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Since the engineering and first successful 
application of recombinant adeno-associ-

ated virus (rAAV) serotype 2 as a gene transfer 
vehicle in 1984 (ref. 1), numerous additional 
rAAV serotypes have been isolated and char-
acterized. Although many of these viruses 
have shown robust transduction efficiencies 
in various organ systems throughout the body 
by means of simple systemic delivery meth-
ods, widespread transduction of the central 
nervous system (CNS) via relatively nonin-
vasive methods has been elusive. The mature 
blood-brain barrier (BBB) serves as a protec-
tive barrier that excludes potentially damag-
ing molecules and microorganisms based on 
size, charge, and lipid solubility. Consequently, 
the BBB efficiently blocks rAAV diffusion into 
the CNS.2,3 Thus, to efficiently target the CNS 
using rAAV, researchers have had to resort to 
direct intraparenchymal injections.

Intraparenchymal rAAV injections result 
in robust but relatively local transduction. 
Local delivery methods are advantageous 
when attempting gene therapy for neurologi-
cal disorders that result from neuropathol-
ogy that is localized to a specific anatomical 
region or anatomical circuitry such as in the 
case of Parkinson’s disease. In contrast, treat-
ment of neurological disorders that are due to 
single-gene defects or those that affect motor 
neurons of the spinal cord will probably re-
quire transduction of large proportions of the 
brain or spinal cord, respectively. In the case 
of widespread CNS transduction, intraparen-
chymal injections are impractical.4,5 Therefore, 

development of less invasive trans-BBB deliv-
ery methods for vectors is an extremely im-
portant endeavor. Numerous attempts to use 
molecules that are known to interact with vari-
ous active transport mechanisms to convey 
proteins across the BBB have been reported 
with varying results.6 Currently, our under-
standing of rAAV transduction indicates that 
this process is a receptor-mediated event (e.g., 
see refs. 7–10). Given the large number of 
AAV serotypes availwwable (see Table 1), it is 
not inconceivable that one or more serotypes 
bind a cell-entry receptor that is capable of 
transporting the AAV capsid across the BBB 
in some manner (see Figure 1). Moreover, the 
crystal structures of the AAV1–AAV8 capsids 
have been solved,11–16 and mutational studies 
that change tropisms of these capsids are under 
way.17 Thus, it may be possible to engineer AAV 
capsids that target BBB-associated ligands to 
permit BBB access, but this approach is likely 
to be pain staking and time-consuming.

However, a major step toward the goal 
of systemic gene delivery to the CNS using 
rAAV may have been taken by Foust and 
colleagues in their recent report.5 In this 
exciting study, peripheral intravascular (i.v.) 
administration of rAAV9 in neonatal or adult 
mice resulted in a widespread transduction 
of either the spinal cord or the brain. In ad-
dition, transduction of non-neuronal cells in 
the CNS by rAAV has historically proven to 
be extremely limited. However, in this study, 
depending on the age of the injected animal, 
a significant portion of non-neuronal cells in 
the brain and the spinal cord were infected. 
Although previous studies have shown that 
intraventricular injections of rAAV1 or 
rAAV2 in newborn mice resulted in wide-
spread transduction of the brain,18,19 no in-
dication of non-neuronal infection was seen 
in these earlier studies; thus, the findings by 
Foust et al.5 could be of great clinical impor-
tance, in that this would expand the repertoire 
of rAAV delivery to other cell types in the 

CNS that have been inaccessible thus far. For 
the purposes of clinical strategies, the ability 
to transduce CNS cells across the BBB in the 
adult is the most promising part of the Foust 
et al. study, in that closure of the BBB to large 
proteins occurs much earlier in development 
in the human as opposed to the rodent.3

Of the earlier characterized AAV capsid 
serotypes, rAAV 1, 2, and 5 display varying lev-
els and specificity of transduction depending 
on injection site when administered directly 
to the brain20,21 (see Table 1). For instance, 
rAAV2, which is the most characterized rAAV 
serotype, displays a relatively low transduction 
efficiency of various brain areas. rAAV2 enters 
the cell via the heparan sulfate proteoglycan 
primary receptor and fibroblast growth factor 
receptor 1 co-receptors.22,23 In contrast, AAV5 
typically results in a more widespread infec-
tion pattern, and identified receptors include 
several sialic acid receptors that have also been 
identified as important receptors for several 
infectious agents in the CNS.24 Thus, clearly, 
transduction of rAAV in any organ system is 
very much tied to the local population density 
of a specific receptor.

