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Abstract
Various methods have been used to quantify the kinematic variability or stability of the human spine.
However, each of these methods evaluates dynamic behavior within the stable region of state space.
In contrast, our goal was to determine the extent of the stable region. A 2D mathematical model was
developed for a human sitting on an unstable seat apparatus (i.e., the “wobble chair”). Forward
dynamic simulations were used to compute trajectories based on the initial state. From these
trajectories, a scalar field of trajectory divergence was calculated, specifically a finite time Lyapunov
exponent (FTLE) field. Theoretically, ridges of local maxima within this field are expected to
partition the state space into regions of qualitatively different behavior. We found that ridges formed
at the boundary between regions of stability and failure (i.e., falling). The location of the basin of
stability found using the FTLE field matched well with the basin of stability determined by an
alternative method. In addition, an equilibrium manifold was found, which describes a set of
equilibrium configurations that act as a low dimensional attractor in the controlled system. These
simulations are a first step in developing a method to locate state space boundaries for torso stability.
Identifying these boundaries may provide a framework for assessing factors that contribute to health
risks associated with spinal injury and poor balance recovery (e.g., age, fatigue, load/weight and
distribution). Furthermore, an approach is presented that can be adapted to find state space boundaries
in other biomechanical applications.

1. Introduction
Spinal instability is often associated with low back pain (Bergmark, 1989; Granata and
Orishimo, 2001; McGill, 2001; Dieën et al., 2003; Brown and McGill, 2005; Reeves et al.,
2007). Experiments using an unstable seat apparatus isolate motion of the lumbar spine and
are used to quantify torso stability (Cholewicki et al., 2000; Reeves et al., 2006; Tanaka and
Granata, 2007; Lee and Granata, 2008). Kinematic variability methods such as RMS distance,
ellipse area, and path velocity (Lee and Granata, 2008) as well as dynamic stability methods
such as stability diffusion (Cholewicki et al., 2000) and Lyapunov stability (Tanaka and

© 2009 Elsevier Ltd. All rights reserved
CORRESPONDING ADDRESS: Martin L. Tanaka Department of Orthopaedic Surgery, Wake Forest University School of Medicine
Medical Center Boulevard, Winston-Salem, NC 27157, USA Phone: (336) 716-6771 mtanaka@wfubmc.edu Fax: (336) 716-7310.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.
Conflict of Interest The authors declare that there are no conflicts of interest associated with this research.

NIH Public Access
Author Manuscript
J Biomech. Author manuscript; available in PMC 2011 March 22.

Published in final edited form as:
J Biomech. 2010 March 22; 43(5): 906–912. doi:10.1016/j.jbiomech.2009.11.006.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Granata, 2007; Lee and Granata, 2008) have been utilized. All of these methods have a common
attribute; each evaluates dynamic behavior within the stable region of state space. For unstable
sitting, the stable region of state space includes all possible configurations and velocities where
the person is able to maintain balance without falling over (i.e., the basin of stability). In some
cases, the amount of kinematic variability may be unimportant as long as the state of the system
remains within the basin of stability (Tanaka et al., 2009). The location and relative movement
of segments may be less important than whether movements remain within a safe envelope,
thereby avoiding excessive tissue strain. Since low back injury may be caused by relatively
extreme conditions associated with a loss of stability, a better understanding of the basin of
stability for the human spine and the neuromuscular control parameters that determine its extent
may lead to improved treatment and prevention of this debilitating medical condition.

In this paper, methods previously developed to determine the basin of stability in a single degree
of freedom mechanical model (Tanaka and Ross, 2009) are extended to higher degrees of
freedom. These methods are applied to a mathematical model of the “wobble chair”, a nonlinear
system that exhibits complex behavior due to strong coupling between two rigid segments.
Using this model, the basin of stability in the four-dimensional state space is estimated.

2. Methods
2.1 Anthropometric Parameters

The wobble chair (Figure 1) was modeled as a double inverted pendulum, with all motion
restricted to the sagittal plane. The lower body and chair formed the first segment, while the
second segment consisted of the head, arms, and torso. A pivot joint between the two segments
was located between the fourth and fifth lumbar vertebrae (Dieën et al., 2003). A segmented
model was developed to estimate the locations of the two segment centers of mass (COM) and
the intervening joint for an average human female. Individual body segments were modeled
using existing data (de Leva, 1996) for segment masses, COM locations, and radii of gyration.
Respective components of the lower and upper body were assumed to be rigidly fused resulting
in a composite COM and moment of inertia for each (parameters listed in Table 1).

