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Summary
The prospect of establishing serum metabolomic profiles offers great clinical significance for its
potential to detect human lung cancers at clinically asymptomatic stages. Patients with suspicious
serum metabolomic profiles may undergo advanced radiological tests that are too expensive to be
employed as screening tools for the mass population. As the first step to establishing such profiles,
this study investigates correlations between tissue and serum metabolomic profiles for squamous cell
carcinoma (SCC) and adenocarcinoma (AC) in the lungs of humans. Tissue and serum paired samples
from 14 patients (five SCCs and nine ACs), and seven serum samples from healthy controls were
analyzed with high-resolution magic angle spinning proton magnetic resonance spectroscopy
(HRMAS 1HMRS). Tissue samples were subjected to quantitative histological pathology analyses
after MRS. Based on pathology results, tissue metabolomic profiles for the evaluated cancer types
were established using principal component and canonical analyses on measurable metabolites. The
parameters used to construct tissue cancer profiles were then tested with serum spectroscopic results
for their ability to differentiate between cancer types and identify cancer from controls. In addition,
serum spectroscopic results were also analyzed independent of tissue data. Our results strongly
indicate the potential of serum MR spectroscopy to achieve the task of differentiating between the
tested human lung cancer types and from controls.
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Introduction
Despite extensive research and clinical efforts toward the prevention and management of lung
cancer in the past decade, the prognosis remains unchanged. It is still the leading cause (more
than 28%) of cancer death for both men and women in the United States, killing more people
than breast, prostate, colon, and pancreatic cancers combined [1]. More alarmingly, data shows
that most lung cancers are diagnosed at late, symptomatic stages, resulting in the deaths of
more than 75% of patients who develop lung cancer; the same ratios for breast and prostate
cancers are less than 22% and 15%, respectively [1]. It is commonly accepted that this grave
reality is the result of a lack of early screening tests for lung cancer at asymptomatic stages for
the general population, and the vast majority of patients seeking medical advice only after the
presence of symptoms demonstrating locally advanced or metastatic disease. For this reason,
any significant change in the distribution of the patient population achieved with advancements
in lung cancer screening may have profound impacts on the reduction of cancer death rates
[2].

Diagnostic radiology techniques, such as CT and FDG-PET, have shown abilities to identify
cancerous lesions in the lung. However, in addition to a number of technical inhibiting factors,
the most daunting roadblock preventing these tests from being incorporated into the annual
physical examinations of general public is their high cost, which effectively prohibits their
usage as screening tools under any healthcare system. Thus, currently these tests are only
provided to symptomatic patients whose diseases tend to be at late, metastatic stages where
treatment is rarely curative in nature [3-8].

Recent developments in molecular biology, particularly in cancer genomics, proteomics, and
metabolomics, have renewed hopes in discovering blood-borne molecular markers for lung
cancer early detection. Cancer metabolomics, the study of the global variations of metabolites
and metabolic profiles under the influence of oncological developments and progressions, may
present potential and promising markers in cancer detection. Such markers have demonstrated
better sensitivity in revealing malignant status than those measured with morphology-based
tissue pathology [9]. At present, for technical and historical reasons, the majority of
metabolomic studies on cancer are accomplished using magnetic resonance spectroscopy
(MRS).

The ultimate aim of our study is to establish serum metabolomic profiles for human lung cancer
that may have the sensitivity to indicate the potential existence of clinically asymptomatic lung
cancer in a screened individual and therefore direct the patient to further, more comprehensive
medical testing. To achieve this aim, we designed the first phase of the study by using high-
resolution magic angle spinning (HRMAS) proton MRS to investigate the correlations between
tissue and serum metabolomic profiles simultaneously measured for the same patients of lung
squamous cell carcinoma (SCC) and adenocarcinoma (AC). With sera from healthy controls,
we measured the potential of these serum profiles to differentiate between these two cancer
types, and from controls.

Materials and Methods
Tissue protocol

Paired tissue and serum samples from 14 patients without identifiers who underwent surgical
treatment at the Massachusetts General Hospital (five SCCs and nine ACs) and serum samples
from seven control subjects were acquired from the Harvard/MGH lung cancer susceptibility
study repository at the Harvard School of Public Health approved by the MGH and Harvard
School of Public Health IRBs for molecular and genetic analyses of human lung cancer.
Detailed information of patients and control subjects are listed in Table 1. Although relationship
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with smoking status are not the focus of the current study, smoking status for the analyzed
patients and control subjects are also listed in the table. Tissue samples were snap-frozen at
the time of surgery and stored at −80°C. A serum sample was drawn on or just before the day
of surgery, and samples were unaltered and remained frozen until spectroscopic measurements
were carried out.

