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Abstract
Pharmacogenomics is a rapidly developing sector of human genetics research with arguably the
highest potential for immediate benefit. There is a considerable body of evidence demonstrating that
variability in drug-treatment response can be explained in part by genetic variation. Subsequently,
much research has ensued and is ongoing to identify genetic variants associated with drug-response
phenotypes. To reap the full benefits of the data we collect we must give careful consideration to the
study population under investigation, the phenotype being examined and the statistical methodology
used in data analysis. Here, we discuss principles of study design and optimizing statistical methods
for pharmacogenomic studies when the outcome of interest is a continuous measure. We review
traditional hypothesis testing procedures, as well as novel approaches that may be capable of
accounting for more variance in a quantitative pharmacogenomic trait. We give examples of studies
that have employed the analytical methodologies discussed here, as well as resources for acquiring
software to run the analyses.
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Much evidence exists suggesting that individual variation in pharmacological traits, such as
adverse drug response, stable dose of a drug with a narrow therapeutic range or treatment
efficacy, can be attributed to genetic variation. Moreover, pharmacogenomics is a promising
area of human genetic research with a high potential for generating immediate public health
and economic benefits [1,2]. Technological advances in the last several years have allowed the
pharmacogenomics field to progress from coarse genomic coverage with linkage maps and
candidate gene association studies, to very-high-resolution association analyses using single
nucleotide polymorphisms (SNPs) [3]. The completion and ongoing development of the
International HapMap Project [4,5], a catalog of common human genetic variation at millions
of poly morphic sites in several populations, allows for more powerful and strategic study
design of both targeted and genome-wide scans. Several technologies are currently available
that allow for rapid, highly accurate genotyping of over 1 million common SNPs at low cost
per genotype. In addition to SNPs, the latest generation of GeneChips (Affymetrix) and
BeadChips (Illumina) contain thousands of probes targeting known copy number variations
(CNVs) based on the first-generation CNV maps available for the human genome [6–9].

Specifically for pharmacogenomic studies, several genomic tools are available that identify
both rare and common variations associated with adverse drug reactions or dosing. To date,
the most commonly applied modern genomic tool is the genome-wide association study
(GWAS), which is generic and not specific to pharmacogenomics. GWAS has already been
used in many pharmacogenomic studies to identify common variants that influence adverse
drug reactions [10], drug dosing [11,12] and treatment efficacy [13]. While the GWAS
approach has been successful in some pharmacogenomic studies, in many studies the GWAS
platforms are insufficient because they do not represent some of the known rare variation
associated with pharmacogenomic phenotypes [14]. Also the GWAS platforms do not contain
variations that are difficult to assay such as CYP2D6 variants. To fill this niche, Affymetrix
has developed a targeted genotyping platform that specifically covers over 200 genes known
to be involved in absorption, distribution, metabolism and excretion (ADME) of
pharmacological agents [15]. This platform is now being used extensively in pharmacogenomic
research [16,17]. Finally, much research is being pursued in both the academic and private
sector to develop methods for inexpensive whole-genome ‘next-generation’ sequencing [18–
20], allowing for complete examination of all human genetic sequence variation, which will
capture rare variation that is currently missed in GWAS studies.

In addition to benefitting from the technological advances in the field, pharmacogenomic
studies can benefit from much of the recent improvements in study design and optimization of
statistical methodology that has recently transformed disease gene-association studies. Here,
we review the study designs and statistical methodology that are commonly used in
pharmacogenomic studies of quantitative trait outcomes. We then discuss novel methodology
research taking place in the human genetics community, and how these can be applied to
optimize statistical analyses in pharmacogenomics research. A flowchart representation of the
main topics covered in this review is shown in Figure 1.