These two segments represent a reduced-order model suitable for dynamical system analysis
(Figure 2). Since the model is planar, it has two mechanical degrees of freedom (θ1 and θ2)
and therefore its state space has dimension four (i.e., twice the number of degrees of freedom).
Given the definitions of θ1 and θ2 (Figure 2), (θ1 = 0, θ2 = 0) indicates a balanced configuration.
But, this is just one of many points in a larger set of balanced configurations known as the
equilibrium manifold, as discussed below.

2.2 Mathematical Model
A Lagrangian approach was used to determine the equation of motion for the wobble chair:

(1)

where θ, , and  are the rotation angle, angular velocity, and angular acceleration vectors,
respectively. The matrices M, C, and G are defined below.

(2)
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(3)

(4)

(5,6)

where mi is the segment mass,  is the vector from the joint to the segment center of mass,
 is the segment position vector, Ii is the segment moment of inertia, g is the acceleration of

gravity, and τi is the torque. The subscript i indicates the segment number, 1 or 2. Parameters
R'θi and R”θi are the first and second time derivatives of the rotation matrix:

(7)

.

As in the actual wobble chair apparatus (Lee and Granata, 2008; Tanaka et al., 2009),
compression springs (k1) at distance d1 were included in the model to provide a stabilizing
torque (τSpr = k1d2sinθ1). Also included were passive torques at the lumbar spine due to elastic

stiffness (k2: with θsk = k2(θ2−θ1)) and viscous damping (k3: with ). An actuator
was employed between the two segments to represent the muscles that flex or extend the spine.
Proportional-derivative (PD) control of this actuator was used to maintain stability. No control
torque was applied between the base and the chair to simulate the presence of the ball joint.
Direct control of each segment is not possible because the system is under-actuated (Spong,
1995), having fewer actuators than degrees of freedom. Stabilizing control was achieved by
causing flexion at the joint between the two segments when the overall center of mass was
posterior to the point of equilibrium and extension when the overall COM was anterior to
equilibrium. Although these configuration changes did not affect the location of the combined
COM, they did change the seat angle and the torque provided by the stabilizing springs. Thus,
flexion and extension between the two segments was able to alter the external moment applied
to the combined segments.

Individual torques were combined mathematically to generate a net joint torque vector,

(8)

The torque provided by the proportional-derivative controller, CPD, is
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(9)

where, Gd is the derivative gain constant, θcr = τpmax/Gp is the smallest angle at which the
maximum gain is achieved, Gp is the proportional gain constant, and τpmax is the maximum
value of proportional torque. Physiologically, τpmax represents the fact that muscle strength is
limited.

2.3 Equilibrium Manifold
An equilibrium manifold was known to exist based on the wobble chair's topological
equivalence to the Acrobot, a robotic double inverted pendulum system resembling an acrobat
(Murray and Hauser, 1991; Spong, 1995). The equilibrium manifold describes a set of
configurations where the system can maintain static equilibrium given appropriate torque
between segments. Similar to a point attractor, this manifold attracts nearby trajectories in the
controlled system, but is a one-dimensional curve instead of a point (see Figure 4). The location
of the equilibrium manifold for the wobble chair model was calculated by generating a smooth
curve between a series of equilibrium points. For each angle of segment one, equilibrium points
were found by determining the angle of the second segment needed for the sum of the moments
about the free pin joint to equal zero (Figure 2). Individual points were combined to estimate
the location of the equilibrium manifold. In actual wobble chair experiments which have
previously been performed, participants were constrained by the equipment to remain close to
the origin of the graph, within ± 15 degrees (Lee et al., 2008; Slota et al., 2008; Tanaka et al.,
2009).

