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Abstract
Interest in predicting protein backbone conformational angles has prompted the development of
modeling and inference procedures for bivariate angular distributions. We present a Bayesian
approach to density estimation for bivariate angular data that uses a Dirichlet process mixture model
and a bivariate von Mises distribution. We derive the necessary full conditional distributions to fit
the model, as well as the details for sampling from the posterior predictive distribution. We show
how our density estimation method makes it possible to improve current approaches for protein
structure prediction by comparing the performance of the so-called “whole” and “half” position
distributions. Current methods in the field are based on whole position distributions, as density
estimation for the half positions requires techniques, such as ours, that can provide good estimates
for small datasets. With our method we are able to demonstrate that half position data provides a
better approximation for the distribution of conformational angles at a given sequence position,
therefore providing increased efficiency and accuracy in structure prediction.
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1. Introduction
Computational structural genomics has emerged as a powerful tool for better understanding
protein structure and function using the wealth of data from ongoing genome projects. One
active area of research is the prediction of a protein's structure, particularly its backbone, from
its underlying amino acid sequence (Dill, Ozkan, Weikl, Chodera, and Voelz 2007).

Based on the fundamental work of Ramachandran, Ramakrishnan, and Sasisekharan (1963),
the description of the protein backbone has been simplified by replacing the (x, y, z) coordinates
of an amino acid residue's four heavy atoms (N, Cα, C, and O) with the backbone torsion angle
pair (φ, ψ) (Fig. 1). A standard visual representation is the Ramachandran plot, in which φ
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angles are plotted against ψ angles. Because of their importance to structure prediction and
their simple representation, a great deal of recent work has sought to characterize the
distributions of these angle pairs, with an eye toward predicting conformational angles for
novel proteins (Ho, Thomas, and Brasseur 2003; Xue, Dor, Faraggi, and Zhou 2008).

Datasets from the Protein Structure Databank (PDB) (Berman et al. 2000) can consist of over
ten thousand angle pairs, which provide ample data for even relatively unsophisticated density
estimation methods. However, when the data are subdivided, based on known characteristics
such as amino acid residue or secondary structure type at the relevant sequence position,
datasets quickly become small, sometimes having only a few dozen or a few hundred
observations. A number of approaches to smooth density estimates from simple binning
methods for the (φ, ψ) distributions have been proposed (Hovmoller, Zhou, and Ohlson
2002; Lovell et al. 2003; Rother, Sapiro, and Pande 2008), but they behave poorly for these
subdivided datasets. This is unfortunate, because these subsets provide structure prediction that
is more accurate, as it utilizes more specific information about a particular sequence position.
The issue is further complicated by the circular nature of this data, with each angle falling in
the interval (− π, π], which renders traditional techniques inadequate for describing the
distributional characteristics. Distributions for angular data, particularly mixture distributions
for bivariate angular data, are required.

Some methods have been proposed which exhibit better performance for small bivariate
angular datasets. Pertsemlidis, Zelinka, Fonson, Henderson, and Otwinowski (2005)
recommend estimating such distributions using a finite number of Fourier basis functions. This
method exhibits correct wrapping behavior, but requires the estimation of a large number of
parameters that may not be readily interpretable. Other models exhibit more intuitive behavior.
Mardia, Taylor, and Subramaniam (2007) fit finite mixtures of bivariate von Mises
distributions using the expectation-maximization (EM) algorithm. Dahl, Bohannan, Mo,
Vannucci, and Tsai (2008) used a Dirichlet process mixture (DPM) model and bivariate normal
distributions to estimate the distribution of torsion angles. However, neither of these methods
is entirely satisfactory, as the first requires the selection of the number of component
distributions, and the second cannot properly account for the wrapping of angular data.

We propose a nonparametric Bayesian model that takes the best aspects from Mardia et al.
(2007) and Dahl et al. (2008). Specifically, we use a bivariate von Mises distribution as the
centering and component distributions of a Dirichlet process mixture model. The use of a DPM
model offers advantages in that the number of component distributions need not be fixed, and
inference accounts for the uncertainty in the number of components. Using a bivariate von
Mises distribution, rather than a nonangular distribution, also provides estimates that properly
account for the wrapped nature of angular data. In addition, the model readily permits the
incorporation of prior information, which is often available for torsion angles.

