
likely to have a LDD. The spatial variation may be due to variation in the physical and social environment.

Background
The prevalence of learning and developmental disabil-
ities (LDDs) has increased over the last four decades
[1,2]. Current prevalence estimates suggest that 5 to
15% of children in the United States are afflicted with
disorders of learning and development, including disor-
ders of memory, reduced IQ, attention deficit hyperac-
tivity disorder (ADHD), autism spectrum disorders,
conduct disorders and developmental delays [2-5]. The
increased prevalence of LDDs has largely been attributed
to improved diagnosis; however, evidence also suggests
that the underlying prevalence of dysfunction is increas-
ing [2]. Although the specific mechanisms for learning
and developmental disorders remain unclear, much
research has been conducted to identify their risk fac-
tors. These studies have consistently found that males
and children from economic or culturally disadvantaged
backgrounds have greater risk of being diagnosed with
an LDD [1,6]. Numerous pre-birth risk factors have also
been identified including lack of prenatal care; increased
maternal age; pre-term delivery; low birth weight and
prenatal alcohol, tobacco, and drug use [7-10]. Addi-
tional research suggests that the development of learn-
ing and developmental disorders is affected by intrinsic

causes such as genetic differences in brain structure or
biochemical imbalances [11]. However, it has also been
suggested that the increased prevalence is attributable,
at least in part, to chronic exposures to environmental
toxicants [12-15].
Brain development begins in utero and continues

throughout adolescence. This lengthy developmental
period, coupled with its extreme complexity, leaves the
developing brain particularly susceptible to adverse
effects of chemical exposures [16]. Subtle changes in
either structure or function can lead to profound neuro-
logical consequences that can persist over a lifetime.
Prenatal and early childhood exposures to a number of
environmental toxicants such as lead, methylmercury
and polychlorinated biphenyls (PCBs) have been asso-
ciated with damage to children’s developing brains and
nervous systems, and have been linked to specific neu-
rological deficits and disorders [4,12,13,17-30]. While
the neurotoxicological effects of a select few chemicals
are fairly well characterized, relatively little is known
about the 80,000 chemicals registered for commercial
use with the Environmental Protection Agency [20].
The evolution of geographical information systems

(GIS) and statistical methods has increased the use of
spatial analyses to investigate the association between
geographically-based exposures such as environmental
contaminants and the risk of LDD. A number of studies
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have used residential proximity to a contaminant source
to define exposure and assess the risk of neurological
impairment associated with potential neurotoxicants
[31-33]. Using this method, Dahlgren and colleagues
found evidence that exposures to wood processing waste
chemicals increase the severity of neurological symp-
toms reported in children and adults and was associated
with impaired performance on neuropsychological tests
[31].
While cluster analysis does not prove causation, it can

serve as a useful tool in generating hypotheses about
potential exposures that warrant further investigation
[34]. In Binghamton, New York, Margai and Henry uti-
lized two cluster detection methods, the Morans I Sta-
tistic and the Spatial Scan Statistic, to identify a spatial
cluster of learning disability cases associated with his-
torically significant sources of lead (i.e. automobile-
related facilities and industries that dealt with lead and
other byproducts) [35]. Conclusions were limited, how-
ever, because analyses were based on census block
group prevalence and the investigators were unable to
adjust for individual-level confounders.
New methods of spatial epidemiology involving gener-

alized additive models (GAMs) permit analysis of point-
based data while adjusting for individual-level variables
[36,37]. The current research assesses the spatial varia-
bility of learning and developmental disorders in a
cohort residing in the upper Cape Cod region of Massa-
chusetts. Two general indicators of cognitive and beha-
vioral function are addressed: receiving special
education services for academic or behavioral difficulties
and educational attainment. ADHD, a specific neurode-
velopmental disorder, is also a focus of this study. Resi-
dential history data is used to examine potential
differences in susceptibility during the prenatal and
early childhood periods.

