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Summary
An abdominal aortic aneurysm (AAA) is the area of a localized widening of the abdominal aorta,
with a frequent presence of thrombus. A ruptured aneurysm can cause death due to severe internal
bleeding. Segmentation and quantitative analysis of the thrombus in AAA are of paramount
importance for diagnosis, risk assessment, and determination of treatment options. Until now, only
a small number of methods for thrombus segmentation and analysis have been presented in the
literature, either requiring substantial user interaction or exhibiting insufficient performance. We
propose a novel method offering minimal user interaction and high accuracy. The thrombus
segmentation method utilizes the power and flexibility of double surface 3-D graph search using a
triangular mesh. Edge-based cost functions for the luminal and thrombotic surfaces are used for the
graph search. For situations, in which local image ambiguity causes local failures, interactively
defined control points are used to guide the computer thrombus segmentation without the need to
manually trace thrombus contours slice by slice. The method was tested in 9 3-D MDCT angiography
datasets (9 patients with AAA, 1300 image slices), and the mean unsigned errors for the luminal and
thrombotic surfaces were 0.99 ± 0.18 mm and 1.90 ± 0.72 mm. To achieve these results, 9.9 ± 10.3
control points needed to be interactively entered on 2.1 ± 2.2 image slices per 3-D CTA dataset.
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1. Introduction
Abdominal aortic aneurysm (AAA) is an abnormal expansion of the abdominal aorta resulting
from a weakening of the vessel wall and is typically defined as a greater than 50% increase in
normal blood vessel diameter. It is a major source of morbidity and mortality for those 65 years

© 2009 Elsevier Ltd. All rights reserved.
*Corresponding author. Tel.: +13193295049; fax: +13193356028. kyungmle@engineering.uiowa.edu (Kyungmoo Lee)
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.
Conflict of interest statement
None declared.

NIH Public Access
Author Manuscript
Comput Biol Med. Author manuscript; available in PMC 2011 March 1.

Published in final edited form as:
Comput Biol Med. 2010 March ; 40(3): 271–278. doi:10.1016/j.compbiomed.2009.12.002.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of age and older with approximately 200,000 people diagnosed annually in the United States
alone. The risk factors for AAA are similar to those for heart disease with smoking being a
main risk factor. Atherosclerosis is a common associated finding, and statin therapy has been
shown to significantly decrease rate of aneurysm growth and risk for rupture. While
hypertension has not been a consistently identified risk factor, angiotensin-converting-enzyme
inhibitors have been associated with decreased risk of aneurysm rupture [1]. Aneurysms are
typically slow to develop and are often asymptomatic prior to rupturing. Mortality increases
dramatically after rupture with only 10% survival to surgery [2]. The risk of rupture increases
ten-fold for aneurysms 5.5 cm in diameter making this a measurement at which surgical repair
is considered [3]. There are two approaches to aneurysm repair. The traditional surgical
approach involves a portion of the abnormal vessel being resected and replaced with a graft.
This is an extensive procedure requiring cross clamping of the aorta and carries an operative
mortality rate in excess of 40%. Those that survive the surgery are faced with long recovery
times and high perioperative morbidity. The alternative method is minimally invasive and
involves placement of a stent in the segment of abnormal vessel using an endovascular catheter.
This has the advantage of shortened recovery times and eliminates the risks associated with
open-chest surgery. While the short term advantages of endovascular repair are evident, studies
have failed to show clear long term survival a benefit. Endovascular repair also carries a higher
risk of need for re-intervention due to complications such as graft leak, migration or stenosis.
The American College of Cardiology guidelines for management of AAA currently
recommend endovascular repair as favorable for patients with high surgical risks based on co-
morbidities [2]. Unfortunately, not all patients for which endovascular repair is recommended
will be good candidates because of certain anatomical characteristics. Factors such as: shape
and location of aneurysm in relation to other vessels, size and condition of vessels used for
access, and presence of thrombosis or calcification at the site of intended stent placement need
to be evaluated. These characteristics are usually evaluated by means of high resolution three-
dimensional computed tomography angiography (CTA) [2]. CTA provides detailed anatomical
information about the aortic lumen, thrombus and calcifications (Fig. 1) [4]. The highly detailed
information obtained is also used to prepare the endograft which must be done with precision
prior to insertion since it cannot be modified once deployed.