Although some authors have studied Bayesian models for univariate angular data, to our
knowledge the Bayesian analysis of bivariate angular data, such as that arising in protein
structure prediction, has not been treated in the literature. We provide the results necessary for
Bayesian analysis of bivariate angular data, including the full conditional distributions and
conditionally conjugate priors, for a version of the bivariate von Mises distribution known as
the sine model (Singh, Hnizdo, and Demchuk 2002). Because of the complexity of this
distribution, methods for sampling from the posterior distribution are not obvious. Therefore,
we provide a Markov chain Monte Carlo (MCMC) scheme that mixes well without requiring
the tuning of any sampling parameters, and show how to produce density estimates from the
MCMC sampler.
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We use our method to address the bioinformatics question of what distributions should be used
when sampling to generate new candidate models for a protein's structure, a matter of
considerable interest to the structure prediction community. Recall the illustration in Figure 1,
which depicts whole and half positions on a peptide backbone. Current methods use data from
whole positions, so the (φ, ψ) angle pairs across positions for a protein are considered
independently. An alternative is to use the so-called half positions, which consist of ψ and φ
angles on either side of a peptide bond. Treating data as half positions allows for more precise
categorization, because these angle pairs are associated with two adjacent residue types, as
opposed to a single residue for whole positions. Because they make use of a finer classification
of the dataset, half position distributions are more accurate than those of the whole positions,
thus providing a better description of backbone behavior. Because of their specificity, datasets
for half positions are often relatively small, a situation that our proposed density estimation
technique handles well.

Section 2 of this article contains a review of past work in angular data analysis, including recent
work in mixture modeling. In Section 3 we describe our DPM model for bivariate angular data
that incorporates the von Mises sine model as a centering distribution in the Dirichlet process
prior. In Section 4 we also present the groundwork for a Bayesian treatment of the bivariate
von Mises distribution and develop the relevant distribution theory, including deriving the full
conditional distributions and conditionally conjugate priors for both the mean and precision
parameters. We also describe our MCMC scheme for fitting this model, and our associated
density estimation technique. Section 5 details the novel results from our method, comparing
the use of whole versus half positions for template-based protein structure modeling.
Concluding comments are found in Section 6.

2. Review of Previous Statistical Work
As our method builds upon previous univariate and bivariate work with angular data, we
provide a review of this field. We also discuss the recent results in bivariate mixture modeling.
It should be noted that the terms angular data and circular data are used interchangeably in
the literature.

2.1 Univariate Angular Data
A common option for describing univariate circular data are the von Mises distribution (e.g.,
see Mardia 1975), which can be characterized in terms of either an angle or a unit vector. In
terms of an angle φ ∈ (− π, π], the density is written:

where κ > 0 is a measure of concentration, μ is both the mode and circular mean, and Im(x) is
the modified Bessel function of the first kind of order m. This distribution is symmetric and
goes to a uniform distribution as κ → 0. As discussed by Pewsey and Jones (2005), this
distribution can be approximated by a wrapped normal distribution.

There is extensive Bayesian literature for this univariate distribution. Mardia and El-Atoum
(1976) derived the full conditional distribution and conditionally conjugate prior for μ, whereas
Guttorp and Lockhart (1988) determined the full conditional and conditionally conjugate prior
for κ, as well as the conjugate prior and posterior distribution for simultaneous inference on
μ and κ. Bagchi and Guttman (1988) developed the more general case including the
distributions on the sphere and hypersphere. More recently, Rodrigues, Leite, and Milan
(2000) presented an empirical Bayes approach to inference.
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2.2 Bivariate Angular Data
The original bivariate von Mises distribution was introduced by Mardia (1975) and was defined
with eight parameters. Rivest (1988) introduced a six parameter version. A five parameter
distribution is preferable, however, so that the parameters might have a familiar interpretation,
analogous to the bivariate normal.