2.4 Forward Dynamic Simulations and Trajectory Evolution
The equation of motion (1) above is deterministic, therefore there is a unique trajectory in the
four-dimensional state space of (θ1, , θ2, ) for any set of initial conditions. Numerical
simulation is straightforward and was done using MATLAB® software (MathWorks; Natick,
MA). To obtain an estimate of the region of stability, two approaches were used: (a) a “brute
force” numerical technique that simply recorded the long-term fate of an initial condition; and
(b) an alternative technique that used local information to obtain the boundary of the stable
region. The brute-force or direct method followed trajectories as they evolved over time to
determine if the initial state space location is stable (Soliman and Thompson, 1991), i.e. the
trajectory stays within a predetermined bounded region over a finite time (Derrick and
Grossman, 1987). For this method, trajectories that remained bounded over the length of the
simulation (30 s) were considered stable and marked with circles at their initial state space
location. In preliminary simulations it was observed that initial conditions that became unstable
diverged greatly from the central equilibrium configuration. Unbounded trajectories were
defined as those trajectories for which θ1 or θ2 departed from (0,0) by an arbitrarily large angle
(± 300°). To improve simulation speed, trajectories that exceeded this criterion were considered
to have departed from the stable region without chance for recovery and trajectory tracking
was discontinued at this point. These trajectories were defined as unbounded and their initial
state space locations marked with crosses.

2.5 Use of Lagrangian Coherent Structures to find Basins of Stability
The second method was based on Lagrangian coherent structures (LCS), which evaluates the
tendency for the system dynamics to attract or repel a trajectory from a location in state space
(akin to a local state space gradient). For the system considered here, the LCS corresponds to
a repelling boundary separating stable states from unstable ones. Numerical implementation
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was as follows: 1) the state transition matrix method was employed to generate a finite-time
Lyapunov exponent (FTLE) field; 2) ridges in this field correspond to LCS (Tanaka and Ross,
2009). Briefly, the state transition matrix, Φ, is a linear map (Figure 3) that describes how
perturbations from a reference trajectory evolve over time (Appendix A). The state transition
matrix is calculated for each point on a rectilinear grid in the state space, revealing how an
initial spherical distribution of perturbations deforms.

The state transition matrix can be interpreted as describing the local stretching at each point in
state space and can therefore be used to calculate the largest rate of stretching at each point,
termed here the finite time Lyapunov exponent (FTLE),

(10)

where T is the evolution time over which stretching is evaluated, λmax is the maximum
eigenvalue, and Φ* is the transpose of Φ. The FTLE field σ T is developed by associating each
FTLE with its initial location in state space. Since the FTLE is calculated for each point on a
regular grid, a full field can be developed using this method. LCS are defined as the ridges in
the FTLE field, a connected set of local maxima (Shadden et al., 2005; Lekien et al., 2007).
They represent a boundary in state space that separates qualitatively different dynamical
behaviors. As a boundary, they have one dimension less than the state space. In this case, the
LCS defines the three-dimensional edge of the four-dimensional basin of stability. On one side
of the LCS motion is stable (over a finite time), while on the other side motion is unstable
(falling).

It is useful to use a regular grid when performing forward dynamic simulations and the
equations of motion for the system are known. However, if only sparse data are available, such
as time series data collected from experiments, there may not be a data point in the exact
location where the neighboring trajectory should begin. In this case, a variation of the method
may be used: nearest neighbors to the ideal state space locations can be found and their
trajectory tracked to estimate the state transition matrix (Tanaka and Ross, 2009).

3. Results
A unique equilibrium configuration could be achieved for any value of torso flexion/extension.
Evaluating these configurations over a continuous range torso flexion/extension angles resulted
in a one-dimensional curve in the zero velocity plane of state space. Over the range of ±30°,
the equilibrium manifold was almost linear (Figure 4).

The FTLE field was generated using forward dynamics simulations for a time T = 0.5 s based
on a regular grid of initial conditions (Figure 5). Recall that the planar wobble chair model has
two mechanical degrees of freedom (θ1 and θ2) and therefore a four-dimensional state space
(θ1, , θ2, ). Since the LCS is a three dimensional surface separating the 4D state space into
two distinct regions (stable and unstable), it is easier to view planar sections of state space
rather than the entire 4D hyper volume. Figure 5a and 5b show the slice of configuration space
when the velocities are both zero in 2D and 3D, respectively. The location of the equilibrium
manifold (solid line) was found to align well with the trough of the FTLE field. In addition,
the basin of stability found through the evolution of trajectories (circles) correlated well with
the LCS (ridges). Within the slice of velocity space where configuration angles are zero (Figure
5c and 5d), the stable trajectories generally aligned with the valley in the FTLE field and are
well within the basin of stability boundaries as delimited by the LCS curves.
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In other slices of state space (Figure 6), a basin of stability was also found using both trajectory
evolution and LCS. Similar to the results found for the velocity space, the basins of stability
found through evolution of trajectories lay inside of those found using the LCS method.