Segmentation of the aortic lumen in AAA is simplified in CTA images since contrast materials
produce the obvious difference in image intensity between the lumen and surrounding
structures. However, segmentation of the thrombus in CTA images is challenging due to the
following reasons: (a) the thrombotic surface is locally obscured in some cases; (b) the
geometric structure of the thrombus is highly irregular; (c) the proximity of the spine, the heart,
and the lungs has pronounced surface intensity gradients, which may cause mis-segmentation
(Fig. 2).

In the past, a thrombus was manually traced by an expert, which is a tedious and time-
consuming task. To reduce user interaction as well as get accurate thrombus segmentation
results, several studies exploring segmentation and quantitative analysis of the thrombus in
AAA have been performed.

Tek et al. proposed a mean shift-based ray propagation method combined with a smoothness
constraint for 2-D lumen segmentation [5]. The primary advantage of this approach is fast
processing speed that the ray propagation is much faster than active contour update or level
set evolution.

Subasic et al. proposed a 3-D deformable model-based technique using a level set algorithm
[6]. While minor user intervention was required such as providing the center and radius of the
sphere to define an initial surface for the 3-D level set algorithm, their thrombus segmentation
results were not locally accurate.
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Bruijne et al. introduced an active shape model (ASM) [7] segmentation scheme, in which a
statistical shape model composed of landmark points was fitted to the thrombotic surface
iteratively [8,9]. Although the reported thrombus segmentation results were promising, this
approach required substantial user interaction. The manual segmentation of the first image slice
was required for the initialization of the ASM, and if thrombotic contours in subsequent slices
were not reasonable, they needed to be manually modified by the user.

Olabarriaga et al. proposed a nonparametric statistical gray level appearance model-based
method for 3-D thrombus segmentation [4,10]. This approach required manual collection of
training data being voxel intensities inside, outside and at the thrombotic boundary to train a
k-NN classifier.

Li et al. developed a 3-D/4-D graph-based optimal surface detection method, which is capable
of segmenting multiple interacting surfaces simultaneously [11,12]. This method is appropriate
for segmentation of a tubular object once original data are unfolded based on the centerline of
the object to construct a graph.

The purpose of this study is to develop a novel and highly accurate method for segmentation
and quantitative analysis of the thrombus in AAA from 3-D MDCT angiography images
requiring minimal user interaction while providing a tool to aid in diagnosis, risk assessment,
and determination of treatment options.

2. Methods
The proposed method for thrombus segmentation from CTA images consists of the following
main steps: 1) approximate segmentation of the aortic lumen, 2) simultaneous segmentation
of the luminal and thrombotic surfaces and 3) user-guided re-segmentation (if needed).

2.1. Initial luminal surface segmentation
Initial luminal surface segmentation is a pre-processing step for the proposed thrombus
segmentation method, which requires a triangular mesh of the approximate luminal surface for
graph construction. The initial luminal surface segmentation method is composed of
anisotropic diffusion [13,14], region growing, marching cube isosurface definition [15] and
vertex smoothing.

As a noise-reducing step with preserving the boundary between the luminal and thrombotic
regions, an anisotropic diffusion filter was applied to the original 3-D CTA dataset. The
anisotropic diffusion constant (k) was calculated as:

(1)

where Ilumen and Ithrombus are average image intensities of the luminal and thrombotic regions,
respectively, which are manually indicated by the user. The number of iterations for the
anisotropic diffusion filter was set as 5, and the time step was 1/7.

An approximate luminal region was identified by employing region growing to the smoothed
dataset. A seed point for the region growing is the point mouse-clicked at the luminal region
by the user, and the region growing should satisfy the following 2 stopping criteria
simultaneously.

(2)
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(3)

where I is the original 3-D CTA dataset, and |∇I| is the gradient magnitude of I. Condition 1
accounts for 50% uncertainty of (Ilumen – Ithrombus) since Ilumen and Ithrombus represent the
average image intensities of the local luminal and thrombotic regions, respectively. In addition,
the image intensity of the luminal region should be larger than Ilumen – (Ilumen – Ithrombus) ×
25% to prevent leakage in the regions having small gradient magnitudes (Condition 2). The
triangular mesh of the initial luminal surface was built using a marching cube algorithm [15].
Finally, the luminal surface was smoothed by averaging adjacent vertices to avoid local
roughness (Fig. 3). The parameters presented in this section were empirically determined and
were kept constant for all analyses reported here.