Singh et al. (2002) introduced a five parameter subclass of Rivest's distribution, referred to as
the sine model. The density for angular observations (φ, ψ) is of the form:

(1)

for φ, ψ, μ, ν ∈ (−π, π], κ1, κ2 > 0, λ ∈ (−∞, ∞), and

(2)

This density is unimodal when λ2 < κ1κ2 and bimodal otherwise. In the unimodal situation, this
density has a direct analogue to a bivariate normal with mean (μ, ν), and precision matrix

Σ−1, where , , and . Note that this normal approximation
holds when the variance of the distribution is small (i.e., when κ1 and κ2 are large). This
correspondence to the bivariate normal distribution provides intuition for the behavior of the
sine model for various parameter values.

Bivariate angular data, particularly protein conformational angles, often have a distribution
with features that cannot be accommodated by a single von Mises distribution, even when
bimodality is permitted. Mardia et al. (2007) developed the cosine model, another five
parameter bivariate angular distribution, and suggested using the EM algorithm to fit several
finite mixtures of these models, each with a different numbers of components. They employed
the Akaike information criterion (AIC) for model selection. With this technique they estimated
the density of (φ, ψ) angle pairs in the myoglobin and malate dehydrogenase protein structures.

3. Bayesian Mixture Model with Von Mises Distributions
Our model for bivariate angular distributions offers both the flexibility of the DPM model and
the technical accuracy provided by the use of a bivariate angular distribution. The proposed
model is

(3)

(4)
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(5)

where p((φi, ψi)|μi, νi, Ωi) is a bivariate von Mises sine model in which Ωi is a 2 × 2 matrix
with both off-diagonal elements equal to − λi and diagonal elements κ1i and κ2i. This
parameterization makes Ωi analogous to the precision matrix of the bivariate normal
distribution. The G is a random realization from DP(τ0H1H2), a Dirichlet process (Ferguson
1973) with mass parameter τ0 and centering distribution H1H2. We take H1 to be a bivariate
von Mises sine model for the means μ and ν, and H2 to be a bivariate Wishart distribution for
the precision matrix Ω. An alternative noninformative prior on the means is obtained using a
uniform distribution on the square (−π, π] × (−π, π] for H1. In either case, the resulting model
is a Bayesian mixture model (Antoniak 1974), a broad class of models reviewed by Müller and
Quintana (2004).

In contrast, Dahl et al. (2008) modeled the distributions of conformational angles using a DPM
model that assumed bivariate normals as the component distributions. They took the sampling

model to be a bivariate normal distribution with precision matrix  and also took H1 to be
a bivariate normal. This approach is unsatisfactory for circular data and exhibits particular
problems when the underlying distribution has significant mass on the boundaries of the (−π,
π] × (−π, π] region. Our use of the bivariate von Mises distribution avoids this deficiency. Also,
in contrast to our model, the Dahl et al. (2008) model used two separate clusterings: one for
the mean parameters and one for the precision parameters.

For our torsion angle application, we are particularly interested in predicting new (φ, ψ) values
based on the existing data and our DPM model. Density estimation using DPM models was
first discussed by Escobar and West (1995). A nonparametric density estimate of the (φ, ψ)
space from data (φ, ψ) = ((φ1, ψ1), …, (φn, ψn)) is the posterior predictive distribution of a new
angle pair (φn+1, ψn+1), namely:

(6)

We show in the following sections how to estimate this density and how it can be used for
protein structure prediction.

4. Model Estimation
The integral of the posterior predictive density in (6) cannot be expressed in closed form, but
it can be computed through Monte Carlo integration. Specifically, let

 be B samples from the posterior predictive distribution
of (μn+1, νn+1, Ωn+1) obtained from some valid sampling scheme. Then

(7)
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Although Equation (7) can be evaluated for any value of (φn+1, ψn+1), for our purposes we
obtain density estimates by evaluating (7) on a grid of points and use linear interpolation
between them.

All that remains is to determine how to sample from the posterior distribution of the parameters.
The Auxiliary Gibbs sampler of Neal (2000) provides an MCMC update of the allocation of
objects to clusters. We are at liberty to choose any valid updating scheme for the mean and
precision parameters. Because the joint posterior distribution for all five parameters is
intractable, the full conditionals of the mean and precision parameters are a natural choice. We
now present our novel results regarding (1) conditionally conjugate priors for this model, (2)
full conditional distributions for both conditionally conjugate and uniform priors, and (3)
sampling methods for each full conditional distribution.

