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Abstract
Tumor hypoxia or a reduction of the tissue oxygen tension is a key microenvironmental factor for
tumor progression and treatment resistance in solid tumors. Because hypoxic tumor cells have been
demonstrated to be more resistant to ionizing radiation, hypoxia has been a focus of laboratory and
clinical research in radiation therapy for many decades. It is believed that proper detection of hypoxic
regions would guide treatment options and ultimately improve tumor response. To date, most clinical
efforts in targeting tumor hypoxia have yielded equivocal results due to the lack of appropriate patient
selection. However, with improved understanding of the molecular pathways regulated by hypoxia
and the discovery of novel hypoxia markers, the prospect of targeting hypoxia has become more
tangible. This chapter will focus on the development of clinical biomarkers for hypoxia targeting.
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Introduction
Hypoxia is a common phenomenon in solid neoplasms. It arises when tissue oxygen demands
exceed the oxygen supply from the vasculature. Hypoxic regions develop within solid tumors
due to aberrant blood vessel formation, fluctuations in blood flow and increasing oxygen
demands from rapid tumor expansion.1 That hypoxia exists in human tumors was first
demonstrated by Thomlinson and Gray in 1955.2 It was subsequently noted that hypoxia limits
tumor cell response to radiation and chemotherapy and predisposes them to metastasis; these
findings resulted in substantial laboratory and clinical efforts to overcomethis
microenvironmental effect.1, 3–5 Unfortunately, most clinical trials targeting hypoxia have
yielded inconclusive results to date.6–10 The lack of improved outcomes from hypoxia
targeting could be partially attributed to poor patient selection for hypoxia targeted therapies.
11 Therefore, considerable efforts have been devoted to identify clinical markers for tumor
hypoxia. These hypoxic markers could be used to identify patients most likely to benefit from
a hypoxia-sensitizing treatment regimens. Finally it has been proposed that measurement of
hypoxia may also be a method to monitor treatment efficacy.

At the present time, there exist several clinical approaches for detecting tumor hypoxia.
However, none of these approaches represents a clear “gold standard” as agreed by the experts
in a recent hypoxia workshop that was convened by the National Cancer Institute.12 A reason
for the lack of an ideal biomarker is that there exist extreme spatial and temporal heterogeneities
in tissue oxygen levels due to the complex nature of blood supplies and cellular oxygen
consumption, and none of the current methods can completely capture this heterogeneity.
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Existing methods for assessing hypoxia differ from one another in several aspects, including
sampled tissue volumes (macroscopic versus microscopic), time intervals (seconds to hours),
compartment (intracellular versus interstitial) and type of hypoxia (chronic versus acute).
Despite their differences, these approaches or biomarkers can be categorized into 2 groups:
direct and indirect. Their advantages and disadvantages are detailed below and summarized in
Table 1.

Direct oxygen measurements in tissues
Needle Electrode

Direct approaches can be applied to tissue (needle electrodes, fiberoptic probes) or blood
(measurements or imaging of oxyhemoglobin saturation and oxygen diffusion). Polarographic
needle electrodes (pO2 histograph, Eppendorf, Hamburg, Germany) provided the first
convincing evidence that hypoxia existed in human solid tumors.13, 14 The sensing electrode,
mounted on the tip of a needle, is advanced via a step motor through the tissue, taking rapid
measurements (1.4 s) to avoid spurious readings from pressure artifacts caused by the needle.
A histogram of oxygen tensions (pO2) can then be obtained from multiple sampling points
along different tracks. Normal tissues typically show a Gaussian pO2 distribution with the
median value between 40–60 mm Hg; whereas tumors invariably show lower pO2
measurements (Figure 1). Clinical investigations with the microelectrodes have illustrated that
regions of hypoxia can be found in a wide range of human tumors, including cancers of the
brain, head and neck (HN), lung, breast, rectum, pancreas, cervix and prostate.15 Several
studies have showed that low tumor pO2, defined by either the median value or the hypoxic
fraction (% readings below 2.5 or 5 mm Hg), correlated with poor treatment outcomes in HN,
cervical, prostate and lung cancers.16–23 One study also found that tumor pO2 predicted for
pathologically persistent neck nodes in patients undergoing a neck dissection for clinical N2–
3 necks after chemoradiation treatment.24 Pooled data from several institutions in 397 head
and neck cancer (HNC) patients provided strong evidence that tumor pO2 is an independent
predictor for survival.25 In cervical cancers and sarcomas, lower pO2 has been associated with
increased risk of nodal and distant metastasis, respectively.21, 26, 27

Although the microelectrode technique can directly measure tumor pO2, it does suffer from
several drawbacks that make it difficult for general use. These include high machine cost,
invasiveness, tumor inaccessibility, pressure dependence, inter-observer variability, failure to
distinguish necrosis from hypoxia, and the lack of spatial information on hypoxia. In addition,
it primarily measures extracellular oxygen level at a low resolution of 500 cells or greater.
Therefore, although the microelectrode has been the most studied approach for assessing
hypoxia to date, it is unlikely that this technique can be used routinely to select for patients
with hypoxic tumor in large phase III clinical trials.28

Direct imaging
Different techniques can be used to directly image oxygen levels in tissues or blood based on
known properties of paramagnetic agents. One such technique is 19F MRI, which employs
injectable perfluorocarbons (PFC), whose 19F nuclear magnetic resonance spin lattice is highly
sensitive to oxygen, hence allowing measurement of vascular and tissue oxygenation.12 This
approach, however, is limited by the requirement of local injection of PFC compounds directly
into the tumor for imaging.