2.2. Double surface 3-D graph search using a triangular mesh
Following the preliminary segmentation of the lumen, a double surface graph search method
using a triangular mesh was applied to determine accurate locations of luminal and thrombotic
surfaces in 3-D [12]. Let a weighted graph G = (V, E) be composed of a node set V and an arc
set E. The nodes v ∈ V correspond to image voxels, and the arcs < vi, vj >∈ E connect the
nodes vi and vj. Every arc < vi, vj >∈ E has a cost (or weight) which represents some measure
of preference that the corresponding voxels belong to the segmentation surface of interest. Fig.
4 shows the structure of the triangular mesh-based graph, in which voxel columns are resampled
using tri-linear interpolation along the average normal directions of surrounding triangles at
the vertices of the triangular mesh of the initial luminal surface in Section 2.1. The adjacencies
of the columns were previously known from the triangular meshes of the initial luminal surface,
and the arcs between two adjacent columns were determined by a surface smoothness constraint
to segment a feasible surface. For double surface detection, two triangular mesh-based graphs
with a cost function for each surface were combined with the arcs controlled by a surface
separation constraint. In this study, the surface smoothness constraint and surface separation
constraint were set as 1 voxel and 2 voxels, respectively. Segmentation of two coupled surfaces
was formulated as computing a minimum closed set in the 3-D geometric graph constructed
from the cost functions as described in Section 2.3 [11,12]. This can be solved by computing
the minimum s – t cut of the graph using a Boykov-Kolmogorov maximum-flow algorithm
[16] with a low-order polynomial time complexity. The advantage of the triangular mesh-based
graph search compared to the conventional centerline-and-unfold graph search [12] is that
complex object surfaces can be segmented, including surfaces at bifurcations.

2.3. Cost functions for the luminal and thrombotic surfaces
The triangular mesh-based 3-D graph search method requires two separate cost functions for
the luminal and thrombotic surfaces. Generally, aortic thrombi can be identified by the image
intensity differences between the luminal and thrombotic regions, and between the thrombotic
and surrounding regions. Consequently, edge-based cost functions of the graph search were
used for detection of the luminal and thrombotic surfaces.

The cost function for the luminal surface (Clumen) was defined as:

(4)
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where I is the original 3-D CTA dataset, h is a smoothing filter, and ω is a weighting coefficient
(0 ≤ ω ≤ 1). The gradient magnitude (|∇I|) calculated using a Sobel operator was smoothed by
a 3 × 3 × 3 averaging filter (h) to improve connectivity and smoothness of the surface edge
representations. |∇I|local is the gradient magnitude locally emphasized by employing local
histogram equalization [17] within a 5 × 5 × 5 kernel. Weighted combination of these two terms
was used, controlled by ω, which was set as 0.3. The regions located more than 1 voxel inside
of the initial luminal surface (finitial lumen) and 3 voxels outside of it were ignored since the real
luminal surface is expected to be located close to the initial luminal surface.

In addition, the cost function for the thrombotic surface (Cthrombus) was defined as:

(5)

where DT(I, finitial_lumen) is a distance transform map [18] based on finitial_lumen, and α is a
constant. To incorporate information about the proximity of the luminal and thrombotic
surfaces, the gradient magnitudes were linearly reduced with increasing distance from the
initial luminal surface, and α = 20. |∇I|local was used to reduce strong edge responses around
the spine, heart, lungs and other tissues as well as locally enhance weak edge responses of the
thrombotic surface. The responses located less than 1 voxel outside of the initial luminal surface
were ignored since these regions were likely related to the luminal surface than the thrombotic
surface.

Finally, both cost functions (Clumen and Cthrombus) were inverted since the double surface 3-D
graph search method detects two interacting surfaces having the minimum cost. The parameters
presented in this section were constants experimentally determined. Fig. 5 shows examples of
the calculated cost functions values for the luminal and thrombotic surfaces.

2.4. Interactive guidance of the thrombus segmentation
Segmentation of thrombus in CTA images is challenging since the lack of contrast between
the thrombotic surface and surrounding tissues may cause local failures of the thrombus
segmentation. When needed, a small number of control points are required to modify the cost
function to guide the thrombotic surface detection. The shape of the control point is a sphere
whose radius is 4 voxels (Fig. 6c). The center of the sphere has the minimum gradient
magnitude (i.e., 0), and the gradient magnitude out of the center of the sphere linearly increases
according to the radius of the sphere. Fig. 6 shows the effect of the control points. The
thrombotic surface distracted by the spine and the lungs in Fig. 6b was modified by the control
points in Fig. 6e.