4.1 Full Conditional Distributions of Mean and Precision Parameters
Note that the sine model can be written either in terms of angles φi and ψi, or in terms of
coordinates on the unit circle xi = (cos(φi), sin(φi))T, and yi = (cos(ψi), sin(ψi))T. Let τμ = (cos
(μ), sin(μ))T, τν = (cos(ν), sin(ν))T, and for a vector δ = (a, b)T, let δ*: = (−b, a)T. The sine model
density from (1) can now be rewritten as

This formulation is used in the derivation of the full conditional distribution of the mean
parameters given in the Appendix.

The conditionally conjugate prior for the mean parameters is a von Mises sine model with
center x0 = (cos(μ0), sin(μ0))T, y0 = (cos(ν0), sin(ν0))T, and precision parameters κ10, κ20, and
λ0. Consider a set of observations (xi, yi), i = 1, …, n, each with known precision parameters
κ1i, κ2i, and λi. The full conditional distribution is a von Mises sine model with parameters:

The mean parameters of the full conditional distribution are the directions of the sums of the
observation vectors, whereas the concentration parameters are the magnitudes of those same
vectors. These bivariate results are analogous to the univariate work of Mardia and El-Atoum
(1976).

The conditionally conjugate prior can be interpreted as an additional observation with known
precision parameters. As observations with higher concentration values have greater weight in
determining the posterior distribution parameters, less informative priors are those with κ10,
κ20, and λ0 close to 0. This is consistent with the fact that a noninformative alternative prior to
the conditionally conjugate is a uniform distribution on (−π, π] × (−π, π], which is the limit of
the sine model prior when λ0 = 0 and κ10, κ20 → 0.
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When considering the full conditional distribution of the precision parameters, it may be
assumed that the known means are both 0. The conditionally conjugate prior for the precision
parameters is of the form:

(8)

Here the prior assumes the role of c observations from the von Mises distribution, and the prior
parameters Rφ0 and Rψ0 are the sums of the magnitudes in the x direction of the φ and ψ
components, respectively, of these observations. The parameter Rφψ0 is the sum of the products
of the magnitudes in the y direction. For this interpretation to hold Rφ0, Rψ0 and Rφψ0 must all
fall between −c and c. Notice that the conditionally conjugate prior, and corresponding
posterior distribution, are difficult to sample from because of the infinite sums of Bessel
functions. Notice also that these distributions do not guarantee precision parameters that will
give unimodal sine model distributions.

4.2 Markov Chain Monte Carlo Sampler
The posterior distribution of our model's parameters in Section 3 can be sampled using MCMC
via the Auxiliary Gibbs sampler of Neal (2000). This method requires the ability to directly
sample from the centering distribution. Because it is difficult to sample from the conjugate
prior for the precision parameters described in (8), we instead use the Wishart distribution for
H2(Ω) in (5). In addition, a Wishart prior guarantees that the sampled matrix will be positive
definite, which is equivalent to the restriction that ensures unimodality for the sine model
component distributions. Eliminating bimodality both simplifies posterior simulation, and
increases the resemblance of the sampling model to that of a mixture of bivariate normal
distributions. This substitution is also appealing because, for large values of κ1 and κ2, this von
Mises model is nearly equivalent to a normal distribution. In this case, the Wishart prior behaves
much like the conjugate prior distribution in (8).

Auxiliary Gibbs sampling requires a valid updating scheme for the model parameters. Direct
sampling from the full conditional distribution of the means is fairly straightforward. As
described previously in Section 4.1, the full conditional distribution of the means is given by
a von Mises sine model. A simple method to sample from this distribution is to use a rejection
sampler with a uniform distribution as the majorizing density. The implementation requires
some care, however, as the full conditional distribution is not always unimodal. The value of
the mode in the unimodal case is (μ̃, ν̃), whereas the values in the bimodal case depend on the
sign of λ̃ and are given in the Appendix of Mardia et al. (2007).