Phenotype selection & quantitative outcomes
The predominant study design for genetic association studies over the last decade has been the
case–control design. In a disease gene association study, one would typically associate an allele
or genotype frequency difference between affected and unaffected individuals [21]. The case–
control design in disease gene studies has many advantages, namely the fact that relatively rare
conditions can be ascertained after their onset, significantly reducing the costs of ascertainment
and follow-up, typically incurred by large prospective studies [22]. The case–control design
may be the most appropriate design in pharmacogenomics studies examining a purely discrete
outcome, such as adverse drug reactions, where the phenotype neatly falls into one of two
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possible classes. However, analysis of a quantitative trait that varies continuously over a range
of possible values may be more optimal in many cases. First, the outcome of interest in many
pharmacogenomics investigations naturally varies on a continuous scale. Examples include
determining the correct stable dosage for a drug with a narrow therapeutic range [23–25],
predicting treatment efficacy [26–28] and predicting drug resistance [29]. Furthermore, even
many adverse drug reactions that are typically thought of as discrete events can be measured
on a continuous scale, rather than discretized based on an often arbitrary threshold. Examples
include analyzing blood iron content as a continuously varying trait rather than anemic status
as a binary variable, assaying the full spectrum of liver enzyme activity rather than the presence
or absence of hepatotoxicity, or recording blood glucose concentration rather than
hypoglycemia as a dichotomy. While artificially creating a discrete variable based on an
arbitrary threshold in a naturally continuous trait can simplify analysis of the data, it can also
be counterproductive as it comes with the cost of a dramatic decrease in statistical power. That
is, the useful variance found in continuous outcome data is discarded in dichotomous outcome
data. Therefore, creating categorical variables in such a way should be avoided as much as
possible. Such genetic association study designs are common in other areas such as
cardiovascular genetics [30–33], genetic analysis of gene expression levels (eQTLs) [34,35]
and psychiatric genetics [36]. Finally, standard clinical chemistry and contemporary proteomic
techniques have made collection of continuously varying biomarker traits relatively easy,
accurate and inexpensive [37].

Regardless of whether the clinical outcome under investigation is a discrete or continuous end
point, phenotype definition is crucial to optimizing statistical analysis for pharmacogenomic
studies. This may be exceedingly difficult when a naturally continuous clinical outcome must
be categorized into one class or another. However, even when a quantitative outcome is
ascertained and recorded, care must be taken to select a continuously varying clinical feature
that can be precisely defined and reliably measured. This may pose less of a problem with
pharmacogenomic studies, where end points such as stable dosage of a drug or level of a
particular circulating enzyme can easily be measured and recorded through medical record
surveillance and by standard laboratory assays, respectively. However, one note of caution
when using medical record mining to ascertain a phenotype is to consider the issue of
compliance – measures should be taken to determine whether the patient actually took the
prescribed dose before the analysis is performed. Finally, thoughtful consideration must be
given to choosing which clinical features will be used to represent pharmacological end points.
In addition to affecting the power of statistical analyses, the choice and specificity of phenotype
definition have implications on the interpretation and reproducibility of one’s results. Standard
measures should be used so that others may follow up and replicate the analysis of an identical
outcome in another data set.

In summary, while the case–control design has dominated genetic association studies in recent
years, continuous outcomes may be more readily ascertained in pharmacogenomics studies,
and the methods designed to analyze this type of outcome (discussed later) tend to be
statistically more powerful, taking into account the full range of phenotypic variability that
may be influenced by genetic factors. It is important to choose an outcome that is reliably
measured, as well as one that is a standard measure in the field so that others may easily follow-
up results in future studies.

Choosing a study population & methods for addressing stratification
One of the largest sources of confounding in association studies using unrelated individuals
stems from population stratification, which occurs when the study population contains multiple
subgroups of individuals with distinct genetic backgrounds (usually the result of including
multiple racial or ethnic subgroups into a single study population). This becomes problematic
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and leads to systematic type I and type II errors when two conditions apply [38]. The subgroups
differ with respect to the frequency of an allele and the subgroups have different values for the
quantitative outcome of interest (or differ in the frequency of the occurrence of an event if the
outcome under investigation is categorical). There are great differences in allele frequency and
linkage disequilibrium patterns between populations [4,5], and it is known that there are
differences in drug response between ethnic groups [39]. Whether this difference is owing to
other genetic factors or to environmental factors does not matter here. If a truly irrelevant
polymorphism was more common in the subgroup that, for some other genetic or nongenetic
reason, has a more favorable response to a drug, then the allele will appear associated with the
favorable response in this data set. The association here would be purely artifactual, resulting
from the failure to adjust for population stratification. Also, it is well known that admixture
and unknown and/or unintentional population stratification leads to artificially increased
linkage disequilibrium across the genome or genomic regions being studied. While this
phenomenon is used as a tool in admixture mapping, it adversely affects genetic association
studies employing a tagSNP or other LD-based approach to identifying the causal genetic
variant regardless of whether or not the trait of interest varies between or across the subgroups
[40]. Thus, in addition to causing excessive type I error inflation, population stratification could
also obscure true genetic associations [38].

