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Abstract
Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the
nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous
system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant
Ca2+ channel expression and function. Here we review the current state of knowledge regarding the
role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic
neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and
also intracellular Ca2+ handling on sensory neuron function is discussed and related to abnormal
endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal
Ca 2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the
induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating
Ca2+ dysregulation with both painful and degenerative neuropathies, along with recent advances in
understanding of regional variations in Ca2+ channel and pump structures, makes modulation of
neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the
painful and degenerative aspects of many peripheral neuropathies.
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INTRODUCTION
This review will present the critical role played by calcium (Ca2+) signalling and homeostasis
in two key areas of neurological disease in the peripheral nervous system. Neuropathic pain
has a huge impact on quality of life and aberrant Ca2+ channel physiology and expression has
been implicated in a number of pain states. The review will also highlight the most common
form of peripheral neuropathy, namely diabetic polyneuropathy. This disorder can include pain
as one of its symptoms and ultimately progresses to marked degeneration of peripheral nerve
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fibres with attendant sensory loss. Abnormalities in Ca2+ signalling and homeostasis have been
linked to the aetiology of both the painful and degenerative aspects of diabetic neuropathy.

Calcium dyshomeostasis in diabetic sensory neuropathy
Background

Diabetes mellitus in humans leads to development of complications that affect various tissues
and organ systems, including heart muscle, retina, secretory glands, kidneys and peripheral
nerves. Chronic metabolic stress induced by hyperglycaemia resulting from either low insulin
production in type 1 diabetes or decreased peripheral sensitivity to insulin in type 2 diabetes
affects cellular homeostasis in virtually all cell types. Hyperglycaemia is widely regarded to
be the major process that triggers cellular pathology, and a variety of downstream mechanisms,
including metabolic stress, with subsequent generation of reactive oxygen species (ROS) that
damage membranes and other cellular systems have been identified [1,2]. Recent studies have
revealed a very early impairment of two connected intracellular signalling/integrative systems,
namely Ca2+ homeostasis/signalling and mitochondrial physiology. These changes are similar
in very different cell types, and may be regarded as a common pathologically relevant pathway.
Here, we present our own data and data produced by other groups, which show related changes
in Ca2+ homeostasis and mitochondrial dysfunction in peripheral neurones, and propose a
major role for these alterations in cellular pathophysiology of neuropathy associated with
diabetes mellitus.

Clinical impact of diabetes and diabetic sensory neuropathy
The World Health Organization (WHO) predicts that by 2025 there will be 300 million people
with diabetes. In Europe and North America it is estimated that 60 and 20 million people,
respectively, currently have diabetes which has an incidence of 6% and rising (see ADA, IDF
and CDA web sites of International Diabetes Federation;
http://www.idf.org/webdata/docs/StakeholderPresentation.pdf; American Diabetes
Association; http://www.diabetes.org/diabetes-statistics.jsp or Canadian Diabetes
Association; http://www.diabetes.ca/Section_About/prevalence.asp). Of these, about 90 –
95% have non-insulin-dependent diabetes mellitus (type 2 diabetes) and 5 – 10% have insulin-
dependent diabetes mellitus (type 1 diabetes). In Europe and North America approximately 5–
10% of all health care costs are devoted to treatment of diabetic complications [3–5]. Palliative
treatment of diabetic sensory neuropathy can account for 20–30% of these costs [5]. For
example, in North America, approximately $30 billion per annum of health service costs are
spent on treatment of diabetic complications that include retinopathy, nephropathy, heart
disease and neuropathy. In 1998 approximately $15 billion of heath service expenditure was
associated with the neurological complications (sensory and autonomic neuropathy and
blindness). Incidence of polyneuropathy in diabetic patients can be as high as 50% and leads
to incapacitating pain, sensory loss, foot ulceration, infection, gangrene and poor wound
healing. Up to 2 and 6 million North Americans and Europeans, respectively, with diabetes
exhibit foot ulceration and associated downstream sequalae. The end result is often lower
extremity amputation which accounts for approximately 90,000 cases each year in North
America. There is no effective therapy and only palliative treatment is available at the present
time [6]. These alarming figures are estimated to rise by approximately 5-fold over the next
10 years due to the epidemic in obesity and the associated increase in incidence and earlier
time of onset of type 2 diabetes [7].

Nerve damage in diabetic sensory neuropathy
Diabetic neuropathy in type 1 and 2 diabetes in both humans and animal models is associated
with reduction of motor and sensory nerve conduction velocity and structural changes in
peripheral nerve including endoneurial microangiopathy, axonal degeneration, Schwann cell
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pathology, paranodal demyelination and loss of myelinated and unmyelinated fibers - the latter
due to a dying-back of distal axons that presents clinically as reduced epidermal nerve fibre
density [8–10]. All components, (sensory, motor and autonomic) of the peripheral nervous
system are affected but neurodegeneration is most prominent in the longest axons of sensory
neurons, while defective axon regeneration impedes tissue re-innervation [11]. There is no
apoptosis-dependent loss of DRG sensory neurone perikarya in diabetic humans or animals
[12,13] and the distal dying-back of axons is the critical pathological feature [11,14],
mimicking axonal pruning observed in the CNS and PNS during other pathological states
[15].