An update scheme for the concentration matrix Ω of a cluster is less straightforward. Regardless
of the choice of prior, the full conditional distribution of the precision parameters would be
difficult to sample from directly because of the infinite sum of Bessel functions and the fact
that the constant of integration is not known in closed form. However, this distribution is often
well approximated by the full conditional of the precision parameters from an analogous model
in which the data are assumed to be normally distributed, particularly when a Wishart prior is
used. An independence sampler using this equivalent Wishart distribution generally provides
a good acceptance rate. Furthermore, this proposal distribution is automatic in the sense that
the resulting sampling scheme does not require any tuning parameters. The use of this proposal
distribution is also consistent with previous findings for the univariate case, where the full
conditional distribution of κ was found to be approximately χ2 distributed (Bagchi and Guttman
1988).
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Computational Procedure

1. Initialize the parameter values:

a. Choose an initial clustering. Two obvious choices are: (1) one cluster for
all of the angle pairs, or (2) each angle pair in a cluster by itself.

b. For each initial cluster S of observed angle pairs, initialize the value of
the common bivariate von Mises parameters μ, ν, Ω by sampling from
the centering distribution H1(μ, ν)H2(Ω) of the DP prior.

2. Obtain draws from the posterior distribution by repeating the following:

a. Given the mean and precision values, update the clustering configuration
using one scan of the Auxiliary Gibbs sampler of Neal (2000).

b. Given the clustering configuration and precision values, update the values
of (μ, ν) for each cluster using the full conditional distribution in Section
4.1.

c. Given the clustering configuration and mean values, update the precision
matrix Ω for each cluster using the Wishart independence sampler
described in Section 4.2.

5. Template Based Modeling of Protein Structure
5.1 Motivation

In this section we use our proposed density estimation procedure to develop a more efficient
method for protein structure prediction. Methods specifically designed for angular data are
necessary because consideration of the periodicity is essential for certain amino acids, such as
glycine. Figure 2 shows density estimates based on the normal model of Dahl et al. (2008) and
our own von Mises sine model. Notice that the normal model is unable to wrap between the
angles −π and π. The von Mises model identifies a single peak that includes mass at all four
corners, whereas the normal model identifies separate peaks at each corner for this same portion
of the data.

We also conducted a quantitative comparison of these two DPM models. To investigate the
improvement of the von Mises over the normal, we generated density estimates for subsets of
size 200 for each of the 20 amino acid datasets, once using normal centering and component
distributions and once using the equivalent von Mises distributions. In each case we used the
prior parameter settings and clustering configuration from Dahl et al. (2008), with separate
clusterings for mean and precision parameters. We calculated the Bayes factor for the two
models using the full amino acid datasets, which ranged in size from 23,000 to 143,000
observations. Our Bayes factor was defined as

where M1 was our von Mises model estimate and M2 was the normal model estimate. The logs
of the Bayes factors ranged from 216 to 5,040 in absolute value, allowing us to draw clear
conclusions as to the superior model in each case. For 14 of the 20 amino acids, the Bayes
factor indicated that the von Mises model was superior. When we restricted our test set to only
amino acids with more that 2.5% of the observations within π/18 radians (10 degrees) of the
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border of the Ramachandran plot, 11 of the 12 datasets had a better fit with the von Mises
model. Although the normal model fails to capture the wrapped nature of torsion angle data,
our method provides robust and elegant estimates of the (φ, ψ) distributions from large or small
datasets.

We can use our nonparametric density estimation procedure to estimate the density of backbone
torsion angle distributions. This approach allows us to investigate how well distributions
obtained from Protein Data Bank (PDB) data approximate the (φ, ψ) distributions at particular
positions in a protein fold “family.” This is of interest because one popular technique in protein
structure prediction is to generate candidate conformations based on the structures of known
similar proteins. These fold families can provide a great deal of information about the unknown
structure, but most are very small, often with fewer than 10 members. This means that density
estimation purely within a family has not been feasible. In such cases, candidate distributions
are generated based on large datasets with similar characteristics to those of the sequence
positions in the known structures. As current search methods are mostly random walks in
conformation space (Dill et al. 2007; Lee and Skolnick 2008; Das and Baker 2008), improved
modeling of these positional densities increases the chance of finding a good structure. To
assess the quality of these PDB “category densities,” we compare density estimates from the
PDB to those obtained from threefold families: globins, immunoglobulins, and triose
phosphate isomerase (TIM) barrels. Each represents a classic architecture in structural biology.
The globins consist mostly of α-helical secondary structure, and the immunoglobulins consist
mostly of β-sheets. TIM barrels are a mixed structure with both α-helices and β-sheets. These
three families are fairly unique in that they have enough known members that density estimation
purely within a family is possible.