Selecting a population to minimize stratification
One solution to this problem is to use family-based designs, which are robust to population
stratification. Rather than associating frequency of alleles across families, family-based
designs typically link or associate outcomes to regions of genetic variation by following alleles
through meioses within families, which inherently cannot contain population substructure.
While this has been an important design for disease gene association studies and early
pharmacogenetic studies of adverse drug reactions, it is typically not used by investigators in
pharmacogenomics owing to the difficulty of finding sufficient numbers of families with
uniform exposure to the drug or pharmacological treatment [41,42]. Therefore, discussions of
statistical procedures used for family-based study designs will not be summarized in this
review, but they are the subject of an extensive review available in [43]. A common strategy
for avoiding bias induced by population stratification is to ensure that study samples are drawn
from a genetically homogenous population. For example, the Framingham Heart Study original
and offspring cohorts are mainly comprised of Americans of European descent, where the most
common self-reported ancestry was Western European [44]. As expected, this geographically
and racially homogenous population does not display any evidence of population substructure
[45]. On the other hand, it is likely that findings in one genetically homogenous population
may not replicate or explain disease susceptibility variance in other ethnic groups or in the
broader general population [46]. In this case, population-based, diverse samples are desirable
for genetic association studies focused on characterizing previous GWAS or candidate gene
discoveries made in one population [47]. In addition to intentionally studying diverse
populations, ascertainment of diverse samples may be unavoidable owing to economics, ease
of recruitment and recruitment setting (e.g., an outpatient clinic in a diverse city). If sampling
from a diverse population for a genetic association or pharmacogenomic study, care should be
taken to record the racial and ethnic background of each individual in the study. In addition to
self report, other extensive questionnaire tools have been developed to aid in collecting
information regarding ancestry [48]. Analyses could then be carried out separately for each
subgroup. However, self-reported race/ethnicity has been criticized for being an inaccurate
assessment of genetic ancestry [49]. Since this inaccuracy can lead to population stratification,
investigators have advocated the genotyping of ancestry informative markers (AIMs) to more
accurately infer individual ancestry [50]. Some studies have suggested that self reporting can
be equivalent to genetic ancestry determined by AIMs [51], but this is dependent on the specific
markers genotyped as AIMs and the level of detectable substructure desired by the investigator.
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Statistical methods for detecting & controlling for population stratification
Although the confounding effects of population stratification can be mitigated by carefully
choosing a study population, it can never be completely eliminated. Furthermore, the
confounding effects of population stratification becomes more severe as sample size increases
[52,53]. Others have shown that even with a uniformly European sample of 3000 individuals,
differences in genetic variation can be detected between populations centered in geographic
areas as little as a few hundred kilometers apart [54]. Even slight differences in prevalence
rates of the outcome of interest between these groups would cause spurious associations. To
deal with these challenges, statistical methodology has been developed (and implemented into
software) to aid in detecting and adjusting for population stratification in genetic association
studies. One method, genomic control, aims to control for population stratification by first
estimating an inflation factor, then adjusting all of the test statistics downward by this factor
[53,55]. Several variations on genomic control have been developed, and a recent
comprehensive review and critical evaluation of genomic control methods [56] recommended
genomic control F (GCF) as the most appropriate variation [57]. GCF does not assume the
inflation factor is measured without error, and refines this factor accordingly. Structured
association [58], implemented in the STRUCTURE software, uses genotype data to infer
population structure, then performs tests of association within each inferred subpopulation
[201]. Investigators may also use STRUCTURE to identify individual samples that do not
cluster with the majority of the samples. These samples can then be eliminated from the
analysis. Since the risk of confounding by population stratification increases with sample size
[38], and because large sample GWAS are becoming increasingly common, another method
has been developed that utilizes large samples and thousands of markers throughout the genome
to correct for population structure. Eigenstrat uses a principal components-based method to
explicitly detect and correct for population stratification on a genome-wide scale in large
sample sizes in a computationally efficient manner [59,60]. Eigenstrat was first described for
case–control analysis but can also be used for quantitative trait outcomes. EIGENSOFT is a
freely available open-source software for conducting Eigenstrat analyses, available online
[202]. A recent report using large-scale simulation studies to compare methods for correcting
for population stratification examined all of the aforementioned techniques, and found that
principle components-based methods (as implemented in Eigensoft) outperformed both
genomic control and structured association in terms of maximizing power, controlling type I
error maintaining in computational efficiency [61].