4. Discussion
The boundary of the basin of stability obtained using the regular grid LCS method was
generated in high resolution. As expected, ridges in the FTLE field were formed at the boundary
between the stable and unstable regions as found using the direct method. When plotted in
configuration space, the two methods yielded similar results. In the other two projections
(Figure 6), the size of the basin of stability was roughly the same using both methods, but in
general the LCS method overestimated the basin size. These differences may result from
inherent differences in the way each method determines the basin of stability. The direct method
allows states of the system to evolve over a relatively long time (up to 30 s) and evaluates
directly whether or not large angles are achieved. If large angles are achieved, instability is
inferred. On the other hand, the LCS method locates state space boundaries using a much
shorter evolution time (0.5 s), inferring instability from short-time trajectory divergence.
Essentially the LCS method uses the non-uniform rate of local trajectory divergence to predict
future behavior without actually following any single trajectory for a long time. If the evolution
time were increased from 0.5 s to 30 s, we may see greater agreement in the two basin estimates,
but the LCS method might then lose its appeal from the point of view of computational
efficiency.

The BoS for the wobble chair represent the states of the system in which balance may be
achieved. This may be used as a surrogate to better understand the BoS of the torso, which
cannot be measured experimentally without risk of injury to the participant.

The wobble chair model seems to be less tolerant to perturbations in the posterior than the
anterior direction. This effect was observed as a shift in the location of the basin of stability
towards the upper right corner of the phase plane plots (Figure 6). This shift makes the edge
of the basin of stability closer to the equilibrium manifold in the negative direction, implying
that it is easier to fall backwards than forwards. A similar trend was also observed in actual
wobble chair experiments (Tanaka, 2008). However, we do not know the reason for this
difference. It may be due to geometrical asymmetry between the upper and lower body. Another
possibility is that small errors in centering of the combined center of mass over the pivot point
may be causing this behavior. It may also be that a person has better control of their combined
center of mass in flexion than extension. Further investigation is needed to determine if this
trend is indicative of real system behavior.

It is interesting to note the similarity in results when varying initial angles with zero velocity
(Figure 5a and 5b) and varying initial velocities with a horizontal seat and vertical torso (Figure
5c and 5d). This similarity results from the generally conservative nature of the system. To
better illustrate this concept, consider the following scenario: a person sits on the wobble chair

with the seat horizontal (θ1=0), the torso vertical (θ2=0), backward seat velocity ,

and forward torso velocity . After a short evolution time, the person may achieve the
state of a backward rotated seat (θ1=−δk), forward torso angle (θ2=δl), and zero velocity

,  which is essentially a redistribution of kinetic energy aided by the controller. In
this example, the second state is on the same trajectory as the first state, so its evolution over
a short time (FTLE) or long time (direct method) will yield similar results. When the first state,
(0,0,−δi, δj), is plotted in velocity space, its 2D location is (−δi,, δj). This is similar to the second
state, (−δk, δl, 0,0), when plotted in zero velocity, 2D configuration space (−δk, δl). Such
correspondence exemplifies why an apparent equilibrium manifold also appears in the velocity

Tanaka et al. Page 6

J Biomech. Author manuscript; available in PMC 2011 March 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



plot. There exists a set of initial velocities of the two segments that will evolve into a
configuration that lies on the equilibrium manifold.

Similar to other biomechanical models (Morasso and Schieppati, 1999; Soetanto et al., 2001;
Lo and Ashton-Miller, 2008), neuromuscular control was simulated here using a PD controller.
However, the actual control scheme applied by the nervous system is expected to be more
effective due to its high complexity and nonlinearity. Although neuromuscular control has a
time delay that retards performance, this effect is compensated for by anticipatory control
(Morasso and Schieppati, 1999). Considering these factors, it is possible that the basin of
stability will be larger for actual human balance control. Note, however, that the purpose of
this study was not to give the most accurate model of torso dynamics, but instead to use a
simple model and controller to demonstrate that the basin of stability could be computed, thus
providing a foundation for future work.

The type of controller selected may have had an influence on the shape of the BoS. Although
the BoS was broad in the direction of the equilibrium manifold where the values of θ1 and θ2
were balanced, the width was quite narrow when θ1 and θ2 were imbalanced. This general trend
was expected since imbalance indicates a shift in the overall center of mass away from the
equilibrium configuration. However, it is likely that larger deviations from the equilibrium
manifold may be achieved in actual human experiments because the performance of
neuromuscular control system is expected to be superior to that of the simple PD control used
in this simulation.