It is widely believed that oxidative stress is a key pathological process that induces nerve
damage in diabetes [16]. The following pathways, triggered by hyperglycaemia and/or lack of
insulin, have been proposed as contributing to oxidative stress in diabetic neuropathy: (i) Polyol
pathway – excess glucose results in elevated flux through the polyol pathway and build-up of
damaging levels of polyols and associated pro-oxidants [17]; (ii) High intracellular glucose
concentrations elevate ROS through raised mitochondrial activity [1]; (iii) Protein glycation –
hyperglycaemia induces glycation of proteins leading to their abnormal function and/or
activation of the receptor for advanced glycation end-products (RAGE) which induces cellular
stress, in part, through activation of inflammatory pathways [18,19], and (iv) Reduced
neurotrophic support – maintenance of normal phenotype of neurons is impaired due to
diabetes-induced loss of neurotrophic support by insulin, insulin-like growth factors (IGF-I,
IGF-II), nerve growth factor (NGF) and neurotrophin-3 (NT-3) [20–22].

Calcium signalling in cells
Several evolutionary conserved families of Ca2+ channels, transporters and Ca2+ buffers
provide spatially and temporally organised fluctuations of intracellular Ca2+ concentration
(Ca2+ signals). A number of Ca2+-sensors (represented in essence by Ca2+-regulated enzymes)
act as effectors, which translate Ca2+ signals into physiological responses [23–31]. Importantly,
resting free Ca2+ concentrations within the cell can vary considerably, being within the 50 –
100 nM range in the cytosol and approaching 0.5 – 1.0 mM in the lumen of endoplasmic
reticulum (ER). Any long lasting shifts from these levels are detrimental and cytosolic Ca2+

overload and depletion of ER Ca2+ can have pathological consequences, including the
triggering of various types of cell death [32–36].

Calcium dyshomeostasis in neurones from diabetic animals
Altered Ca2+ handling and Ca2+ signalling have been detected in a variety of preparations
isolated from animals with experimentally-induced diabetes as well as from diabetic patients.
Abnormalities of Ca2+ homeostasis have been found in most tissues studied, including skeletal,
cardiac and smooth muscle, secretory cells, blood cells, kidney and osteoblasts, (see [37,38]
and references therein). These abnormalities generally manifest as an increased resting
intracellular Ca2+ concentration ([Ca2+]i), decreased activity of Ca2+ transporters (although
not always) and decreased stimulus-evoked Ca2+ signalling. Impaired Ca2+ handling has also
been found in sensory neurones from animals with experimental diabetes.

Elevation in resting [Ca2+]i—A significant increase in resting [Ca2+]i in diabetic sensory
neurones has been a common finding, although there are some differences between neuronal
types. Kostyuk and colleagues published work showing elevated resting [Ca2+]i in small
neurons of the dorsal root ganglia (DRG) of type 1 and type 2 diabetic mice. They demonstrated
that resting [Ca2+]i was ~ 30% higher in small DRG neurones isolated from streptozotocin
(STZ)-treated C57Bl/6 mice, (a model of type 1 diabetes) than in control (205 ± 16 nM vs. 156
± 16 nM). The elevation in [Ca2+]i in small neurons was even greater in db/db mice (a model
of type 2 diabetes). There were no differences in [Ca2+]i levels in large neurones in either
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mouse model [39]. It has to be noted that the same group also reported the absence of any
changes in resting [Ca2+]i in DRG neurones isolated from type 1 STZ-diabetic rodents [40].
The reasons for this discrepancy may be differences in severity and/or length of STZ-diabetes
within these studies. For example, in the later study the animals (both rats and mice) were only
maintained in a diabetic state for 4 – 5 weeks [40] whereas it appears that the db/db mice (type
2 diabetes) may have been maintained for 2 – 3 months [39].

The finding of elevated [Ca2+]i in neurons from diabetic rodents has been confirmed by other
groups. In STZ-diabetic Wistar rats of 8 – 14 weeks duration resting [Ca2+]i was substantially
increased by 2–2.5-fold in both large and small DRG neurones isolated from lumbar L4–L6
DRG and the [Ca2+]i increase correlated with progression of the disease [41]. Interestingly,
resting [Ca2+]i was not affected in neurons from ganglia located at higher levels of the spinal
cord (C3 – L3). These differences correlated with higher susceptibility of lumbar DRG sensory
neurones with the longest axons to diabetic neuropathy [42]. Some of the discrepancies with
respect to measurement of [Ca2+]i between studies in different models and duration of diabetes
may therefore also be a consequence of researchers assessing [Ca2+]i in different sub-
populations of neurones from the DRG and at different levels of the spinal column.

Altered plasmalemmal Ca2+entry—Influx of Ca2+ to the cytoplasm through voltage-
gated plasmalemmal Ca2+ channels represents an important component of Ca2+ signalling in
excitable cells. Sensory neurones are endowed with several types of voltage-gated Ca2+

channels including low-threshold (T-type) and high-threshold (N and L-types) channels [43],
which differ in conductance, voltage-dependence and pharmacology. The density of both low-
and high-threshold Ca2+ currents was reported to increase in diabetic animals by 40 – 100%
[44]. However, the amplitude of depolarisation-induced Ca2+ transients in isolated DRG
neurones from diabetic and healthy animals is not generally affected [41,45] and Ca2+

transients were depressed only in small neurones isolated from L4 – L6 DRG [41]. These
apparent discrepancies may be explained in terms of more prominent Ca2+-dependent
inactivation of Ca2+ currents in diabetic neurones possibly due to increased resting [Ca2+]i,
while an increase in Ca2+ channel density may have a compensatory character.