Materials and methods
Outcome Data
Data were collected as part of a large retrospective
cohort study examining the association between expo-
sure to tetrachloroethylene (PCE)-contaminated public
drinking water and the risk of reproductive and develop-
mental disorders in upper Cape Cod, MA [38]. Eligible
families had at least one child born while they were liv-
ing in the upper Cape Cod towns of Barnstable, Bourne,
Falmouth, Mashpee, or Sandwich between 1969 and
1983 (Figure 1a). Birth certificates and questionnaires
completed by mothers (or fathers, if mothers were una-
vailable) were used to gather information on outcome
variables as well as potential confounders.
Children were excluded if they came from a multiple

pregnancy; died before the age of 21 years; had a history
of lead poisoning, fetal alcohol syndrome, mental

retardation, cerebral palsy; or their mothers reported
prenatal exposure to a known teratogen, daily or weekly
marijuana use, or seven or more drinks of alcoholic bev-
erages per week during the prenatal period. The final
population was comprised of 1,574 subjects (Table 1;
Figure 1b). To avoid clustering within families, analyses
included only the eldest enrolled child in each family.
Several measures of learning and developmental dis-

abilities were collected by self-administered question-
naires, including maternal report of diagnoses of
Attention Deficit Disorder (ADD) and Hyperactive Dis-
order (HD), difficulty sitting still or paying attention in
school, difficulties or tutoring in reading and math, spe-
cial education class placement for academic or develop-
mental problems, repeating a grade, having an
individualized education plan (IEP), receiving special
education class placement, and educational attainment.
Three binary outcome measures of learning and devel-
opmental disabilities, which were thought to be the least
subject to misclassification of the outcome, are exam-
ined here.

Special Education Placement
The first objective measure was based on maternal
report of children receiving special education services
for academic or behavioral difficulties. Since 1975, spe-
cial education has been mandated under the Individuals
with Disabilities Education Act (IDEA), which requires
provisions for specifically designed instruction for indivi-
duals with disabilities. Although a number of different
conditions are included as disabilities under IDEA, in
general, the delivery of special educations services is an
indicator of learning and developmental disabilities [39].
All students receiving special education services, even

those with mild disabilities, are required by law to have
an individualized education plan (IEP) which outlines
specific educational goals and special provisions to aid
in their education. Special education placement was
defined by either maternal report of special classroom
placement for academic or developmental difficulties or
assignment of an IEP. In most instances, both events
were reported by mothers.

Maternal Report of ADHD
The second outcome measure combined maternal
reporting of ADD and HD. Attention deficit hyperactiv-
ity disorder is the most common neurodevelopmental
disorder of childhood, with an estimated prevalence
between 7 and 16% of US children [4,40]. Children diag-
nosed with ADHD comprise a heterogeneous population
sharing common symptoms, including inattention,
impulsivity, and, in some cases, hyperactivity, or a com-
bination of symptoms. As with other learning and devel-
opmental disorders, ADHD risk is influenced by
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Figure 1 Upper Cape Cod study area. (A) Cape Cod is located in Massachusetts in the northeastern United States. (B) Distribution of
participants’ residences by outcome status. Locations have been altered to preserve confidentiality.
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biological, reproductive, environmental, and nutritional
factors [41].
Until 1994, the Diagnostic Statistical Manual (DSM)

listed ADD and HD as separate conditions [42]. Begin-
ning with the DSM-IV, both outcomes were included as
sub-types of the same condition, Attention Deficit
Hyperactivity Disorder (ADHD) [43]. Research suggests
that structural abnormalities in the frontal cortex and
temporal lobe observed in both ADD and HD are simi-
lar [44]. For these reasons, reports from the question-
naire of ADD or HD were combined into a single
outcome for the purposes of this study.

Educational Attainment
The third outcome measure was highest level of educa-
tional attainment. Educational attainment is influenced
by a number of factors related to learning and develop-
mental disability, including low academic achievement,
behavior problems, absenteeism, grade retention, and low
parental educational expectations [45,46]. Although edu-
cational attainment is not a direct measure of learning or
developmental disorder, the two outcomes are highly
correlated [47,48]. Educational attainment data were
divided into two categories: (1) completing high school
or less education and (2) education beyond high school.

Table 1 Selected characteristics of case and non-case children.

Variable Special Education Educational Attainment ADHD

N = 1538a N = 1542b N = 1535c

Cases Non-Cases Cases Non-Cases Cases Non-Cases

N (%) N (%) N (%) N (%) N (%) N (%)

Male 186 (66.9) 592 (47.0) 219 (66.8) 562 (46.7) 105 (74.5) 673 (48.3)

Female 92 (33.1) 668 (53.0) 124 (36.2) 637 (53.1) 36 (25.5) 721 (51.7)

Birth Weight

<2500 g 8 (2.9) 32 (2.5) 12 (3.5) 29 (2.5) 3 (2.1) 38 (2.7)

>= 2500 g 270 (97.1) 1228 (97.5) 331 (96.5) 1170 (97.5) 138 (97.9) 1356 (97.3)