In the study by Foust et al.5 it seems that 
peripheral rAAV9 administration in the 
adult infects astrocytes through its interac-
tion with astrocytic perivascular endfeet 
in direct contact with vascular endothelial 
cells that may contain a receptor population 
different from that exposed in direct intra-
parenchymal injections, thus resulting in 
the observed unique AAV9-mediated trans-
duction properties. Foust et al.5 reasonably 
speculate that rAAV9 infection of astrocytic 
endfeet in the adult is a receptor-mediated 
event (see Figure 1). Indeed, the disparity of 
transduction pattern of i.v. rAAV9 between 
adults and neonates is highly suggestive of a 
specific receptor-mediated event in the adult, 
and this receptor expression is likely different 
in the neonate. It is likely that the resulting 
CNS transduction pattern from peripheral 
administration of rAAV9 in the neonate is due 
to the ability of this specific virus to bypass a 
not yet fully mature BBB. In contrast, even if 
the BBB were opened via pharmacological 
means in the adult, the 80-nm rAAV particle 
would still not be expected to cross the BBB 
to become freely accessible to potential AAV 
receptors in the parenchyma.

Direct CNS delivery of rAAV also yields 
different results depending on the targeted 
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species, probably as a result of differential 
expression of receptors across species. For 
instance, direct administration of rAAV5 
into the marmoset brain resulted in consis-
tent detection of transduced astrocytes, albeit 
a minority compared with neurons, whereas 
injection of the same viral preparation into 
the rodent brain infected only neurons.25,26 In 
addition, variability in transduction pattern 
and efficiency could be due to the method of 
viral purification, which may lead to impuri-
ties in the vector preparation that may act as 
carrier proteins. However, in this study Foust 
et al.5 attempted to control for this issue.

The clinical relevance of the recent find-
ings of Foust et al.5 is considerable. Efficiently 
targeting the spinal cord with rAAV to treat 
or study motor neuron diseases such as spi-
nal muscular atrophy and amyotrophic lateral 
sclerosis is a direct implication of these find-
ings. Thus far, the most widespread rAAV-
mediated transduction of the spinal cord has 
been through direct injections of the red nu-
cleus27 or peripheral injections into muscle,28 
resulting in anterograde or retrograde trans-
port, respectively (see Figure 1). Although the 
results in the current study indicate that the 
transduction of neurons in the spinal cord is 
limited in adult animals (which would be the 
target group of most clinical relevance), the 
transduction of astrocytes may serve to be of 

Table 1 rAAV capsid types and their reported tropisms in various anatomical structures in the central nervous system

HPC region Sub. nigra CNS region Transport

Virus capsid STR GP CA1–3 Hilar SNc SNr VTA CTX HYPO Thal. SC Ret. Ant. Glia Species Injection route

AAV1 Sialic 
acid

x x x x x x x x x x x Rat, mouse, 
feline

Intracerebral, 
intramuscular, 

intranerve, 
intraventricular

AAV2 x x x x x x x x Rat, mouse, 
feline, 

marmoset, 
macaque

Intracerebral, 
intraventricular

AAV4 Sialic 
acid

x x x Mouse Intraventrecular

AAV5 Sialic 
acid, 

PDGF 

x x x x x x x x x x x x Rat, mouse, 
marmoset

Intracerebral, 
intraventricular

AAV6 Sialic 
acid

x x Mouse —

AAV7 — x x x x Mouse, 
macaque

Intracerebral

AAV8 — x x x x x x x Mouse, 
macaque

Intracerebral, IP, IV

AAV9 — x x x x x x Rat, mouse Intracerebral, IV
AAV10 — x x x x x Rat, mouse Intracerebral, IV

Ant., anterograde; CNS, central nervous system; CTX, cortex; GP, globus pallidus; HPC, hippocampus; HYPO, hypothalamus; IP, intraperitoneal;IV, intravascular; 
PDGF, platelet-derived growth factor; rAAV, recombinant adeno-associated virus; Ret., retrograde; SC, spinal cord; STR, striatum; Sub. nigra, substantia nigra;  
Thal., thalamus; VTA, ventral tegmental area.