3. Experiments
The reported thrombus segmentation method was tested in 9 3-D MDCT angiography datasets
from 9 patients with AAA imaged using both 16 and 64-slice MDCT scanners (Brilliance CT,
Philips Healthcare, Cleveland, OH, U.S.A.). 8 datasets exhibited AAA, and 1 dataset depicted
an aneurysm in the iliac artery. The dimensions of the datasets were between 512 × 512 × 100
and 512 × 512 × 255 voxels, and the voxel size ranged from 0.53 × 0.53 × 1.0 to 0.86×0.86×1.0
mm. The total number of image slices analyzed for 9 subjects was 1300.

To validate the method, our thrombus segmentation results were compared to expert-defined
independent standards. In randomly selected 10 image slices per 3-D CTA dataset, luminal
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and thrombotic contours were manually delineated by an expert (RKJ). The mean unsigned
error was calculated by averaging the closest distances between pairs of points, the first located
on the computer-determined surface and the other on the independent standard. To measure
reproducibility of the method according to the variation of the points in the luminal and
thrombotic regions indicated by the user in Section 2.1, the same experiment was performed
with independently-defined lumen and thrombus initialization mouse clicks while same control
points were used as in the first experiment to keep the test confined to the test of the initialization
only. Significance of the segmentation differences was assessed by a paired t-test, and p value
of 0.05 was considered significant.

4. Results
In 4 out of 9 datasets, successful 3-D thrombus segmentations were obtained without any need
for interactive definition of control points (Table 1). In the remaining 5 datasets, the method
locally failed due to image ambiguity and 9.9 ± 10.3 control points in 2.1 ± 2.2 image slices
per 3-D CTA dataset were required to achieve complete 3-D thrombus segmentations so that
no local surface failures were present. The mean unsigned errors of the luminal and thrombotic
surfaces in the first experiment were 0.99 ± 0.18 mm and 1.90 ± 0.72 mm, respectively. The
method’s performance was not affected by initialization. The segmentation reproducibility
assessed by the mean absolute difference of the unsigned errors resulting from two independent
experiments was 0.01 ± 0.01 mm and 0.03 ± 0.04 mm for the luminal and thrombotic surfaces,
respectively. The segmentations resulting from two initializations were statistically identical
for both surfaces (p = NS). Figs. 7 and 8 show our thrombus segmentation results of two 3-D
CTA datasets (datasets 1 and 3) and 3-D visualizations of thrombus thicknesses color-coded
on the luminal surfaces.

5. Discussion and Conclusions
We have proposed a novel method for segmentation of the thrombus in the abdominal aorta
from 3-D CTA images. The method utilizes the power and flexibility of the 3-D graph search
method based on a triangular mesh. The new technique provides a tool for thrombus
segmentation eliminating the need for labor intensive manual image analysis. This method
requires two mouse clicks, one at the luminal region and the other at the thrombotic region.
For dealing with local failures caused by image ambiguity, a point- and-click segmentation
guidance feature was implemented to correct locally failed computer segmentation without the
need to manually trace thrombus contours slice by slice. The detected thrombus characteristics
could be quantitatively described by reporting local thrombus thickness (Fig. 7h and Fig. 8h).

The method uses a 3-D graph search approach which can detect luminal and thrombotic
surfaces simultaneously in the graph constructed based on the triangular mesh of the
approximate luminal surface. To validate the double surface graph search against two single
surface graph searches, another experiment was performed. The same cost functions were used
for the two single surface graph searches and the double surface graph search. The minimum
surface separation constraints for the two single surface graph searches were 1 and 2 voxels
(Fig. 9b and c, respectively), and that for the double surface graph search was 2 voxels (Fig.
9d). As can be seen in Fig. 9b and c, the segmented thrombotic surface was distracted by the
luminal surface and the spine due to their strong edge responses when a pair of independent
single surface segmentations were applied. When employing the simultaneous double surface
segmentation approach, the segmentation failure was avoided as seen in Fig. 9d.

The reported method was compared to some of the previously published approaches mentioned
in Section 1. It is impossible to truly compare our method to the mean shift-based ray
propagation method [5] and Subasic et al. level set algorithm [6] since they do not provide
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quantitative assessment of the thrombus segmentation performance. Based on published
example segmentation figures, local failures of the thrombus segmentation are readily
identifiable. A previously published active shape model approach of Bruijne et al. [8,9] reported
a reduction of user interaction by a factor of 6. Using the same logic, our method reduced the
user interaction level by a factor of 68 (19 out of 1300 image slices). Comparing quantitative
border positioning errors, Olabarriaga et al.’s nonparametric statistical gray level appearance
model-based method [4,10] showed more accurate thrombus segmentation results (mean
unsigned error for the thrombotic surface: 1.3 ± 0.4 mm) than our method (1.9 ± 0.7 mm).
However, their method required manual collection of training voxel intensities inside, outside,
and at the thrombotic boundary in the analyzed CTA images. More importantly, their method
did not support segmentation of the thrombus in the iliac artery bifurcation.