Gestational Duration

<37 Weeks 15 (5.4) 50 (4.0) 14 (4.1) 51 (4.3) 8 (5.7) 57 (4.1)

>= 37 Weeks 263 (94.6) 1210 (96.0) 329 (95.9) 1148 (95.7) 133 (94.3) 1332 (95.9)

Maternal Cigarette Smoking
During Pregnancy

Yes 81 (29.1) 331 (26.3) 116 (33.8) 296 (24.7) 41 (29.1) 370 (26.6)

No 194 (69.8) 910 (72.2) 220 (64.1) 887 (74.0) 99 (70.2) 1002 (71.9)

Missing 3 (1.1) 19 (1.5) 7 (2.1) 16 (1.3) 1 (0.7) 22 (1.6)

Maternal Alcoholic Beverage Consumption
During Pregnancy

Yes 99 (35.6) 487 (38.7) 111 (32.4) 475 (39.6) 55 (39.0) 527 (37.8)

No 175 (62.9) 750 (59.5) 224 (65.3) 703 (58.6) 85 (60.2) 839 (60.2)

Missing 4 (1.4) 23 (1.8) 8 (2.3) 21 (1.8) 1 (0.7) 22 (1.6)

Maternal Race

White 270 (97.1) 1205 (95.6) 327 (95.3) 1152 (96.1) 136 (96.5) 1335 (95.8)

Other 8 (2.9) 55 (4.4) 16 (4.7) 47 (3.9) 5 (3.5) 59 (4.2)

Maternal Education

<High School 13 (4.7) 39 (3.1) 31 (9.0) 23 (1.9) 4 (2.8) 48 (3.4)

High School 115 (41.4) 435 (34.5) 183 (53.3) 362 (30.2) 44 (31.2) 505 (36.2)

Some College 71 (25.5) 404 (32.0) 82 (24.0) 396 (33.0) 39 (27.7) 434 (31.1)

4 Year College Grad 79 (28.4) 382 (30.3) 47 (13.7) 418 (34.9) 54 (38.3) 407 (29.2)

Paternal Occupation

Blue Collar 94 (33.8) 376 (29.8) 114 (33.2) 329 (27.4) 39 (27.7) 426 (30.6)

White Collar 118 (42.4) 643 (51.0) 143 (41.7) 651 (54.3) 71 (50.3) 690 (49.5)

Other 63 (22.7) 221 (17.5) 83 (24.2) 199 (16.6) 30 (21.3) 256 (18.4)

Missing 3 (1.1) 20 (1.6) 3 (0.9) 20 (1.7) 1 (0.7) 22 (1.6)
a Missing special education information N = 36.
b Missing educational attainment information N = 32.
c Missing ADHD information N = 39.
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Residential History Data
Mothers were asked to provide a residential history
from before the birth of the child to age 18 years. All
eligible addresses in the study area were geocoded using
GIS and each residence was assigned corresponding lati-
tude and longitude coordinates. The residential history
was used to examine location at different developmental
stages. To reflect exposures during the prenatal period,
analyses were based on the residential location at birth.
As early childhood chemical exposures are also thought
to impact LDD risk, we conducted a second set of ana-
lyses including the residence from birth through age five
years. Multiple residences for the same individual, how-
ever, may generate an artificial spatial cluster caused by
a single case moving within a small area. To avoid
potential bias due to the inclusion of multiple residences
for the same individual, we used the address with the
longest duration of residence from birth to age 5 years
[36].

Statistical Analyses
The log odds of each indicator of learning and devel-
opmental disability were estimated using generalized
additive models, an extension of linear models that can
incorporate both nonparametric and parametric model
components and can be used to analyze binary out-
come data [49]. For non-parametric model compo-
nents, GAMs replace the beta coefficients of an
ordinary logistic regression with a smooth term. In
these analyses, a bivariate smooth was applied to lati-
tude and longitude coordinates representing geo-
graphic location. Covariates were modeled as
parametric terms.
A locally weighted regression smoother (loess), which

adapts to differences in population density across the
study area was used. The circular region or neighbor-
hood from which data are drawn to predict the smooth
is based on the percentage of data points in the neigh-
borhood (with weighting based on distance from the
center) and is referred to as the span size. Choice of
span size produces a trade off between bias and variabil-
ity. A large span size results in a smoother surface with
low variability, but increased bias. Conversely, choosing
a small span size results in high variability and compara-
tively low bias. To determine the optimal amount of
smoothing in each analysis, Akaike’s Information Criter-
ion (AIC) was minimized [49].
A rectangular grid covering the study area was gener-