Traditional statistical methods for pharmacogenomics analysis
Traditionally, the analysis of genetic factors that contribute to pharmacological or other
quantitative traits involves testing each marker for association. When the outcome of interest
is a categorical trait or event, traditional analytical methods test for allele or genotype frequency
differences between cases and controls. When the trait or pharmacogenomic outcome is
continuous such as stable dose or an efficacy measure, traditional approaches test for significant
differences in the means of the outcome of interest across different genotypes at a given locus.
Below, we outline several traditional statistical approaches for pharmacogenomic data analysis
when the outcome of interest varies continuously. We will discuss their strengths and
weaknesses, where to find software implementations that make them accessible and examples
of how these techniques have been used in the analysis of pharmacogenomic data.

Analysis of variance
The analysis of variance (ANOVA) tests for significant differences in the mean value of a
quantitative outcome (e.g., blood glucose level or stable warfarin dose) between individuals
in groups based on genotype. The theoretical justification of ANOVA has been demonstrated
in numerous statistical texts and its implementation is widely available in nearly all statistical
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computing software [62,63]. ANOVA has a clear interpretation, and when its assumptions are
met, it is uniformly the most powerful statistical procedure for detecting differences in a
continuous outcome between groups. ANOVA also allows very specific hypotheses to be
tested, for example, testing the hypothesis that the homozygote for the minor allele has an
increased responsiveness to a chemotherapeutic drug as measured by tumor shrinkage, when
compared with individuals of both other genotypes.

Linear regression
Linear regression is a generalization of the analysis of variance, any analysis that can be
performed in ANOVA can be performed equivalently in linear regression. Using the linear
regression framework, a model can be fitted to test any specified mode of inheritance
(dominant, additive or recessive). Linear regression also allows other clinical, genetic, or
environmental components to be taken into account, or adjusted for, when testing for the unique
effect of a genetic variant. Furthermore, linear regression allows very specific tests for both
gene–gene and gene–environment interaction – a topic that will be discussed at length later in
this review. While adding more predictor variables and inter action terms to a regression
equation will always improve the model fit, care should be taken to choose a model that has
the added advantage of parsimony. A commonly used measure for aiding in model selection
is the Akaike Information Criterion (AIC), which gauges how closely the predicted values fit
the actual values, with a penalty for each predictor variable added to the model [64]. Once a
well-fitting model has been developed, the linear regression equation can be used as a
prediction equation for the value of the quantitative trait of interest (i.e., the pharmacological
event or trait) as a function of genetic variants or other variables present in the equation. It is
important, however, that the predictive ability of a model be tested in an independent dataset.
In addition to being standard with almost any statistical computing software, linear regression
is also available in PLINK [65], an open-source software tailored specifically for the analysis
of genetic data, freely available online [203].

Nonparametric or distribution-free methods
The analysis of variance and linear regression both have a very similar set of assumptions
regarding the underlying distribution of data points that must hold in order for their estimates
and standard errors to remain unbiased [62], namely that the outcome must follow a normal
(Gaussian) distribution, and the variance the outcome must be equal across groups with
different genotypes [62,63]. Many pharmacological or other clinical measures often do not
adhere to these assumptions, often times being lognormal or exponentially distributed [32], or
having a variance that differs dramatically across groups of subjects with different genotypes
[66]. While the aforementioned methods are robust to small violations of these assumptions,
substantial violations may warrant the use of nonparametric, or distribution-free methods. The
Kruskal–Wallis procedure [63] is a nonparametric alternative to ANOVA for testing difference
in group means. The Kruskal–Wallis procedure and methods similar to it usually rely on rank
statistics. While the Kruskal–Wallis procedure is robust to violations of the assumptions of
ANOVA, it is not as powerful as ANOVA when its assumptions hold. Although not currently
available in PLINK, the Kruskal–Wallis procedure is available in most statistical computing
software, including the freely available open-source R statistical computing language [204].