ER Ca2+ homeostasis and Ca2+ release—The ER serves as a dynamic Ca2+ store,
capable of accumulation, distribution and regulated release of Ca2+ ions [30]. ER Ca2+

homeostasis is accomplished by a complement of Ca2+ pumps represented by sarco(endo)
plasmic reticulum Ca2+ ATP-ases (SERCAs) and Ca2+ release channels. The latter includes
ryanodine receptors (RyR), inositol triphosphate receptors (InsP3R) and possibly nicotinic acid
adenine dinucleotide phosphate (NAADP) receptors residing in the endomembrane [24–26,
46]. Free Ca2+ concentration within the ER lumen ([Ca2+]L) is high, approximately 0.5 – 1.0
mM [30,47–51]. The [Ca2+]L level is functionally important as it controls the velocity of
SERCA-dependent Ca2+ uptake, availability of Ca2+ release channels for activation, Ca2+

driving force and provides tight control over numerous ER-resident chaperones that are
responsible for post-translational protein folding [27,30,34,36,52,53]. Thus, any long-lasting
changes in [Ca2+]L may have important signalling, functional and adaptive consequences.

The ER participates in rapid shaping of neuronal Ca2+ responses through their initiation
(through metabotropically controlled InsP3-induced Ca2+ release), amplification (through
Ca2+-induced Ca2+ release), propagation (by both regenerative activation of Ca2+-release
channels and ER Ca2+ tunnelling) and termination (by SERCA-mediated Ca2+ uptake into the
ER lumen); see [30,45,54–61]. All these processes are regulated though the [Ca2+]i and
[Ca2+]L levels and metabolism of second messengers including InsP3, cyclic-ADP-ribose and
NAADP.
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Diabetes disrupts ER Ca2+ homeostasis in sensory neurones by lowering the ER Ca2+ content,
thus reducing the amplitude of Ca2+ release from the store. Indeed, the amount of Ca2+ released
from the ER is significantly decreased in diabetic DRG neurones, regardless of the
interventions used to initiate Ca2+ efflux. Ca2+ release induced by low doses of ionomycin, by
caffeine (activation of RyRs) or by ATP (metabotropic activation of InsP3Rs) were all
significantly decreased in sensory neurones isolated from animals with STZ-diabetes [40,41,
62]. Once more, the decrease in ER Ca2+ content was most pronounced in neurones from L1–
L6 lumbar DRG compared with cervical and thoracic DRG [41]. Direct measurements of
[Ca2+]L (Solovyova, Huang, Verkhratsky & Fernyhough, unpublished) and [Ca2+]i showed a
significant decrease in caffeine-induced cytosolic Ca2+ transients. Reduction of [Ca2+]L and
the velocity of Ca2+ uptake in diabetic neurones were associated with decreased expression of
SERCA in homogenates of L4–L5 DRG from diabetic animals [63].

Our recent studies have shifted the focus of regulation of Ca2+ homeostasis from the perikarya
to the axon. Recently published work demonstrates that, in cultured sensory neurons from
diabetic rats, axons appear to be far more prone to high [glucose]-induced neurodegeneration.
Adult sensory neurones were isolated from 3–5 month STZ-diabetic rats and grown in vitro
for 1–4 days. Treatment with high [glucose] triggered oxidative stress leading to increased
staining for adducts of 4-hydroxy-2-nonenal (a measure of ongoing lipid peroxidation), sub-
optimal axonal outgrowth and the appearance of structural abnormalities in the axons akin to
axonal dystrophy [13] that mimicked the axon degeneration seen in both animal models and
humans with diabetes [64]. In stark contrast, the perikarya of these cultured neurones did not
exhibit any overt signs of oxidative stress or degeneration. Interestingly, such glucose-induced
toxicity of axons was only observed in neurones from diabetic animals and neurones grown
from age matched control rats had no sensitivity to high [glucose]. We have now initiated
studies focused on Ca2+ homeostasis in axons and have used real time confocal imaging with
Fluo4-AM under high magnification (X100) to analyse Ca2+ transients in adult sensory
neurones isolated from age matched control or 4–5 month STZ-diabetic rats. Fig.1A shows
representative fluorescent images of the Fluo4-AM signal at baseline and following 1 second
of caffeine perfusion. The response to caffeine, which prompts ER Ca2+ release, or KCl which
initiates membrane depolarization-induced Ca2+ influx followed by Ca2+ mobilization from
internal stores, was rapid and axonal in origin. There was no evidence of any waves of Ca2+

derived from the perikarya under the experimental conditions utilised. Fig.1B and C clearly
reveal that axons from neurones with a diabetic background have severely impaired responses
to caffeine and KCl. The results suggest reduced loading of Ca2+ within the ER store but also
possibly impaired membrane polarisation since the fast Ca2+ peak in response to KCl-induced
depolarisation was significantly reduced.