HRMAS Proton MRS
MR experiments were carried out on a Bruker (Billerica, MA) AVANCE spectrometer
operating at 600 MHz (14.1T). A 4 mm zirconia rotor was used with Kel-F plastic inserts which
created a spherical sample space of ∼10 μl located at the center of the detection coil. For tissue
samples, approximately 10 mg were used, while for sera, 10 μl were injected in the rotor. For
both tissue and sera, 1.0 μl of D2O was added into the rotor for 2H field locking. All
spectroscopic measurements were carried out at 4°C for better tissue metabolite preservation.
The rotor-spinning rate was regulated by a MAS controller (Bruker), and verified by the
measurement of inter-SSB distances from spectra with an accuracy of ±1.0 Hz. A repetition
time of five seconds and 128 transients were used to acquire each spectrum.

Spectra were collected with a spinning rate of 3600 Hz, with a rotor-synchronized CPMG filter
to reduce broad resonances associated with probe background and/or macromolecules. Three
hundred sixty CPMG cycles were applied, with one π-pulse between two rotor cycles in each
CPMG cycle to result in a filter time of 200 ms.

Spectroscopic data were processed with Nuts software (Acorn NMR Inc. Livermore, CA)
according to the following procedures. All free induction decays were subjected to 1Hz
apodization before Fourier transformation, baseline correction, and phase adjustments of both
zero and first order. Resonance intensities reported here represent integrals of curve-fittings
with Lorentzian-Gaussian line-shapes normalized by the total spectral intensities measured
between 0.5 and 4.5 ppm. After curve-fittings of the 28 spectra from the 14 pairs of samples,
without any knowledge of tissue pathology, 40 spectral regions were selected for their
presentation in the majority of the spectra. Twenty-one spectral regions that presented
quantifiable resonances (signal-to-noise ratios above four) in both tissue and serum spectra
with no more than one missing spectral data point were defined as spectral regions of interest
and subjected to further statistical analyses. Details of the intensities of these regions for each
sample can be found in Supplemental Data I.

Histopathology
After spectroscopic analyses, tissue samples were fixed in formalin, embedded in paraffin, cut
in 5 μm sections, and stained with hematoxylin and eosin. Sets of serial-sections cut 100 μm
apart were obtained from each sample. Volume percentages of histological features (cancer,
stroma, necrosis, lymphatic structures, and cartilage) were analyzed by a pathologist and
quantified from images with an Olympus BX41 Microscope Imaging System (Melville, NY),
in conjunction with the image analyzer SoftImaging-MicroSuite™ (Lakewood, CO) [10].

Statistical Analysis
The aim of the present work was to identify serum metabolomic profiles that can distinguish
cancer types and differentiate cancer from controls. The study is designed in two phases: serum
profiles established with and without tissue analyses. First, tissue metabolomic profiles that
could differentiate between cancer types were determined according to tissue pathologies, and
the structures of these profiles were then applied to serum spectral data to produce serum
profiles; and second, serum spectral data from cancer patients were also analyzed independent
of tissue results to generate another set of serum metabolomic profiles. To construct these
metabolomic profiles, the metabolite matrices were subjected to statistical data treatment –
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principal component analysis (PCA) to reduce the dimension of spectral data matrices of tissue
and serum, respectively.

The hypothesis that different pathological features possess different metabolite profiles can be
tested for correlations with pathologies by using linear regression analysis and Student's T-test
against these PCs. Discriminant analyses of PCs showing correlations of or close to statistical
significances (p<0.05) were included in canonical analysis aimed to achieve the maximum
separation between the two cancer types measured from tissue samples. The coefficients
obtained from both PCA and canonical analysis of tissues were then applied to serum spectral
data, including those of controls. The resulting values of these calculated serum profiles were
analyzed for their ability to differentiate SCC from ACs with accuracy evaluated by receiver
operating characteristic (ROC) curves, and differentiating cancer from controls by ANOVA.