All of the aforementioned procedures share a feature in common; regardless of which of these
is used, most analyses in pharmacogenomic data test for differences in the value of a
quantitative outcome one variable at a time. Below we discuss the importance of gene–gene
and gene–environment interactions, and recent developments for optimizing statistical analysis
in pharmacogenomic studies that go beyond the traditional one-at-a-time approach that is most
commonly used.
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Rare variation & epistasis
Despite the dizzying pace of advances in genotyping technologies that have made GWAS
accessible, we have not been able to fully take advantage of the wealth of data generated by
these studies because our analytical strategies have not kept pace. As mentioned previously,
the most commonly used analytical procedures for analyzing pharmacogenomic data are tests
of association at a single genetic variant at a time. This approach has been arguably successful
in identifying genetic variants associated with complex traits, but these variants collectively
explain little of the genetic component expected based on family and twin studies [68].

One potential explanation for this is the fact that current GWAS techniques are based largely
on the ‘common disease common variant’ (CDCV) hypothesis, which is largely unsupported
by empirical evidence [69]. This is because most of our richest resource on human genetic
variation is primarily limited to common variants, and because current GWAS technology is
focused on providing assays for polymorphisms with high frequency [4,5]. An alternative to
the CDCV hypothesis is that the missing genetic component to pharmacogenomic traits may
lie in rare variation, which is by and large overlooked by current GWAS techniques. Whole-
genome sequencing technologies [18–20] are currently being developed that will allow for
examination of rare variation within the next 2 years.

In addition to rare variation, many investigators have speculated that the missing genetic
component lies in gene–gene and gene–environment interactions. Indeed, it is generally
accepted that common traits are complex and are influenced by an intricate interplay of multiple
genetic and environmental exposure [70–73]. This belief has been shared by biologists for over
70 years, when it was first emphasized by Sewall Wright that any biological or evolutionary
end point is dependent on complex interactions between genes and environmental factors
[74]. It is still thought that gene–gene and gene–environment interactions are ubiquitous given
the complex biomolecular interactions that are essential for regulation of gene expression and
complex metabolic networks [75], and are likely to play a role in influencing human traits
[76]. Furthermore, while recent perspectives have emphasized the fact that most true genetic
associations to complex traits carry a vanishingly small effect size [77–80], others have shown
experimentally that gene–gene interaction is pervasive and often carries surprisingly large
effects [81]. Although there is little empirical evidence of gene–gene interaction associations
in pharmacogenomic outcomes, owing to the complexity of drug metabolism and transport, it
is probable that many drug-treatment outcomes are explained by combinations of genetic
variation in the context of gene–gene interactions.

Interactions & quantitative outcomes: new approaches
Compelling evidence makes it clear that epistasis exists in humans and model organisms and
influences human traits, yet there is no consensus on how to best optimize statistical analysis
for investigating interactions in pharmacogenomic studies. One approach is to evaluate
multimarker combinations for potential inter active effects based on biological criteria [82].
This may include, for instance, testing for interactions between genes that share a similar
structure or function, or genes in the same pathway or biological process, such as a receptor
and its ligand. Using this strategy would bias the analysis in favor of models with an established
biological foundation in the literature, and novel interactions between SNPs would be missed.
Furthermore, the entire analysis is conditional upon the quality of the biological information
used. Another approach is to select SNPs based on the strength of their independent main
effects, evaluating interactions only between SNPs that meet a certain effect size or significance
threshold. This strategy assumes that relevant interactions occur only between markers that
independently have some major effect on the phenotype alone. This assumption is neither
biologically nor statistically well grounded. Biologically, compensatory mechanisms and
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redundancy at other loci can mitigate the effects of a devastating mutation or polymorphism
at another locus, thus rendering its effect undetectable. This is evident in the many gene-
knockout mouse lines that show no apparent phenotype [83–90]. Statistically, the main effect
components and interactions between them are mathematically independent effects [62].
Furthermore, theoretical studies have shown that traits can be influenced exclusively through
the interaction of two or more genetic variants [91,92], and that filtering based on significant
main effects would miss these types of discoveries.