In contrast to standard methods, we not only consider the torsion angles around a sequence
position or residue, but also the (ψ, φ) torsion angle pair around the peptide bond (see Fig. 1).
Previously, this peptide centered view of torsion angles has only been applied to short peptides
(Anderson and Hermans 1988;Grail and Payne 2000). Recall that we refer to the residue torsion
angle pairs (φ, ψ) as “whole positions” and the peptide torsion angle pairs (ψ, φ) as “half
positions,” because they reside “half-way” between whole sequence positions. By
incorporating the characteristics of two residues, these half positions lead to a finer
classification of the dataset, and provide an effective approach to increasing the amount of
information known about a particular angle pair without increasing the complexity of the
underlying model beyond two torsion angles.

Each whole position can be described by which of 20 amino acid residues is present, and also
the type of secondary structure at that location. We define secondary structure in the same
manner as the Definition of Secondary Structure for Proteins (DSSP) program (Kabsch and
Sander 1983). The normal eight classes are condensed to four: helices (H), sheets (E), coils
(C), and turns (T). Residues without any specific structure are assigned to the random coil (C)
class. The β-turns and G-turns were combined into the turn (T) class. All helices were classified
as (H). Strand and β-bulges were combined into the extended strand (E) class. The 20 residues
and 4 secondary structure classes provide 80 possible classifications for whole position data.

Because a half position involves two residues, there are 400 categories when considering only
amino acid pairs and 6,400 when the 4 secondary structure classes are included. When
considering half positions, we take the same data as used for the whole positions and divide it
into a much larger number of groups, which thins out the data considerably. This reduction is
worthwhile, however, because every amino acid and secondary structure type exhibits unique
behavior visible on the Ramachandran plot. Using adjacent pairs of amino acids and structure
types, as the half positions do, gives even more specific information about a sequence position.
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As we will demonstrate, the use of half positions provides a substantial increase over the
available information provided by whole position data.

5.2 Methods and Diagnostics
The torsion angle distributions were estimated for the PDB whole and half positions, as well
as the three families of protein folds: globins, immunoglobulins, and TIM barrels. For whole
positions, in addition to the categories discussed before, we include a category ignoring
secondary structure type, for a total of 100 density estimates. The same was done for half
position densities, giving a total of 6,800 estimates.

For each of the three protein fold families, angle pairs for whole and half positions were
obtained for each sequence position. For instance, all 92 (φ, ψ) pairs at position 13 based on
the globins alignment were used to estimate the relevant density. The same was done for half
positions, but the (ψ, φ) angles were centered around the peptide bond between two residues.
These alignments produced 183 residue positions for the globins, 343 for the immunoglobulins,
and 274 for the TIM barrels.

For each dataset, two chains were run for 6,000 iterations, with the first 1,000 discarded as
burn-in. For post burn-in iterations, a draw was taken from the posterior distribution and the
resulting von Mises density was evaluated for a grid of 360 × 360 points. Using 1 in 10 thinning,
this gave B = 1, 000 samples to estimate the density using (7). For datasets with over 2,000
observations, one run of the MCMC sampler used the full dataset, whereas the other used a
subsample of 2,000 observations. We found that subsampling had little impact on the density
estimates.

Our von Mises model from Section 3 was used with mean prior parameters μ0 = ν0 = 0, and
Ω0 was a diagonal matrix with elements 1/π2. The small concentration values made this prior
largely noninformative. For the Wishart prior, we used υ=2 degrees of freedom and set the
scale matrix B to have diagonal elements of 0.52, and off-diagonal elements of 0 (making the
expected value υ/2B−1 = B−1). This again provided a diffuse centering distribution on the radian
scale. The mass parameter τ0 of the Dirichlet process was set to 1.