Ca2+ signal termination—The termination of Ca2+ signals triggered during periods of
cellular activity is accomplished by either Ca2+ extrusion by plasmalemmal systems (Ca2+

pumps of plasmalemmal Ca2+ ATP-ase, PMCA, family and Na+/Ca2+ exchangers) or by
Ca2+ uptake into ER and/or mitochondria. In neurones isolated from diabetic animals the
functional capacity of extrusion systems seems to be impaired as indicated by the deceleration
of [Ca2+]i recovery after stimulation towards resting levels [39–41,45]. This may, at least in
part, reflect the decrease in expression of PMCA pumps which has been observed in diabetic
animals and patients [65,66]. At the same time, the prolongation of Ca2+ signals is also
associated with reduced Ca2+ uptake by the intracellular organelles, the ER and mitochondria.
Decreased SERCA expression was found in the heart of STZ-diabetic animals [67], while over-
expression of SERCA's rescued Ca2+ homeostasis abnormalities [68]. In neurones, decreased
SERCA activity is manifested by a decrease in the velocity of Ca2+ uptake as judged by direct
[Ca2+]L measurements (see above). Furthermore, mitochondrial Ca2+ buffering is also
weakened in diabetic neurones as discussed below.
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Mitochondrial dysfunction in diabetes
Mitochondrial depolarisation in diabetes—In cultured endothelial cells it has been
shown that high intracellular glucose concentration drives excessive electron donation to the
electron transport chain in mitochondria resulting in mitochondrial hyperpolarisation and
elevated production of ROS [1,2]. This mitochondrial-dependent process has been proposed
as a central mediator of oxidative stress in complications of diabetes [1]. The theory suggests
that high concentrations of glucose in tissue targets for diabetic complications leads to
increased supply of NADH in the mitochondria and that this increased electron availability
and/or saturation may cause partial reduction of oxygen to superoxide radicals in the proximal
part of the electron transport chain. Subsequent large elevations in ROS then induce
degeneration of tissue. However, our work and studies by others show that in adult sensory
neurones from STZ-diabetic rats the mitochondrial inner membrane potential is depolarized,
not hyperpolarised [69–72]. Our experiments on perikarya of acutely isolated sensory neurones
also show that mitochondrial depolarisation in STZ-diabetes could be prevented by systemic
treatment with low dose insulin or NT-3, further questioning a central role for high glucose
concentration in mitochondrial dysfunction in diabetes [70,71].

Fig. 2 presents preliminary data demonstrating that depolarization of the mitochondrial inner
membrane is also occurring in the axons of sensory neurons from diabetic animals. Adult
sensory neurones were cultured for 1 day from age matched and 3–5 month STZ-diabetic rats
and then loaded with tetramethylrhodamine methyl ester (TMRM) and the dye used to detect
mitochondrial membrane depolarisation in sub-quench mode [73]. The results show that axons
of normal neurons underwent a much more rapid rate of mitochondrial depolarisation
subsequent to addition of the uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone
(FCCP). This suggests that prior to addition of FCCP the axonal mitochondria were more highly
polarized than their diabetic neuron counterparts.

Studies in cultured embryonic sensory neurones demonstrate that high glucose concentration
causes a chronic mitochondrial depolarization followed by apoptosis [74]. It should be noted
that high glucose concentrations do not kill embryonic neurones permitted to mature in vitro
or adult sensory neurones (even when exposed for 4 weeks at 50 mM glucose in vitro) [64,
75,76]. In addition, there is no evidence of major mitochondrial structural abnormalities in
neurones/axons or neuronal cell death in ganglia in human diabetic sensory or autonomic
neuropathy [13,77]. In rodent models of type 1 diabetes there is evidence of small unmyelinated
neurone cell loss but no positive information supporting the presence of apoptosis or abnormal
mitochondrial structure within the DRG [78–81]. However, recent studies on neurones isolated
from diabetic rats demonstrate that axonal growth and morphology can be impaired by high
[glucose] due to an elevation in oxidative stress that results in axonal degeneration but not cell
death [64]. Whether, the glucose-induced pathology is the result of a mitochondrial-related
pathway triggering oxidative stress remains unknown.

Impaired mitochondrial Ca2+ buffering—The high membrane potential of the
mitochondrial membrane is also responsible for maintaining a continuous and important link
between cytosolic Ca2+ and mitochondrial function. The electronegativity versus cytosol build
up on the mitochondrial membrane provides an electro-driving force which pushes Ca2+ ions
through the mitochondrial Ca2+ channel, generally referred to as the Ca2+ uniporter [82,83].
Increases in [Ca2+]i, and specifically stimulus-driven generation of localised [Ca2+]i
microdomains, which can be formed in the vicinity of mitochondria either by plasmalemmal
Ca2+ entry or Ca2+ release from the ER lead to Ca2+ influx into the mitochondrial matrix
[84–86]. This Ca2+ influx generates mitochondrial Ca2+ signals, which control activity of
enzymes of the tricarboxylic acid (TCA) cycle, thus regulating ATP synthesis ([87,88] for
reviews). Conceptually, these mitochondrial Ca2+ signals couple cellular activity with energy
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generation. Termination of mitochondrial Ca2+ signals are associated with slow Ca2+ release
through the Na+/Ca2+ exchanger.