Exhaustive evaluation
A strategy to search for a gene–gene or gene–environment interaction that influences a
pharmacogenomic outcome without preconditioning on single SNP main effects is to
exhaustively evaluate the relationship between the pharmacogenomic outcome of interest and
every possible combination of genetic and environmental exposures. While one may wish to
fit ANOVA or linear regression models to every possible 2-, 3-, or n-way combination SNPs,
this approach becomes problematic for several reasons. First, when interactions among
multiple genetic and/or environmental components are considered, there are many
combinations that are present in only a few individuals or perhaps none at all. This is known
as the curse of dimensionality [93], and results in unstable estimates of population parameters
from large sample-based methods such as ANOVA and linear regression. Furthermore, while
the interpretation of the statistical significance of models fit using traditional methods is fairly
straightforward, correction must be made for multiple testing. Tests of interactions are large
in number, and are not independent, making multiple testing correction difficult. Also, as
mentioned previously, these methods are uniformly the most powerful technique for detecting
differences in the mean value of an outcome, but this only holds when all assumptions are met.
For many pharmacogenomic studies, however, these assumptions are typically violated to some
degree. Finally, these methods are typically the most efficient only when a mode of inheritance
is specified (e.g., dominant, recessive and additive). One of the first methods proposed that
would obviate some of these issues is the combinatorial partitioning method (CPM) [94]. CPM
works by expanding multilocus genotype combinations and then partitioning these genotypes
into groups that explain the largest proportion of variance in the quantitative trait outcome. A
later improvement on this method was the restricted partitioning method (RPM) [95], which
does not spend valuable computing resources evaluating multilocus genotype partitions that
explain little variance. A third similar approach is generalized multifactor dimensionality
reduction (gMDR) [96], a variation on the widely used MDR case–control framework [97].
An advantage of exhaustive approaches, such as CPM, RPM and gMDR, is that they will search
through every possible multivariable model for a given dimensionality to find the optimal set
of genes and environmental factors to most accurately model a quantitative outcome. These
methods will report an optimal set of genes found and the amount of variance in the outcome
explained by partitioning multilocus genotypes at these genes. As with any data mining
technique, however, care must be taken to avoid overfitting [98], or ‘memorizing’ each data
point, rather than discovering the true underlying model. Cross-validation is a widely employed
and easily implemented technique for mitigating the risk of overfitting a model to a particular
dataset [99]. Furthermore, while the theoretical sampling distribution of test statistics for these
methods is unknown, statistical significance of models discovered with these combinatorial
procedures may be empirically estimated using permutation testing [100]. Here, the null
hypothesis will be empirically generated by shuffling the outcome variable values among
individuals in the dataset, and running the modeling procedure many times, generating a null
sampling distribution of the statistic reported by these methods (e.g., R2). The statistic from
the nonpermuted analysis is compared against this null sampling distribution to estimate
statistical significance. Since permutation testing requires running the modeling procedure
usually thousands of times on permuted data, this can be computationally intensive even in
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small datasets. However, one group has recently reported a way to approximate permutation
testing that requires as little as 1/50th of the time a full permutation test would require [101].

Exhaustive approaches such as the mentioned earlier are ideally suited for exploring
interactions in small pharmacogenomic datasets comprised of only a few variables, such as in
a candidate gene study. However, the computational resources required to exhaustively search
for interactions in GWAS scale data is often prohibitive. For example, the number of two-way
interactions that can be evaluated in a GWAS with 500 k SNPs is 1.2 × 1011. Memory issues
aside, it would take many years on a desktop computer to run this analysis. This limitation is
the motivation for developing techniques that still utilize the full dimensionality of the data
without exhaustively searching all possible combinations of variables with the goal of
discovering a well fitting model that explains variance in a pharmacogenomic trait. Below we
will discuss three computational strategies for discovering gene–gene interactions in genome-
wide scale pharmacogenomic data where an exhaustive approach would most likely be
computationally prohibitive.