Convergence was evaluated using entropy as described by Green and Richardson (2001).
Figure 3 shows trace plots for the threonine-arginine half position, which provided the best
match from the PDB data for the globins 13–14 half position. Notice the rapid convergence
for all of our univariate convergence criteria, which was typical for our MCMC scheme.

5.3 Comparison of Whole and Half Position Density Estimates
To judge whether the whole or half position density estimates provided a closer match to the
density at a particular position of a protein family, we used the Jensen-Shannon divergence:

as a measure of distributional similarity, where DKL is the Kullback-Leibler divergence defined
by DKL(P, Q) = Σi P(i)log(P(i)/Q(i)). Both P and Q are density estimates from our proposed
procedure.

The positional density estimates were compared with all of the estimates from the PDB using
this divergence score. Whole position densities from each of the three fold families were
compared with the whole position category densities from the PDB, and half positions from
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the fold families were compared with the half position category densities from the PDB. The
best matches, those with the lowest divergence values, are plotted against position in Figure
4. It is evident that the half position comparisons produce lower divergence scores. The mean
minimum divergence for whole positions is 0.145, whereas the corresponding half position
value is 0.054. The paired sign test of the null hypothesis that the median minimum divergence
score for whole positions is less than or equal to that for half positions produced p-values less
than 0.0001 for each structure family. The plot shows that the half positions provide better
matches at the beginning and ends of the structures, which consist of coil secondary structure,
and in the sheet regions of the immunoglobulins. Whole positions perform best in helical
regions with a mean divergence of 0.066. Even then, half positions provide a better match for
helices with mean divergence 0.031. The worst matching cases are in areas with noncanonical
turns or unique coils, which correspond to the highest minimum divergence scores for all
structure families.

A specific example of this behavior can be seen in Figure 5, which shows the globins whole
position 13 with the closest matching PDB density compared with the half position 13–14 with
its matching half position density from the PDB. It can be readily seen from these figures that
the whole position matches fairly well, but also includes extraneous density. By instead
considering the half position of the associated peptide, we find a closer match. This is not
surprising because of the increased specificity of the half position densities from the PDB, not
to mention the increased number of categories available for comparison. For the globins in
Figure 5, the whole position density certainly shows a larger cross section of density than the
half position. These results suggest that the use of half position data as a substitute for whole
position data provides better results.

6. Discussion
We have presented a novel nonparametric Bayesian method for density estimation with
bivariate angular data. This method, unlike many currently used to estimate the density of (φ,
ψ) angle pairs, provides smooth estimates without requiring large datasets. This allowed the
estimation of the distributions for PDB half position data, as well as positional data from three
protein fold families. Using this new technique we were able to evaluate the common practice
of using whole position estimates for positional data. Our results indicate that half position
densities are more informative than the corresponding whole position estimates.

Our Dirichlet process mixture model performs well for density estimation of bivariate circular
data. In contrast to previous work in this area, it does not require the setting of a fixed number
of components for the mixture. By incorporating the bivariate von Mises sine model, we are
able to account for the wrapping of the data, and the sine model's equivalence to the normal
distribution allows for a straightforward interpretation and effective implementation of a
MCMC sampling scheme. This was made possible by our results regarding the full conditional
distributions for the mean and precision parameters.

We have demonstrated that our approach at half positions provides greater precision than the
use of whole positions for protein structure prediction. Unlike the fold families shown here,
most protein folds have very limited number of representatives in the PDB. For these fold
families, density estimation at each position, even using our method, is not feasible. Therefore,
the distributions used to approximate the backbone torsion angle space are obtained from the
PDB. When these distributions are inaccurate or too broad, as we see for the whole positions,
significant time is spent sampling the wrong areas of backbone conformation space. When
searching using a random walk in conformation space, this reduces the chance of finding a
good structure. A reliable reduction of the backbone search space using the half position
distributions is a significant improvement to all structure prediction methods. The only way
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such half position distributions can be precisely calculated is by using density estimation
methods, such as ours, that properly address the angular nature of the data and cope well with
smaller datasets.