Sensory neurones of STZ-diabetic rats simultaneously develop depolarisation of the
mitochondrial inner membrane in the perikarya and axon. Importantly, a rise in resting
[Ca2+]i to 200 nM (which is seen in diabetes) can trigger elevated mitochondrial Ca2+ buffering
(a rise in [Ca2+]m) by entry of Ca2+ through the Ca2+ uniporter and other routes [83,89–92],
which causes partial or complete inner mitochondrial membrane depolarisation [93]. Plasma
membrane depolarisation-induced Ca2+ transients are prolonged in diabetic neurones and
blockade of mitochondrial uptake of Ca2+ using the mitochondrial uncoupler, carbonyl cyanide
m-chlorophenylhydrazone (CCCP), prevented these abnormalities [39]. This implies,
indirectly, that mitochondrial buffering of Ca2+ plays a role in shaping Ca2+ transients in
diabetic neurones.

Mitochondrial dysfunction and Ca2+ dyshomeostasis can be prevented by insulin and
neurotrophic factors

Both alterations of Ca2+ homeostasis and mitochondrial membrane depolarisation in adult
sensory neurones occur early (3 – 14 weeks) in experimental type 1 (STZ) and type 2 (db/db)
diabetes and therefore can be identified as potential key steps in the development of sensory
neuropathy. The critical factor determining mitochondrial dysfunction is not hyperglycaemia
but absence of insulin-dependent neurotrophic support. This was shown in both in vivo and in
vitro experiments [70,72]. Treatment of healthy cultured DRG neurones with 1 nM of insulin
for 6 – 24 hours significantly raised the mitochondrial membrane potential compared with
insulin-free cultures and increased the levels of ATP production. At the same time, treatment
of cultures with 50 mM glucose in the presence of insulin caused no effect on the mitochondrial
inner membrane potential [72]. Similar results were obtained in the in vivo system, where STZ-
diabetic rats were treated with very low insulin concentrations that provided background insulin
at a dose that did not affect hyperglycaemia [70]. Insulin was administered as a slow release
implant for the final 7 weeks of the study and did not alter blood glucose, blood glycated
haemoglobin or nerve sugar and polyol levels. At the same time, insulin therapy completely
normalised mitochondrial membrane polarisation and levels of resting [Ca2+]i. Importantly,
this treatment also normalised sensory and motor nerve conductance velocities. Mitochondrial
polarisation and Ca2+ homeostasis in sensory neurones from STZ-diabetic animals can also be
normalised by treatment with the neurotrophic factor, NT-3 [41,71]. Support for a primary role
for insulin deficiency in the pathogenesis of type 1 diabetic neuropathy also comes from
experiments in which STZ-diabetic animals have been treated locally or systemically with low
doses of insulin that do not alter the hyperglycaemic state. Local delivery of insulin to the spinal
cord at the lumbar level (by the intrathecal route) or peripheral nerve (by local mini-osmotic
pump) or by intranasal delivery improves SNCV and MNCV, and epidermal nerve fiber density
in STZ-diabetic rodents [94–97].

Further experiments have identified the key role of phosphoinositide 3-kinase (PI 3-kinase)
and protein kinase B (or AKT - see [98]) in regulation of mitochondrial membrane potential
[72,99]. This pathway is regulated, in part, by plasmalemmal receptors to insulin (comprising
insulin receptor subunits α and β expressed in DRG neurones) and neurotrophin receptors. The
involvement of PI-3/AKT system was directly demonstrated in DRG neurones treated with a
specific inhibitor of PI 3-kinase (LY294002), which significantly inhibited insulin- and
neurotrophin-dependent up-regulation of mitochondrial membrane potential and the insulin-
dependent increase in ATP levels [72,99].
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Role of calcium in painful peripheral neuropathies
Background

Neuropathic pain, defined as pain arising from nerve injury, is a widespread condition that
impedes quality of life and can be present in 5% or more of the general population [100]. The
initiating nerve injury can have diverse origins and may not always be obvious. Direct lesions
to nerves, such as those incurred during amputation, during compression by adjacent cancers
or other injuries and by infection of nerves by viruses can induce long lasting pain states that
persist beyond the initiating injury. Neuropathic pain is also associated with more insidious
systemic disorders that cause peripheral neuropathies, such as are seen in diabetes, nutritional
disorders, exposure to neurotoxins (either accidentally or as a side-effect of therapeutics) and
malfunctions of the immune system. The pain syndrome produced may be intermittent or
persistent, evoked by external stimuli or apparently spontaneous and can be experienced as a
variety of different sensations. This lack of specificity may suggest that the mechanisms that
promote neuropathic pain represent fundamental responses to nerve injury, irrespective of how
the injury was incurred. Unfortunately, potential mechanistic considerations are further
complicated by the unpredictability of neuropathic pain in a given population. For example,
the prevalence of neuropathic pain in diabetic patients is only 10–20% and pain is not always
associated with the presence of degenerative neuropathy or any other aspect of the diabetic
condition [101]. Consequently, the mechanisms that underlie neuropathic pain remain poorly
understood while current therapeutic approaches mostly treat symptoms rather than the
underlying pathogenesis.