Evolutionary computing
Sharing many similarities with Darwinian evolution of biological organisms, evolutionary
computing has been proposed as a way to discover gene–gene and gene–environment
interactions that contribute to a human phenotype [102]. Individuals in biological populations
can be thought of as candidate solutions to a problem, where the problem in nature is to survive
and reproduce. Individuals that are more fit will be selected, and their genes will be propagated
in future generations in the population. By analogy, evolutionary computing commences by
defining a population of candidate solutions to a problem, where the problem is to find a model
containing influential genes that can explain a large proportion of variance in the outcome.
‘Individuals’ are candidate solutions, which are mathematical models containing genetic and
environmental variables attempting to explain variance in the outcome of interest in the study.
The candidate solutions that explain more variance in the outcome are the models that contain
combinations of variables that truly influence the phenotype, and these models are selected
and reproduced in subsequent generations of evolutionary computing. In addition, after this
phase of selecting the ‘most fit’ individuals, models may be ‘mutated’ (switching one genetic
variant out for another in the dataset), or undergo ‘recombination’ with another well-fitting
model. Evolutionary computing can be thought of as a pattern-recognition or machine-learning
approach for discovering complex genetic models that influence a trait. Evolutionary
computing has been used extensively in other disciplines to model complex processes [103–
113]. In addition to using evolutionary computing for genetic association studies [114–121],
evolutionary computing has been used in other biological applications including microarray
analysis [122], cancer classification [123], molecular docking [124] and protein folding
[125]. A team of leaders in the field have recently prepared a book [126], giving an overview
of genetic programming (a widely used type of evolutionary computing) [205]. Weka [206] is
a freely available, open-source, extensible software for evolutionary computing and other data
mining methods, available at [129].

Candidate epistasis
Another recently described strategy, the Biofilter, combines a bioinformatics approach with
traditional statistical hypothesis testing [130]. Several years ago, when the genome was too
large to fully interrogate with genotyping, pharmacogenomics and other disease gene-mapping
investigators relied on the candidate gene study design. Here, candidates were selected for
genotyping based on their hypothesized biological function, and statistical tests were carried
out on a SNP-by-SNP basis. Now, with the advent of GWAS and the impending arrival of
inexpensive whole-genome sequencing, assaying human variation across the entire genome is
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no longer the issue it was in the past. While millions of SNPs can be tested one-by-one for
association to a trait, the interactome is too large for us to fully investigate. The approach used
reduces the interaction search space by assessing specific combinations of genetic variants
based on prior statistical and biological knowledge [130]. The method creates multi-SNP
models based on information from publicly available bioinformatics data sources that can then
be straightforwardly tested using logistic or linear regression.

Expert knowledge-guided evolutionary computation
Finally, there is much interest in the computer science community to develop strategies for
incorporating expert knowledge into evolutionary computation [131]. As mentioned
previously, it is theoretically possible and probable in some cases that a trait is influenced
exclusively by the interaction of two or more genetic variants, with neither genetic variant
having a main effect by itself. This represents the worst-case scenario for an evolutionary
method. In fact, it has been shown that evolutionary methods perform little better than randomly
testing models for association with the outcome when the underlying model is purely epistatic
[132]. However, supplementing an evolutionary procedure with expert knowledge has been
shown to increase the statistical sensitivity of evolutionary methods for finding these difficult-
to-model interactions [133]. In these reports, the authors used a data-driven approach, relying
upon prior statistical expert knowledge as a result of preprocessing the data. The notion
presented in [127] suggests a different approach, where expert knowledge is gleaned
extrinsically, without any data analysis or preprocessing [130]. Here, multigene groupings were
created based on representation in publicly accessible biological databases, such as the Gene
Ontology [134] or Kyoto Encyclopedia of Genes and Genomes (KEGG) [135]. Multi-SNP
models from these gene groupings were then prioritized in analysis. A very promising approach
involves combining a bioinformatics approach such as this with evolutionary computation,
allowing investigators to take advantage of the many decades of biomedical research to guide
a machine learning procedure. Furthermore, while the aforementioned bioinformatics approach
is gene-centric, incorporation of these principles into a stochastic evolutionary procedure
would allow for discovery of gene–gene interactions between genetic variants that may not be
in gene regions (e.g., an interaction between variants in a micro-RNA and its target).