We conclude by briefly presenting the results of a sensitivity analysis we performed for the
Wishart prior and DP mass parameter. Three different scale matrices were considered for the
Wishart prior. Each could be written as c2I, where I was the 2 × 2 identity matrix, and c took
values 0.25, 0.5, and 1.0. Figure 6 shows the resulting density estimates for globins position
13. The changes between the density estimates are not dramatic, and the effect is comparable
to that of varying the bandwidth in kernel density estimation methods. Other positions showed
similar behavior.

We also investigated the sensitivity to changes in the mass parameter. We set τ0 to 0.5, 1.0,
2.0, and 5.0. A comparison of these estimates for position 13 is given in Figure 7. The plots
all look very similar. This is generally the behavior of the other positions, although sometimes
the 5.0 case exhibits slight but noticeable differences.

Convergence of the Markov chains was generally good, but we did encounter occasional
difficulties, particularly when the mass parameter was small. However, although the trace plots
of entropy for the two chains might suggest convergence problems, the density estimates
generated by the separate chains were very similar. Therefore, we do not consider this to be a
major issue. On the other hand, if the mass parameter is very small severe convergence
problems can occur. As always, convergence diagnostics should be employed.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Appendix: Derivation of Relevant Distributions
Here we provide the derivations of the results from Section 4.1 regarding the conditionally
conjugate prior and posterior distribution for the case when we have data from a bivariate von
Mises sine model with unknown mean parameters and known precision parameters.

Recall the parameterization of the von Mises in terms of unit vectors from Section 4.1, where
xi = (cos(φi), sin(φi))T, yi = (cos(ψi), sin(ψi))T, τμ = (cos(μ), sin(μ))T, τν = (cos(ν), sin(ν))T, and
for a vector δ = (a, b)T, δ*: = (−b, a)T. For observations (xi, yi), i = 1, …, n from a bivariate
von Mises distribution with known κ1i, κ2i, and λi, the likelihood for τμ and τν is

Notice that  is equal to , and that for all vectors a, b, we have a*Tb* =
aTb, so
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Notice that the first two terms are consistent with a von Mises likelihood with

Using this notation, we have

So, in addition to the parameters defined previously, the likelihood is proportional to a von
Mises sine model with

The conjugate prior can be treated as an additional observation in the likelihood, and its
interpretation follows directly.
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Figure 1.
Diagram of protein backbone, including φ and ψ angles, whole positions, and half positions.
At the ith residue the φ angle describes the torsion around the bond Ni–Cαi, measuring the angle
between the Ci−1–Ni and the Cαi–Ci bonds, whereas the ψ angle describes the torsion around
the bond Cαi–Ci, measuring the angle between the Ni–Cαi and the Ci–Ni+1 bonds. (In the
graphic, CH represents a Cα atom and the attached hydrogen atom.) The torsion angle pair
(φ, ψ) on either side of a residue R is considered a whole position. Three such pairs are shown.
The torsion angle pair (ψ, φ) on either side of a peptide bond, between two residues, is
considered a half position. Two such pairs are shown.
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Figure 2.
Ramachandran plots for the 121,497 angle pairs that make up the PDB dataset for the residue
glycine, along with density estimates based on both the normal and von Mises distributions.
The normal model is from the work of Dahl et al. (2008), whereas the von Mises estimate is
based on our model in Section 3. Note that glycine spans almost the complete range of values
in both φ and ψ, which makes the use of a method that correctly models circular data critical.
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Figure 3.
Convergence diagnostics for threonine-arginine half position dataset.
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Figure 4.
A comparison of minimum divergence scores for whole versus half positions.
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Figure 5.
Ramachandran plots around globins position 13. (a) Density estimate and data for whole
position 13. (b) Density estimate and data for proline coil whole positions which, at a
divergence of 0.204, provide the best PDB match for globins whole position 13. (c) Density
estimate and data for half position between residues 13 and 14. (d) Density estimate and data
for threonine coil to arginine helix half positions which, at a divergence of 0.028, provide the
best PDB match for globins half position 13–14.

Lennox et al. Page 20

J Am Stat Assoc. Author manuscript; available in PMC 2010 March 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Density estimates for globins positon 13 with different scale matrices for the Wishart prior
distribution.
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Figure 7.
Density estimates for globins position 13 for assorted values of the mass parameter.
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