A deterministic model was used, which simplified the calculations but made it less
representative of real biological systems where stochastic processes are always present. In
unstable sitting, system noise includes random force perturbations caused by muscle twitches,
inaccurate motor unit activation, involuntary movements, or external environmental forces
(Collins and De Luca, 1993) and afferent feedback errors leading to inappropriate motor control
(McIlroy et al., 2003). Although LCS are generally insensitive to noise (Haller, 2001; Haller,
2002; Tanaka and Ross, 2009), this noise may weaken the strength of the LCS, making it easier
for trajectories to cross. Yet, if the noise levels are small, the underlying deterministic behavior
will still dominate.

In summary, the LCS method was effective in finding the basin of stability of the equilibrium
manifold for the wobble chair scenario. These simulations are a first step toward determining
the location of state space boundaries for torso stability from experiments. Future work could
incorporate experimental data to calibrate the controller and thereby better approximate actual
human performance. More complex controllers could also be evaluated to investigate their
robustness, where robustness can be interpreted as basin of stability size. Finally, this paper
presents an approach that can be adapted to find state space boundaries in other biomechanical
applications.
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Appendix A
In this paper, the two-dimensional state transition matrix (Shadden et al., 2005; Tanaka and
Ross, 2009) was expanded to four dimensions,
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(A1)

where . The partial derivatives in equation (A1) are obtained by
central finite differencing of neighboring trajectories,

(A2)

where indices i, j, k, and l represent the grid location of the reference point in the x, y, z, and
w direction respectively. The state transition matrix describes the magnitude of local
deformation in each direction of state space (as in Figure 3), which may be used to calculate
finite time Lyapunov exponents.
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Figure 1.
Model of a person sitting on the wobble chair. Components of the lower body contribute to
segment one, while components of the upper body make up segment two.
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Figure 2.
Simplified model of a person sitting on the wobble chair. Position vectors,  and , show the
connectivity of the model. Vectors  and  are from the joint to the center of mass of each
segment. In the initial balanced configuration shown, segment angles θ1 and θ2 are set to zero.
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Figure 3.
The state transition matrix was calculated by first forming a basis about the reference point
using nearly orthogonal vectors, then tracking the trajectories forward in time (T) and
determining the changes in the basis vectors. For simplicity of illustration, the two-dimensional
version is shown.
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Figure 4.

Equilibrium manifold for the wobble chair in the zero velocity plane . The box
indicates the region that is attainable in wobble chair experiments.
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Figure 5.
LCS are visible in the FTLE field when viewed in configuration space (a and b),

. The equilibrium manifold (solid line), LCS (ridges,
dashed line), and stable trajectory evolutions (circles) were all observed to correlate well. A
valley representing the stable region of state space is also present in the tangent space (c and

d), . The evolution time was 0.5 seconds.
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Figure 6.

In the θ1 phase plane (a and b), , a depression in the FTLE field
is observed to the upper right of the origin. In the θ2 phase plane (c and d),

, a depression in the FTLE field is observed slightly closer to
the origin. The evolution time T was 0.5 seconds.
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Table 1

Model Parameters

Parameter Value Description

m1 27.4 kg Lower body mass

m2 31.8 kg Upper body mass

I1 2.35 kg·m2 Lower body mass moment of inertia

I2 4.86 kg·m2 Upper body mass moment of inertia

L1x 0.1272 m Lower body segment vector – horizontal

L1y 0.1580 m Lower body segment vector – vertical

L2x 0.000 m Upper body segment vector – horizontal

L2y 0.7179 m Upper body segment vector – vertical

c1x −0.1771 m Lower body COM vector – horizontal

c1y 0.0780 m Lower body COM vector – vertical

c2x 0.000 m Upper body COM vector – horizontal

c2y 0.2736 m Upper body COM vector – vertical

g 9.81 m/s2 Acceleration of gravity

k1 10,900 N/m Wobble chair linear spring constant

d 10.35 cm Distance from ball joint to springs

k2 100 Nm Torsional stiffness of the spine

k3 0.1 Nm·s Torsional damping of the spine

Gd 200 Nm/(rad/s) Derivative gain

Gp 3×105 Nm/rad Proportional gain

τpmax 8×104 Nm Maximum proportional gain
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