Canonical analysis of PCs obtained from PCA of cancer patient serum spectral data
independent of tissue analysis involved the first n PCs of eigenvalue ≥ 1.0. The aim of the
canonical analysis was to produce another set of serum metabolomic profiles that could
separate the two tested cancer types based only on serum data without collaboration of tissue
analysis. The coefficients obtained from both PCA and canonical analysis of cancer sera were
applied to serum spectral data of controls. Finally, the combination of serum profiles calculated
both with and without collaborations of tissue analysis was analyzed by nominal logistic
regression to generate linear discriminant functions to differentiate between two cancer and
one control serum groups. Statistical analyses were carried out using SAS-JMP (Cary, NC).
Flowcharts are presented in Figure 1 to assist visualization of the study design and analytical
procedures.

Results
Intact lung tissue and serum spectra and histopathology

Figure 2 represents the HRMAS MR spectra obtained with intact tissues and paired sera of the
same patients of SCC and AC. The images of tissue histopathology obtained from the exact
tissue samples after the measurements of the presented spectra are also shown in the figure.
From these images, tissue pathologies were quantified.

Principal component analysis
PCA calculations were carried out with the aforementioned 21 spectral regions identified from
spectra exemplified in Figure 2. The means and standard deviations for tissue groups (SCC
and AC) and serum groups (SCC, AC, and control) calculated from Supplemental Data I are
plotted in Figure 3. Detailed information of the resulted principal components is provided in
Supplemental Data II for both tissue and serum.

Generating serum metabolomic profiles from paired tissue results
Evaluating the PCs obtained from PCA of cancer tissues, we noticed the potential powers of
PCs 1, 2, 7, and 12 to differentiate SCC from ACs and correlate with pathological features, as
shown in Table 2. While some of the tested relationships were statistically significant, defined
as p < 0.05, others could only be defined as approaching this significance level.

Canonical analysis involving these four PCs (PC1, 2, 7, and 12) and the volume % of cancer
were calculated to reveal potential discriminants, as shown in Figure 4 (left, bottom) with
details listed in Table 3. In addition, the details of canonical analysis data can be found in
Supplemental Data III. The metabolomic profile thus obtained as a canonical score can
differentiate tissue samples between the two tested cancer groups with an overall accuracy of
96% according to the ROC curve inserted in Figure 4 (left, top). By applying the coefficients
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established through tissue PCA and canonical analysis to the spectral data of serum samples
from 14 lung cancer patients and seven controls, we observed a statistically significant
differentiating power of ANOVA p<0.0001 among the three serum groups. These serum
metabolomic profiles can differentiate between two tested cancer groups with an overall
accuracy of 89%, as shown in Figure 4 (right, top), as well as differentiate them from the
healthy controls, as detailed in Table 4. Comparing the canonical scores, it is apparent that for
tissues and sera, shown in the bottom of Figure 4 at left and right, respectively, the score values
for AC tissues are higher than those for SCC. But for the score values for sera calculated with
the coefficients obtained from tissues, the opposite is observed. This reversal of profile values
can only be the result of the differences in the metabolomic distributions between tissues and
sera in the two tested cancer groups. This difference, although still not fully understood based
on the currently available data, we tested and found it to be unrelated to the volume % of cancer
measured in tissues. Our results show a linear relationship (r2=0.863, p<0.0001) between tissue
score values presented in Figure 4 (left, bottom), with inclusions of volume % of cancer, and
score values calculated with the same coefficients (from Table 4a) but excluding the term of
the volume % of cancer.

By including multiple PCs in the canonical analyses, the final coefficients (combining
coefficients both from PCA and canonical analysis) related to the standardized metabolite
intensities may be evaluated to disseminate the degrees of contributions of various metabolites.
From such evaluations, we found that the intensity changes in taurine (∼3.42 ppm), myo-
inositol (∼3.52 ppm), phosphorylcholine (∼3.22 ppm), glutamate (∼2.33-2.35 ppm), lactate
(∼1.33 ppm) and possible combinations of resonance contributions from various metabolites
at ∼3.7 ppm might have the most effect in structuring the discriminants. A histogram plot of
the final coefficients for all 21 regions is shown in Figure 5a.

Generating serum metabolomic profiles from serum spectral data
In addition to the above procedures of constructing lung cancer serum metabolomic profiles
through the discovery of lung cancer tissue metabolomic profiles, lung cancer serum
spectroscopic data can be analyzed independent of tissue results to discover cancer specific
profiles.