In general, our method shows good segmentation accuracy and reproducibility with dataset 2,
in which the thrombus is highly eccentric, showing larger unsigned errors for both luminal and
thrombotic surfaces than the other datasets (Fig. 10). The reason is that the columns of the
graph perpendicular to the the approximate luminal surface cannot cover the thrombotic regions
in this highly eccentric case. This is the limitation of the proposed approach and further study
is required to solve these somewhat atypical cases. To complement the current gradient-based
cost function, incorporating an intensity and/or texture-based cost terms may be useful to
further reduce user interaction and obtain even better segmentation results. Finally, the
computer segmentations were evaluated in comparison with the independent standards
obtained from one expert. More objective validation would be possible using the reference
standard acquired from multiple experts.
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Figure 1.
Example of an abdominal CTA image in AAA, cropped to show a section of the aorta. (a)
Lumen. (b) Thrombus. (c) Calcification.
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Figure 2.
CTA image variability makes thrombus segmentation challenging. (a) Poorly visible
thrombotic surface. (b) Irregular thrombus geometry. (c) Strong image intensity gradients near
the spine, the heart and the lungs.
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Figure 3.
Approximate luminal surface represented by a triangular mesh.
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Figure 4.
Structure of the triangular mesh-based graph.
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Figure 5.
Examples of cost functions for the luminal and thrombotic surfaces. (a) Original CTA image.
(b) Cost function image for the luminal surface. (c) Cost function image for the thrombotic
surface.
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Figure 6.
Effect of control points. (a) Original CTA image. (b) Thrombus segmentation result without
any control point. Luminal and thrombotic surfaces are in red and green, respectively. (c) The
shape of the region modified by inserting a control point. It is scaled up to describe the modified
region. (d) Cost function image for the thrombotic surface modified by 6 control points. (e)
Thrombus segmentation result with 6 control points. (f) Independent standard.
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Figure 7.
Aortic thrombus segmentation results and thrombus thickness visualization (dataset 1). (a)
Original CTA image corresponding to the top line in panel (g). (b) Computer segmentation
results of panel (a). Luminal and thrombotic surfaces are in red and green, respectively. (c)
Independent standard of panel (a). (d) Original CTA image corresponding to the bottom line
in panel (g). (e) Computer segmentation results of panel (d). (f) Independent standard of panel
(d). (g) 3-D rendering of the luminal and thrombotic surfaces. (h) 3-D visualization of color-
coded thrombus thickness.
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Figure 8.
Iliac thrombus segmentation results and thrombus thickness visualization (dataset 3). (a)
Original CTA image corresponding to the top line in panel (g). (b) Computer segmentation
results of panel (a). Luminal and thrombotic surfaces are in red and green, respectively. (c)
Independent standard of panel (a). (d) Original CTA image corresponding to the bottom line
in panel (g). (e) Computer segmentation results of panel (d). (f) Independent standard of panel
(d). (g) 3-D rendering of the luminal and thrombotic surfaces. (h) 3-D visualization of color-
coded thrombus thickness.
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Figure 9.
Effect of double surface graph search. (a) Original CTA image. (b) Two single surface graph
searches, in which the minimum surface separation constraint is 1 voxel. Luminal and
thrombotic surfaces are in red and green, respectively. (c) Two single surface graph searches,
in which the minimum surface separation constraint is 2 voxels. (d) Double surface graph
search, in which the minimum surface separation constraint is 2 voxels. (e) Independent
standard.

Lee et al. Page 17

Comput Biol Med. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Coronal view of dataset 2. The thrombotic surface cannot be detected in the region marked by
the ellipse since the columns of the graph cannot cover this region.

Lee et al. Page 18

Comput Biol Med. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 19

Table 1

Control points

Dataset Slices Slices on which control points were put Control points

1 100 0 0

2 135 4 21

3 105 0 0

4 156 0 0

5 255 6 24

6 135 3 19

7 120 3 17

8 165 3 8

9 129 0 0
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