ated using the minimum and maximum latitude and
longitude coordinates of study participant residences
(approximate grid cell size 0.1 km2). Using GIS, a map
of the study area was used to clip out points where par-
ticipants could not live, such as water bodies or conser-
vation land. At each grid point within the study area, an

odds ratio (OR) was calculated using the entire study
area as the referent group; the odds at each point was
divided by the odds from a reduced model which
omitted the latitude and longitude smooth term. Odds
ratios were mapped using a continuous color scale (dark
blue to dark red). A constant scale range was used for
all maps of a particular outcome.
For each outcome, the null hypothesis that learning

and developmental disability risk does not depend on
location (e.g. the map surface is a horizontal plane) was
tested. Locations of individuals were permuted 999
times while preserving their outcome status and covari-
ates. For each permutation, the GAM with the optimal
span size from the original dataset was run and the
deviance statistic computed. If this global statistic indi-
cated that location was statistically significant at p-value
< 0.05, point-wise departures from the null hypothesis
were evaluated using the distribution of the log odds at
each point from the same set of permutations used to
calculate the global statistic. Areas with significantly
increased and decreased log odds were defined to
include all observed points ranking in the upper and
lower 2.5% of the point-wise distribution respectively.
A detailed discussion of the statistical methods of

mapping population-based case control data using
GAMs is provided by Webster and colleagues [37]. Sta-
tistical analyses were performed in S-Plus using the gam
package and a local scoring algorithm GAM estimation
procedure [49,50]. All maps were created using ArcGIS
9.2 [51].
Potential confounders were assessed based on the a

priori expectation of their association with learning
and developmental disorders. Drawing from existing
research, sex, race, birth weight, gestational duration,
year of birth, socioeconomic status (represented by
mother’s educational attainment and father’s occupa-
tion), maternal alcohol or tobacco use during preg-
nancy, and PCE exposure were included as core
confounders to include in all analyses. Spatial con-
founding was assessed by visually comparing maps
with and without adjustment. The following variables
did not change the appearance of the maps and were
dropped from all presented models: mother’s age,
breastfeeding, maternal history of learning difficulties,
occasional maternal marijuana use during pregnancy,
pregnancy complications, prenatal exposure to sol-
vents, and iron and multivitamin supplementation dur-
ing pregnancy. Children with missing covariate data
were excluded from the analyses (less than 2.1% for
maternal smoking during pregnancy, 2.5% for maternal
alcohol during pregnancy, and 1.7% for paternal occu-
pation). Available characteristics of excluded children,
including outcome prevalence, were very similar to
children without missing data.
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Results
Special Education Services
Of the 1,484 children with complete outcome and cov-
ariate data, 270 (18.2%) received special education ser-
vices. In adjusted models, children receiving special
education services were more likely to be male (OR =
2.24; 95% CI 1.71-2.96) and from lower SES families
(highest maternal educational attainment compared to
lowest OR = 0.79; 95% CI 0.54-1.15). For analyses using
either the birth address or early childhood address the
optimal span size was 0.95 (Table 2). Maps produced
from both sets of analyses were similar. We show results
of the adjusted birth address analysis in Figure 2. Each
map showed an area of increased risk of needing special
education services in the northern area of the town of
Bourne but the difference was not statistically significant
(birth address p-value = 0.57; early childhood p-value =
0.38). Maps with and without adjustment were similar
indicating that spatial confounding was not an issue
(data not shown).

ADHD
The reported prevalence of ADHD in the study popula-
tion was 9.4% (139 cases; 1340 non-cases; Table 3), con-
sistent with other United States population estimates
during the same time period [40]. As maps of ADHD
were similar using birth address and early childhood
address, the former is shown (Figure 3). The risk of
ADHD appears slightly elevated in the northern region
of upper Cape Cod, but the difference was not statisti-
cally significant (optimal span size = 0.95; p-value =
0.33). Adjusting for potential spatial confounders made
no appreciable difference in the map of ADHD risk,
suggesting that spatial confounding was not an issue
(data not shown).