Attempts to understand how nerve injury may promote neuropathic pain have largely relied
on a number of animal models in which some form of traumatic injury, such as crush,
transection or compression, is applied to peripheral nerves followed by behavioral evaluation
of limb responses to normally non-painful or painful (nociceptive) sensory stimuli [102].
Cleary, these lesions most accurately model neuropathic pain arising from acute physical nerve
injury and such studies have identified fundamental mechanisms of how sensory nerves
respond to trauma and also certain aspects of the injury response that can promote neuropathic
pain. There is still an evolving appreciation of the specific mechanistic features of each nerve
lesion model, while the extent to which they also model the pain of systemic diseases that cause
peripheral neuropathy and which represent the majority of clinical cases of neuropathic pain,
is less certain. Nevertheless, in the majority of both traumatic and disease-specific injury
models, damage to peripheral sensory nerves and subsequent primary afferent activity is widely
considered as the initiating event. In many cases, aberrant primary afferent activity may also
contribute to persistence of the pain state. Given the established role of neuronal Ca2+ fluxes
in axonal potential formation and neurotransmitter release by primary sensory neurons, the
potential for misfunction of Ca2+ regulation to contribute to neuropathic pain has become a
focus of attention in the search for targets for therapeutic interventions that prevent or alleviate
neuropathic pain [103].

Calcium dysregulation and primary afferent conduction
Many of the mechanisms that have been proposed to explain neuropathic pain involve increased
or enhanced activity of primary afferents as a means of initiating and sustaining the pain state.
This peripheral drive may derive from increased excitability of peripheral terminals and either
spontaneous activity or inappropriate local cross-excitation between adjacent axons in nerve
trunks or cell bodies in the DRG. Voltage activated sodium channels are a primary determinant
of axonal firing and blockade of voltage gated sodium channels is a well-established
mechanism of action of many local anesthetics. Consequently, delivery of low doses of the
local anesthetic lidocaine to depress excessive primary afferent activity without blocking
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sensory function has become an accepted approach to treating some forms of neuropathic pain
[104].

Excitability of sensory neurons is also modulated by rapid changes of intracellular Ca2+ levels
that are mediated by a variety of pumps and channels [105]. Low voltage activated T-type
Ca2+ channels (designated as the Cav3.2 sub-type) are located on primary afferent terminals
and cell bodies and their role in shaping the action potential and regulating neuronal firing
patterns offers a particularly appealing target for modulating neuronal excitability. Inhibiting
T-type Ca2+ channel activity, initially using non-selective antagonists [106] and more recently
by depressing Cav3.2 expression [107,108], has been shown to alleviate indices of neuropathic
pain in a variety of nerve injury models. Reducing T type Ca2+ channel activity is also effective
in animal models of painful peripheral neuropathy induced by chemotherapeutic agents [109]
and diabetes [110]. Moreover, enhanced T -type Ca2+ channel mRNA and currents have been
reported in small and medium sized sensory neuron cell bodies of diabetic rats and mice
[110,111], suggesting that over expression of these channels may contribute to the underlying
mechanism of painful diabetic neuropathy.

Calcium dysregulation and neurotransmitter release
Primary afferent input to the spinal cord involves release of excitatory neurotransmitters from
central terminals that project into the dorsal horn. Many models of neuropathic pain incorporate
spinal sensitization in response to increased primary afferent activity as a mechanism of
maintaining a persistent pain state after peripheral input to the spinal cord has subsided [112].
This is a particularly appealing hypothesis when trying to model the pain of degenerative
peripheral neuropathies, such as those caused by diabetes or chemotherapies, that often
progress towards of loss of peripheral sensory function while retaining a painful component.
The trigger for excitatory neurotransmitter release from primary afferents is arrival of the action
potential, local membrane depolarization and subsequent activation of high voltage activated
Ca2+ channels. Influx of Ca2+ initiates docking of vesicles containing excitatory
neurotransmitters and modulators such as glutamate, substance P and CGRP with the
presynaptic membrane and release of these molecules into the synapse. Blocking Ca2+ influx
to the presynaptic terminal is therefore a logical approach to preventing peripheral input to the
spinal cord. Indeed, part of the mechanism by which opiates block pain perception is by
inhibiting the pre-synaptic influx of Ca2+into small sensory neurons via activation of the G
protein coupled opioid receptors [113]. However, use of opiates to manage neuropathic pain
requires delicate dose titration in order to minimize loss of normal pain perception mechanisms
and is also fraught with problems such as tolerance and the unwanted side effects that arise
from the widespread distribution of opioid receptors.