We analyzed the above-mentioned 21 metabolic intensities measured from the 14 lung cancer
serum samples with PCA. Because no additional pathological or clinical data can be used to
evaluate these resulting PCs, by using 1.0 as the threshold of the eigenvalue for PC selections,
we include the first seven PCs for further analysis (cf. Table 2b). Canonical analysis using
these seven PCs resulted in a score that can separate SCCs from ACs with statistical
significance (p<0.0001, cf. Table 5, where p=0.0173). Results of the analysis are listed in Table
3, with the details of canonical analysis data included also in Supplemental Data III, and a
histogram plot of the final coefficients for all 21 regions is shown in Figure 5b.

We tested the utility of the resulting score obtained from these 14 serum samples from cancer
patients on the seven control sera. We calculated the scores for these controls with coefficients
of PCA and canonical analysis obtained from cancer sera and obtained a much better
differentiation, i.e. less overlaps, between controls and ACs (p<0.0005, cf. Table 5, where
p=0.0012). More interestingly, by combining the lung cancer tissue-derived serum profile in
Figure 4 with the current independently obtained serum profile, we obtained differentiation
among the three tested serum groups on a two dimensional plot with statistical significance
(p<0.0001) based on nominal logistic regression analysis, as shown in Figure 6, where the
nominal logistic regression equations for each group are presented in the figure. While there
were still some minor overlaps among groups, the separations among these groups were clearly
presented by three linear discriminant functions shown in the figure.
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Discussion
The strength of the study design is the direct comparison of paired tissue and serum
metabolomic profiles obtained from the same lung cancer patients, as shown in Figure 4,
through paired t-test with tissue and serum results for each case. To achieve the aim of
establishing discriminating serum metabolomic profiles, tissue metabolomic profiles
calibrated by tissue quantitative pathologies were used as the first step of approximation.

The benefits of utilizing the HRMAS method to measure serum samples are multifold.
Scientifically, although they are liquids, sera containing macromolecules are not aqueous
solutions in the classical-NMR sense and produce spectra of low resolution similar to those of
intact tissue samples. To obtain high resolution spectra for sera without using HRMAS,
ultrafiltrations and more than 500 μl samples were required to produce a meaningful spectrum
[11]. However, the use of HRMAS on untreated serum samples has reduced the required sample
size to 10 μl native sera and eliminated possible losses of original metabolites during treatment
procedures.

In a PCA calculation, PCs are required to be independent. This requirement may not reflect
the actual underlying pathological processes where changes in different metabolites are
interconnected. For this reason, canonical analyses involving multiple PCs that presented
variable degrees of associations with the observed disease pathologies were applied to discover
discriminants. In this study, we observed that by applying the sensitive discriminant structure
discovered from tissue analyses to serum data, the resulting discriminative powers with serum
data for different cancer groups and between cancer and controls held statistical significance.

As it is a preliminary study, the results presented here are confined by limitations. The number
of cases studied is very limited. Therefore, during the process of PC selection for canonical
analysis to generate canonical scores as tissue metabolomic profiles, we relaxed the level of
statistical significance (p<0.05). Furthermore, it is well understood that in any single medical
and biological test of empirical nature, while the results of the test may be able to differentiate
among the concerned groups with statistically significant differences, overlaps are common.
For this reason, it is often necessary to use multiple independent tests to form differential
diagnoses in medical practices. Such overlaps between sera from ACs and controls can be seen
in Figure 4. Because the aim of this project is to assess lung cancer risk in order to initiate
advanced radiological tests on at-risk groups without treatments causing morbidity, it can
afford to have a threshold of higher false-positive rates. However, the advantage of measuring
multiple metabolites to form various metabolomic profiles is that it may increase the
differentiation among groups and reduce such false-positive rates, as shown by combining
results from Figures 4 and 6, which shows overlaps between ACs and controls are greatly
reduced.

Finally, we wish to note that as a preliminary study of limited resources we are not able to
control and match many clinical, pathological and behavioral conditions. For instance, we
realized and are concerned by the fact that while our cancer populations are mostly current
smokers, our control cases are either non-smoking or former smokers. Although the potential
confounding effects of smoking towards serum metabolomic profiles are extremely important
and worthy for additional studies, our current observation of profile separations between SCC
and AC among smokers may somewhat alleviate such a concern.