Educational Attainment
Mothers reported that 22.3% of their children did not
receive education beyond high school (Table 4). Boys
were more likely to have low educational attainment
(OR = 2.18; 95% CI 1.66-2.87) as were children from
lower SES families (father employed in blue collar verse
white collar occupations OR = 1.64; 95% CI 1.20-2.26).
Using early childhood address, the adjusted analysis for
the risk of low educational attainment appeared elevated
in areas of Bourne and Mashpee (optimal span size =
0.60, p-value = 0.22; Table 4; Figure 4). The pattern of
the risk surface was very similar using the birth address
when the same span size was used for both analyses
(not shown). Changes in the span size between the
crude and adjusted models (optimal span sizes of 0.15
and 0.60 respectively) were primarily due to confound-
ing by SES variables (mother’s educational attainment).

Discussion
The risk of two indicators of learning and developmen-
tal disorders–special education placement and ADHD–
was elevated in the Bourne and Falmouth areas of upper
Cape Cod; however, the variability was not statistically
significant (alpha = 0.05). The risk of low educational
attainment was elevated in portions of Mashpee and
Bourne, but not statistically significant. Spatial variability
of the outcomes was evaluated using two periods of resi-
dence, reflecting prenatal residence and early childhood
residences (before age 5 years). The similarity of the
results–when evaluated using the same span size–was
likely related to residential stability; less than one third
of subjects moved during this period. Consequently,
each analysis was based on many of the same addresses.
The spatial investigation approach used in this study

has a number of strengths. Unlike previous spatial ana-
lyses of LDD, it was possible to use point-based data
and avoid potential biases due to data aggregation
within arbitrary political boundaries [35]. Additionally, it
was possible to adjust for numerous covariates to assess
potential spatial confounding. While it is often assumed
that spatial confounding produces disease clusters,
adjusting for covariates in these analyses made little dif-
ference in maps which we attribute to the relative
homogeneity of the upper Cape Cod study population.
Lastly, using residential history data enabled the exami-
nation of LDD risk during the prenatal and early child-
hood periods which are likely more relevant to the
etiology of learning and development disorder risk than
exposures associated with the address at diagnosis.
This investigation also has several limitations. Indica-

tors of learning and developmental disability were
obtained through maternal report. However, Faraone
and colleagues found that maternal report of ADHD in
particular was highly reliable (sensitivity and specificity,

Table 2 Summary of special education services models
(270 Cases, 1214 Non-Cases).

Analysis Span a Deviance
p-valueb

Figure Number

Adjusted c

Birth Residence
0.95 0.57 2

Crude
Birth Residence

0.95 0.30 —

Adjusted c

Early Childhood Residence
0.95 0.38 —

Crude
Early Childhood Residence

0.95 0.22 —

a Optimal span obtained by using the Akaike’ Information Criterion (AIC).
b Null hypothesis is that the map is flat.
c Adjusted for sex, race, birth weight, gestational duration, year of birth,
socioeconomic status, maternal alcohol or tobacco use during pregnancy, and
PCE exposure.
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95 and 97% respectively) [52]. In this cohort, 48 mothers
(18% of cases) reported that their child was placed in
special education but did not report that their child had
an IEP. Because special education placement indicates
more severe dysfunction, it is possible that mothers
were more likely to remember special education class
placement than the presence of an IEP. To reduce the
misclassification of individuals with more severe dys-
function as non-cases by defining special education ser-
vices by an IEP, all children whose mothers reported
their child received any form of special education ser-
vices were included as cases. Results were similar when
we defined special education placement by the report of
an IEP (data not shown).
We examined indicators of learning and developmen-

tal disability that were readily collected using a retro-
spective study design. However, these indicators are not
sensitive enough to identify geographic areas where indi-
viduals experience more subtle dysfunction. ADHD, for

example, is diagnosed using the number of symptoms
and behaviors. A continuous outcome based on the
number and severity of symptoms might have identified
regions in upper Cape Cod where subclinical symptoms
are elevated, even when a significant increase in ADHD
diagnosis is not observed.
Residential history data allowed us to take into

account location during different periods of develop-
ment for individuals. Unfortunately, there were too few
cases to perform more data-intensive space-time ana-
lyses as we have done previously with breast cancer in
Cape Cod [53]. When possible, consideration of both
location and time of exposure may generate hypotheses
on short term environmental exposures.
The optimal tradeoff between bias and variance of the

smooth (e.g. the optimal span size) was determined by
minimizing the AIC. Selecting the optimal span for a
given dataset, however, may obscure important map fea-
tures at smaller scales. Examining different span sizes