The high density of the neuron-specific high voltage activated N type Ca2+ channel (Cav2.2
sub-type) on the central terminals of primary afferents [114] suggests an alternative target for
blocking neurotransmitter release from these neurons that also offers a degree of selectivity.
Selective small peptide inhibitors of N type channels have been identified in cone snail venoms
[115] and a number of these conotoxins were shown to block pain perception in rats, albeit
with dose-dependent induction of other neurological side effects that presumably reflects the
distribution of the N type Ca2+ channel beyond primary afferent terminals [116]. The lack of
tolerance to repeated conotoxin-induced block of N type Ca2+ channels [116] confers a
potential clinical advantage over opioids and both conotoxins and small molecule mimetics
have been developed for use in chronic pain states [117]. There have been relatively few studies
of the therapeutic potential of blocking N type Ca2+ channels in animal models of neuropathic
pain induced by systemic disease. Intrathecal delivery of a conotoxin alleviated hyperalgesia
in a mouse model of vincristine-induced hyperalgesia, [118] and indices of painful neuropathy
in diabetic rats were ameliorated by spinal delivery of a conotoxin, as well as by other agents
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that impede Ca2+-mediated neurotransmitter release such as opioid and α2 adrenoceptor
agonists [119]. N type Ca2+ currents have been reported as being exaggerated in primary
sensory neuron cell bodies of diabetic rats, possibly as a result of a loss of G-protein coupled
receptor-mediated restraint [120,121]. This may indicate a pathogenic mechanism for painful
diabetic neuropathy, although subsequent studies suggest that diabetes does not increase
expression of the α1B sub-unit of the N type Ca2+ channel in primary afferent cell bodies
[122,123]. Interestingly, the same studies reported that diabetes did up-regulate mRNA for
sub-units associated with other high voltage activated Ca2+channels (L and P/Q types), changes
that if translated to altered Ca2+ currents, could exaggerate release of excitatory
neurotransmitters [124]

Calcium dysregulation and signal transduction
Aside from direct effects on membrane excitability and neurotransmitter release, altered
intracellular Ca2+ levels have the potential to disrupt many cellular events that could indirectly
contribute to neuropathic pain states, including regulation of the voltage activated Ca2+

channels themselves [125]. Steady state cytoplasmic Ca2+ levels are elevated in peripheral
neurons of rodent models of diabetic neuropathy [41,126,127], most likely due to a impaired
regulation of Ca2+ homeostasis by pumps in the cell membrane, ER and mitochondria that are
discussed above in the context of degenerative diabetic neuropathy. Systemic delivery of agents
intended to restore neuronal Ca2+ homeostasis have been reported to ameliorate indices of
hyperalgesia in models of chemotherapeutic-induced neuropathy [128] and painful diabetic
neuropathy [129–131], although the location and precise mechanisms of action remain to be
determined.

Chronic dysregulation of Ca2+ homeostasis leading to elevated cytoplasmic Ca2+

concentrations has the potential to impact many aspects of sensory neuron function that
promote aberrant pain sensations. Impaired Ca2+ homeostatic mechanisms at peripheral
terminals of primary afferents could contribute to peripheral sensitization in which ligand
binding at the terminal promotes intracellular signaling cascades [132]. For example, a
neuropathic pain state induced by antiretroviral drugs used to treat HIV may be ameliorated
by delivery to either the peripheral or central terminals of drugs that diminish the raised
[Ca2+]i [133]. Beyond the central terminals of primary afferent, there is also evidence of
elevated cytoplasmic calcium and impaired intracellular Ca2+ responses to external stimuli in
post-synaptic neurons of the dorsal horn [134,135]. As many of the consequences of synaptic
activity, including modulation of synaptic plasticity and central sensitization mechanisms, are
mediated by Ca2+ [112], there are many as yet largely unexplored potential mechanisms by
which Ca2+ dysregulation may contribute to neuropathic pain at the PNS, spinal cord and higher
CNS. Moreover, it is becoming clear that glial cells of the nervous system also play roles in
central maintenance of neuropathic pain, including in models of diabetes [136,137]. The
potential of dysfunctional Ca2+ signaling in glial cells to promote neuropathic pain awaits
detailed study.

Use of calcium modulators to treat neuropathic pain
The complexity and variability of neuropathic pain syndromes in patients makes treatment a
largely phenomenological march through the pharmacopeia of approved drugs that balances
efficacy with side effect profile [138]. That a number of the current and emerging drugs for
neuropathic pain target aspects of neuronal Ca2+ regulation [139] emphasizes the potential
importance of dysfunctional cell Ca2+ regulation in the genesis of neuropathic pain. Zirconotide
(Prialt), an N type Ca2+ channel blocker, is approved to treat chronic pain [140], but
unfortunately has restricted use as it is a conotoxin peptide that has to be delivered spinally.
As yet, no selective inhibitor of T type Ca2+ channels has yet been developed for clinical use
against neuropathic pain. However, recent experimental studies suggest that lipoic acid, which
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is used to treat painful diabetic neuropathy [141] and lipoamino acid, which shows anti-pain
properties in animals [142], may act by blockade of the T type Ca2+ channel [143,144]. Finally,
the widespread clinical use of gabapentin (Neurontin) and the gabapentin derivative pregabalin
(Lyrica) to treat neuropathic pain [103,139] provides further illustration of the potential of
modulating Ca2+ currents. Gabapentin was originally developed as an antiepileptic, but was
also noted to produce pain relief in diabetic patients with peripheral neuropathy [145]. Efficacy
was subsequently demonstrated in many animal models of neuropathic pain, including diabetes
[146,147] but only in those where nerve injury was associated with upregulation of the α2δ1
sub-unit of voltage activated Ca2+ channels [148]. The α2δ1 sub-unit binds a range of α1 sub-
units, with binding causing an increase in current density and acceleration of activation/
inactivation kinetics. It has become accepted that the anti-neuropathic pain effects of
gabapentin are related to its ability to prevent an increase in α2δ1 sub-units in the plasma
membrane following nerve injury [149] and recent studies indicate that the gabapentin
derivative pregabalin prevents transport and membrane insertion of the α2δ1 sub-unit to
neuronal terminals, thereby likely impeding any injury-induced increase in local Ca2+ currents
that could promote neuronal sensitization [150].