Expert commentary
In this review, we have presented study design strategies and statistical methodologies for
optimizing statistical analysis in pharmacogenomic studies. Careful consideration of the
phenotype under study, the population in which the study is carried out and the procedures
used to model genetic influences are all equally important for achieving maximum statistical
power and breadth of interpretation. Irrespective of the aforementioned considerations, one of
the most important aspects of pharmacogenomics and any other genetic association study is
replication in an independent sample and/or functional studies. The NCI-NHGRI Working
Group on Replication in Association Studies recently established recommendations for bona
fide replication of GWAS results [136]. Basic conditions for a successful replication include
a sufficient sample size to replicate the genetic effect size estimated in the discovery data set,
an independent replication set, the same outcome phenotype for both data sets, a similar study
population, similar direction of effect from the same SNP or a SNP in near perfect LD, a
consistent genetic model and adequate reporting of replication study design and analysis.
Replication of a multi-SNP model presents new challenges and how to effectively test for
replication of higher-order models remains an open question in the field of human genetic
epidemiology.

Replication of pharmacogenomic studies may post a significantly greater challenge than many
other genetic association studies of complex human traits and diseases. Many
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pharmacogenomic traits such as adverse drug reaction are, by US FDA design, rare.
Investigators in the field struggle to amass sufficient numbers of samples for the initial GWAS,
leaving them stranded with no replication set. For example, statin-induced myopathy occurs
in approximately one out of 10,000 patients prescribed standard doses. A recent GWAS of this
adverse event for a commonly prescribed medication had only 85 cases for the initial GWAS
and no independent replication cohort [137]. This highlights the important role that large drug-
exposed cohorts or populations, such as biobanks linked to electronic medical records
[138,139], will play in fulfilling the need to identify sufficient samples for discovery and
replication datasets.

Five-year view
Several years have elapsed since the advent of genome-wide association studies, bringing
several success stories as well as many disappointments. We must ensure that our strength in
study design and optimal statistical methodology keeps pace with the relentless progression of
genotyping and sequencing technology so that we may reap the benefits of the wealth of data
we will soon face. The characteristic that most bleeding-edge statistical methodologies have
in common is that they abandon the simple approach of considering one genetic variant in
isolation when modeling the etiology of complex phenotypes. Methods exploiting existing
domain knowledge are likely one of many solutions required for the challenging task of
properly mining large genomic data sets to identify all variation, alone or in combination, that
has an impact on human health.

Key issues

• Pharmacogenomics is a promising area of human genetic research with a high
potential for generating immediate public health and economic benefits.

• Many pharmacological outcomes are naturally continuous variables and the full
distribution should be considered rather than relying on artificial categories for
ease of analysis.

• The pharmacological phenotype should be precisely defined and reliably measured
to optimize statistical power and potential reproducibility by others.

• Careful consideration should be given to choosing a study population and/or using
available statistical methods to minimize the effects of population stratification.

• Traditional statistical hypothesis testing techniques for quantitative outcomes
(analysis of variance, linear regression) are widely available in nearly any
statistical computing software. Investigators typically use these methods to test
genetic markers one-by-one for association with the trait of interest.

• Gene–gene and gene–environment interactions are pervasive and ubiquitous, and
exist even in the absence of main effects. Optimal statistical methods will account
for interactions between multiple variables.

• Exhaustive searches for interaction (combinatorial partitioning method, restricted
partitioning method and generalized multifactor dimensionality reduction) are
reasonable approaches for small datasets but quickly become unwieldy with
GWAS-scale data.

• As advances in genotyping and sequencing technology progress, novel
computational methods that take advantage of the wealth of domain knowledge
will become increasingly necessary.
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• Replication is key: regardless of the phenotype studied, population used or
methods applied, it is essentially a requirement to provide either statistical
replication in an independent sample, or evidence of a functional role for any
pharmacogenomic association discovered. Large cohorts or populations will be
indispensable for ascertaining enough individuals for discovery and replication
datasets.
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Figure 1. Design and statistical workflow of a pharmacogenomic study
ANOVA: Analysis of variance; CPM: Combinatorial partitioning method; gMDR:
Generalized multifactor dimensionality reduction; SNP: Single nucleotide polymorphism.
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