Figure 1 Schematic of potential AAV access to the CNS from the periphery.  
(a) Retrograde transport. Infection of nerve endings or axons allows retrograde transport of 
rAAV and transduction of the mother soma. The schematic depicts a red motoneuron exiting 
the ventral spinal cord and viral particles infecting at the neuromuscular junction and being 
transported back to the soma. Although there has been some success with this method, the 
efficiency and replicability have been low. There are also several “weak spots” in the BBB that 
may allow better retrograde transport, such as the nasal epithelium leading to the olfactory bulb, 
the hypothalamus via intraventricular administration, and the area postrema in the medulla.  
(b) Schematic of carrier transport through the adult BBB. There are numerous channels that ac-
tively transport important molecules from the blood into the brain that might be candidate AAV9 
receptors. Several candidates are depicted, but this is not a complete list of possible transporters. 
This schematic is based on Zlokovic.2 GLUT1, glucose transporter; L1, transporter for essential 
amino acids; MCT1, monocarboxylate transporter 1 for lactate; y+, transporter for cationic amino 
acids.2 There are also active transporters for various ions as indicated. (c) Schematic of active 
transport through the adult BBB. In addition to active transport, there are also proteins that 
bind molecules in the blood, thus permitting these complexes to cross into the brain. Again, the 
carrier systems depicted here are not a complete list, and the schematic is based on Zlokovic.2 IR, 
insulin receptor; OATP3, organic anion transporter 3; PgP, multidrug resistance P-glycoprotein; 
PTS4-V1, peptide transport system 4 and vasopressin receptor 1 transport arginine-vasopressin; 
TFR, transferrin receptor.2
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equal, or greater, clinical relevance.5 Thus far, 
a majority of therapeutic agents proposed for 
treatment of neurodegenerative disease are 
secreted trophic factors such as insulin-like 
growth factor 1 and glial cell line–derived 
neurotrophic factor.29 Because most trophic 
factors are typically secreted by glia, it is easy 
to envision that rAAV-mediated overexpres-
sion of trophic factors in these supporting cells 
would result in significant improvement of 
cell rescue, similar to or better than that seen 
when neurons themselves have been targeted.

Although the neuronal transduction in 
the adult brain was limited in scope in the 
Foust et al. study,5 the ubiquitous astrocytic 
transduction holds similar promise to that 
of astrocytic infection of the spinal cord. 
Trophic factors have been implicated as po-
tential therapeutic agents aimed at slowing 
disease progression in neurodegenerative 
diseases such as Parkinson’s disease. In the 
case of disorders that require more targeted 
delivery such as Parkinson’s disease, the use 
of i.v. AAV9 might still be advantageous if 
tissue-specific promoters are included in the 
therapeutic construct, as pointed out correct-
ly by Foust et al.5 Although brain neurosur-
gery is relatively safe, systemic delivery across 
the BBB remains an even safer alternative to 
direct CNS injections.

Going forward, widespread protein ex-
pression in the CNS via the use of rAAV9 
needs a proof of principle in a rodent model 
of a neurodegenerative disorder that can be 
treated with ectopic gene expression in astro-
cytes. Moreover, replication of these results in 
other laboratories as well as in larger species 
will also constitute the next important hurdle 
for the method described by Foust et al.
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The bacterial contamination of wounds 
is an important global health-care 

issue that is bound to grow as the pop-
ulation ages. Bacterial wound infections 
increase morbidity and mortality and are 
of considerable socioeconomic impact. 
The risk of wound infection increases as 
disturbances in local conditions favor 
bacterial growth rather than host defense. 
This can lead to impaired wound healing, 
resulting on the one hand in rising treat-
ment costs and on the other hand in a 
traumatic and potentially life-threatening 
condition for the patient.1 The current 
clinical gold standard for treating wound 
infection is antibiotic therapy. However, 
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