The widespread use of gabapentin to treat many forms of neuropathic pain appears to validate
the targeting of Ca2+ channels and pumps as therapeutic approach. Current challenges for drug
development programs include more precise targeting of agents to reduce side effect profiles
and the separation of anti-neuropathic pain versus anti-nociceptive actions, perhaps by
producing agents with use-dependent inhibitory properties.

Summary and proposal of a calcium-centric mechanism of diabetic
neuropathy

In the periphery, diabetes almost invariably affects sensory pathways resulting in symmetrical
sensory neuropathy. Initially, diabetes diminishes nerve conduction velocity and diabetic
patients may also experience various symptoms ranging from pain, altered sensation and
impairment of reflexes. The cellular and molecular pathophysiology of diabetic
polyneuropathy remains controversial and several pathways associated with hyperglycaemia,
including polyol pathway flux [151,152], oxidative stress [153], protein glycosylation [154]
have been suggested. In addition the role of impaired neurotrophic support has also been
considered [20,22].

We now propose an alternative mechanism for the initiation of diabetic neuropathy, which is
associated with early alterations of mitochondrial function and cellular Ca2+ homeostasis that
are not directly driven by hyperglycaemia, but rather produced by impaired signalling cascades
controlled by insulin receptors and neutrotrophic factors. Based on the results discussed above,
we suggest that the initial pathogenesis of diabetic neuropathy is centred on reduced stimulation
of insulin receptors. This triggers mitochondrial dysfunction and decreased ATP production.
In turn, diminished ATP support affects Ca2+ homeostatic mechanisms, most profoundly
altering plasmalemmal and ER Ca2+ pumps. Indeed, expression of the latter is also reduced by
a so far unidentified mechanism [63]. A decrease in ER Ca2+ uptake lowers the intra-ER
Ca2+ concentration, thus inducing mild but not chronic conditions of ER stress. The ER stress
in turn affects protein synthesis, posttranslational modification and trafficking, which in turn
diminishes the supply of voltage-gated channels to the axons, thus resulting in the decrease of
nerve conduction velocity. These pathophysiological processes may occur more readily in the
axon. This initial step is further exacerbated during progression of the disease, when other
mechanisms associated with chronic hyperglycaemia come to the fore, resulting in severe
sensory dysfunction and degenerative neuropathy.
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Figure 1. Axonal Ca2+ signals are abnormal in neurons cultured from STZ-diabetic rats compared
with age-matched control
Transient ER Ca2+ release and extracellular Ca2+ influx were induced by treatment with 20
mM caffeine or 40 mM KCl, respectively, in axons of adult lumbar DRG neurons cultured for
3 days from 4–5 month STZ-diabetic and age-matched control rats using Fluo4-AM Ca2+ ion
detector. A: Real-time confocal images at X100 of the free Ca2+ ion at baseline and ER Ca2+

release subsequent to 1 sec of 20 mM caffeine treatment using a perfusion system. Cells were
grown in Hams F12 defined medium with N2 additives (without insulin). Control neurons were
treated with 10 mM D-glucose and 10 nM insulin and diabetic neurons exposed to 25 mM D-
glucose and no insulin. Bar = 20 µm. B: Traces of Fluo4-AM fluorescence intensity level and
bar chart of the area under the curve reflect the quantification of the ER Ca2+ release in response
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to 20 mM caffeine. Red arrow indicates point of caffeine addition. **P<0.01. C: Results with
40 mM KCl treatment. Values are means ± SEM, ***P<0.001, n=6–13 axons.
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Figure 2. The mitochondrial membrane in the axons of normal neurons show greater levels of
FCCP-induced depolarization compared with neurons from diabetic rats
A: Fluorescence video confocal microscopy of mitochondria in live cultures of sensory neurons
of dorsal root ganglion (DRG) isolated from adult age matched or 4–5 month STZ-diabetic
rats. DRG neurons were cultured in defined Hams F12 media supplemented with N2 additives
(no insulin) and 10 mM D-glucose (control; with 10 nM insulin) or 25 mM D-glucose (diabetic)
for 24hr. Relative levels of mitochondrial inner membrane potential were determined by
staining neurons with 3 nM tetramethyl rhodamine methyl ester (TMRM; Molecular Probes,
Eugene, OR) for 1 hr and detecting the fluorescence signal with a Carl Zeiss LSM510 confocal
microscope. FCCP was injected into the culture media to a final concentration of 2 µM at 5
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min following baseline fluorescence measurements. B: Quantification of TMRM fluorescence
levels in sub-quench mode (where decreased fluorescence intensity indicates reduced
mitochondrial inner membrane potential) in the axons of cultured DRG neurons. The black
arrow shows FCCP injection. Values are means ± SEM, n= 65–85 axons, *P < 0.001, Students
t-test.
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