Conclusion
We have demonstrated by simultaneously measuring tissue and serum metabolomic profiles
from human SCC and AC patients of lung cancer with the statistical assistance of PCA and
canonical analyses, we are able to establish metabolomic profiles that can differentiate between
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the tested cancer types and correlate these with the relative volumes of tumor in the sample.
Additionally, comparison of quantitative pathology and coefficients of malignancy observed
by spectroscopy of tissue with serum profiles leads to even greater discrimination between the
types of cancer.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Flowcharts illustrating the design of the study and its analytical procedures. In these charts
parallelograms indicate process/analyses, and rectangles represent input/output among which
rectangles with dashed outlines denote outputs in Chart A that will be the inputs in Charts B
and C.
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Figure 2.
Examples of HRMAS MR spectra of intact tissues and paired sera from the same patients with
either SCC or AC of the lung. The tissue histopathology images obtained from the tissue
samples after spectroscopic measurements are also presented. From these images, tissue
pathologies were quantified.
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Figure 3.
The means and standard deviations of metabolic intensities normalized by the total spectral
intensities measured between 0.5 and 4.5 ppm for tissue groups (SCC and AC) and serum
groups (SCC, AC, and control) calculated from Supplemental Data I. The 21 regions (in ppm
of chemical shifts) analyzed in the study are represented by letter A through U for: A,
4.14∼4.09; B, 3.93∼3.87; C, 3.86∼3.81; D, 3.78∼3.74; E, 3.73∼3.69; F, 3.66∼3.60; G,
3.56∼3.54; H, 3.53∼3.50; I, 3.45∼3.39; J, 3.26∼3.24; K, 3.23∼3.21; L, 3.20∼3.18; M,
3.04∼3.01; N, 2.46∼2.40; O, 2.39∼2.31; P, 2.15∼2.10; Q, 2.09∼2.03; R, 1.48∼1.45; S,
1.33∼1.31; T, 1.04∼1.02; and U, 0.96∼0.92.
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Figure 4.
Tissue metabolomic profiles can differentiate SCCs from ACs, and when applied to serum
spectra the resulting analogous serum profiles can differentiate between the sera of these
cancers and from controls. Canonical Score 1, obtained from discriminant calculation
conducted with PCs 1, 2, 7, and 12, and the volume % of cancer measured with tissue samples,
can discriminate SCC from AC with an overall accuracy of 96% shown in the tissue ROC
curve. Applying the coefficients of tissue canonical score 1 to serum spectral data, the resulting
serum metabolomic profiles can differentiate among SCC, AC and control (Ctrl) groups with
statistical significance (p < 0.0001) and an overall accuracy of 89%, as shown in serum ROC
curve. With AC, tissue profiles are higher than serum profiles (paired t-test: p < 0.004); with
SCC, the reverse appears with statistical significance (p < 0.014). The red close cycles and
vertical bars denote means and standard errors measured for the corresponding groups.
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Figure 5.
The final coefficients (combinations of eigenvectors obtained from both principal component
analysis and canonical analysis) for all 21 regions that result in lung cancer metabolomic
profiles differentiating SCC from AC. See Figure 3 for region labeling information.
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Figure 6.
Differentiations among three tested serum groups based on nominal logistic and linear
discriminant analyses of serum metabolomic profile presented as canonical scores calculated
based on profile coefficients obtained from tissue analyses (SPT) and using serum spectral data
independently (SP). Up-triangles represent ACs, down-triangles denote SCCs, and open-
circles are control sera. Nominal logistic regression equations for each group are presented in
the figure.
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Table 2

Summary of observed correlations and potential correlations between PCs and cancer pathologies.

PC1 PC2 PC7 PC12

T-Test (p=)

SCC vs. Adeno 0.027 0.149

Linear Regression Analysis (p=)

Cancer (All) 0.089

Stroma (All) 0.004

Necrosis (All) 0.001

Cancer (Adeno) 0.047

Stroma (Adeno) 0.039

Necrosis(Adeno) 0.095 0.072

Cancer (SCC) 0.073

Stroma (SCC) 0.082 0.066

Necrosis (SCC) 0.015
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Table 4

Summary of statistical significance of serum metabolomic results in differentiation between SCC, AC, and
healthy controls (Ctrl). Means and Standard Errors present values calculated from canonical scores for each
sample.

SCC AC Ctrl

Sample Size n= 5 9 7

Mean 1.741 0.173 -1.466

Standard Error 0.404 0.301 0.342

ANOVA p<0.0001

t-test: p<

AC 0.0173

Ctrl 0.0001 0.0012
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