Figure 2 Special education service results for birth address. Fully adjusted model. The optimal span is 0.95. The map was not significantly
different from flat (p = 0.57).
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may reveal important features of the data. Similarly, p-
values were used to evaluate global spatial variation as
well as local areas of increased or decreased risk. Confi-
dence intervals might be considered more informative,
but the information is difficult to show graphically for
surfaces. Permutation tests were conducted using the
optimal span size of the observed data. Although the
optimal span size was generally large for these data,

permuted datasets may have had a larger optimal span
size under the null hypothesis that the map is flat. The
effect of using the optimal span of the observed data for
permuted data could result in a p-value that is too
small. This is a topic of future research.
Although results were not statistically significant, spa-

tial variation was suggested in the study area. If real,
there may be several possible explanations, including
residual confounding at the individual level by unmea-
sured variables, as well as differences in the social and
physical environment. Although the pattern of risk was
similar for ADHD and special education placement,
maps of the risk of low educational attainment displayed
a different pattern. Educational attainment may be a less
specific indicator of an LDD than the other outcomes
considered, which were based on maternal report of an
outcome that required evaluation by school or health
care professionals. Differences in the pattern of risk
between the outcomes may also be related to differences
in educational resources or other school-related factors.
There were no school-based data available to test this
hypothesis. In upper Cape Cod, town boundaries
approximate public school district boundaries. If varia-
bility was due solely to school district related factors we
would not have expected odds estimates to vary within

Figure 3 ADHD results for birth address. Fully adjusted model. The optimal span is 0.95. The map was not significantly different from flat (p =
0.33).

Table 3 Summary of ADHD models (139 Cases, 1340 Non-
Cases).

Analysis Span a Deviance
p-valueb

Figure Number

Adjusted c

Birth Residence
0.95 0.33 3

Crude
Birth Residence

0.95 0.17 —

Adjusted c

Early Childhood Residence
0.95 0.35 —

Crude
Early Childhood Residence

0.95 0.32 —

a Optimal span obtained by using the Akaike’ Information Criterion (AIC).
b Null hypothesis is that the map is flat.
c Adjusted for sex, race, birth weight, gestational duration, year of birth,
socioeconomic status, maternal alcohol or tobacco use during pregnancy, and
PCE exposure.
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towns. There may be other group-level variables of
importance. Statistical methods are needed for com-
bined spatial and multilevel analyses; we are currently
working on this problem. The suggestive spatial varia-
tion in LDDs could also be related to environmental
exposure. In the northern part of the study area, several
hazardous waste sites as well as a power plant were
identified in previous health studies [54]. As data on

environmental exposures from these or other sources in
the area were not available, further assessment of expo-
sure may be warranted.

Conclusions
These exploratory analyses produced maps of the risk of
three indicators of LDD–special education placement,
ADHD, and low educational attainment–in upper Cape
Cod using GAMs and GIS. Results suggest that children
living in certain parts of upper Cape Cod may have
been more likely to have an LDD. The addresses used
(birth addresses or childhood addresses) did not affect
the spatial distribution of observed odds. Adjustment for
known risk factors had little effect. Observed variation,
although not statistically significant, may be due to local
differences in the social or physical environment.

List of Abbreviations
(AIC): Akaike’s Information Criterion; (ADD): attention
deficit disorder; (ADHD): attention deficit hyperactivity
disorder; (DSM): Diagnostic Statistical Manual; (GAMs):
generalized additive models; (GIS): geographical infor-
mation systems; (HD): hyperactive disorder; (IEP): indi-
vidualized education plan; (LDD): learning and
developmental disability; (loess): locally weighted

Figure 4 Educational attainment results for early childhood addresses. Fully adjusted model, optimal 0.60 span. The map was not
significantly different from flat (p = 0.22).

Table 4 Summary of educational attainment models (331
Cases, 1155 Non-Cases).

Analysis Span a Deviance
p-valueb

Figure Number

Adjusted c

Birth Residence
0.95 0.89 —

Crude
Birth Residence

0.20 0.002 —

Adjusted c

Early Childhood Residence
0.60 0.22 4

Crude
Early Childhood Residence

0.15 <0.001 —

a Optimal span obtained by using the Akaike’ Information Criterion (AIC).
b Null hypothesis is that the map is flat.
c Adjusted for sex, race, birth weight, gestational duration, year of birth,
socioeconomic status, maternal alcohol or tobacco use during pregnancy, and
PCE exposure.
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regression smoother; (OR): odds ratio; (PCBs): poly-
chlorinated biphenyls; (PCE): tetrachloroethylene.
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