Another approach is the blood oxygen level-dependent magnetic resonance imaging (BOLD
MRI), whose image contrast rests on the balance between paramagnetic deoxyhemoglobin and
diamagnetic oxygehemoglobin and the effect of the latter on MR signals.12 Although BOLD
MRI does not require injection of an exogenous contrast agent, its signal can be influence by
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factors other than hypoxia including blood flow, CO2 tension, hematocrit, pH and
biphosphoglycerate. 29 In a recent study of 24 patients with prostate cancer undergoing radical
prostatectomy, BOLD MRI was performed preoperatively and correlated with pimonidazole
staining, an indirect marker for hypoxia (see below), using a co-registered histologic and
imaging grid map of whole mount sections. R2 (MR relaxivity parameter) maps from BOLD
MRI yielded high sensitivity but low specificity for defining hypoxic tumor regions stained
with pimonidazole.30

EPR or electron paramagnetic resonance imaging detects species with unpaired electrons.12

Molecular oxygen, which has 2 unpaired electrons, can be imaged when a biologically
compatible, inert free radical is introduced directly into the tumor. This approach is currently
still in preclinical models and is limited by the requirement for direct tumoral injection or
implantation of particulate paramagnetic materials.12 It does however, have a theoretical
advantage of allowing repeated measurement over a long period of time. To date, clinical
experience with these direct imaging approaches, specifically with regards to predicting
prognosis is limited and their utility as biomarkers for tumor hypoxia needs to be validated in
large clinical trials.

Indirect approach – Injectable markers
Immunohistochemical staining of 2- nitroimidazole compounds on tissue sections

Indirect approaches use injectable molecular reporters of oxygen as endpoints. These reporters
include 2-nitroimidazole compounds such as misonidazole (1-(alpha-methoxymethyl
ethanol)-2-nitroimidazole)31, pimonidazole (1-(2-nitro-1-imidazolyl)-3-N-piperidino-2-
propanolol)32, and EF5 (nitroimidazole[2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-
pentaflouropropyl) acetamide).33 These compounds form stable adducts with intracellular
macromolecules and this binding is prohibited at higher oxygen levels.34 Detection of these
adducts with antibodies can then provide quantitative information on the relative oxygenation
at cellular resolution.35, 36 In general, 2-nitroimidazole markers stain for areas of chronic
hypoxia, at pO2 levels below 10 mm Hg and are more sensitive at severe hypoxic conditions
than the microelectrode.36, 37 Although these compounds share a common ring structure and
the nitro group, which confer oxygen dependency, their behaviors are not the same due to the
different side chains, which significantly affect the pharmacokinetics, accumulation rates and
tissue distributions of these compounds. For examples, EF5 is significantly more lipophilic
than other 2-nitroimidazole markers, resulting in more even biodistribution in the body with
slower whole body drug elimination.38 Pimonidazole accumulation rate is more dependent on
pH than other compounds, resulting in more pimonidazole binding on the vessel side in
transient hypoxia.35 The differences in the pharmacokinetics and tissue distribution of these
agents have been exploited to analyze the hypoxic fluctuation in individual tumors in
experimental animal models. Double hypoxia marker assays, in which consecutive injections
of two different 2-nitroimidazole compounds were administered before and after treatment,
have been used to visualize spatial and temporal changes from carbogen breathing and
hydralazine infusion.39, 40 For an excellent review of injectable markers, please see Ljungkvist
et al.35

Though widely used in animal studies, there is minimal clinical data regarding the prognostic
significance of this approach in cancer patients. In a small study evaluating pimonidazole,
microvessel density count and carbonic anhydrase IX (CA IX) binding in 42 HNC,
pimonidazole staining was more pronounced at distance > 100 μm from blood vessels than CA
IX, suggesting that it is more specific for chronic hypoxia.41 High pimonidazole staining
correlated with a higher risk of locoregional relapse in patients treated with radiotherapy (RT)
alone but not in those treated with RT plus carbogen and nicotinamide, which were used to
modulate tumor hypoxia. In a small study of 16 sarcoma patients, severe hypoxia, defined as
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≥ 20% of EF5 binding in the primary tumors, correlated with increased risk of distant
metastasis.42 In 18 patients with supratentorial gliomas, increasing EF5 binding was associated
with higher tumor grade and shorter time to recurrence.43

This immunohistochemical (IHC) approach, though informative and elegant, is limited by the
requirement for exogenous drug administration, additional tumor biopsies for staining and
expertise in staining quantification. Because of these limitations, it has not been widely used
clinically and needs to be validated in larger studies. An on-going phase III trial is evaluating
the use of pimonidazole as a predictive marker. Patients with larynx cancer are randomized to
receive accelerated radiation therapy alone or the same treatment with carbogen and
nicotinamide.35 The result of this study will help to elucidate the role of pimonidazole as a
clinical hypoxia biomarker.

Imaging studies using 2- nitroimidazole compounds
These 2-nitroimidazole compounds can also be labeled with 18F and employed as special
tracers for hypoxia imaging using PET or SPECT imaging approaches. The most extensively
investigated 2-nitroimidazole tracer is 18Fmisonidazole (F-MISO). Typically, a tumor to blood
ratio of ≥ 1.2 has been used as a reasonable cut point between normoxia and hypoxia for F-
MISO. Tumor to muscle ratio of F-MISO has been shown to significantly correlate with tumor
hypoxic fraction as measured by the polarographic needle electrode in 16 HNC patients.44

Preliminary clinical data suggested that hypoxia imaging with F-MISO could be used to predict
treatment outcome and assess treatment response to RT and chemotherapy in solid cancers.
45–48 The largest series was in 73 HNC patients where pretreatment F-MISO imaging was an
independent prognostic factor for survival when fluorodeoxyglucose standard uptake value, a
measure of glucose metabolism, was removed from the model.45 More importantly, in 45
patients with pretreatment F-MISO PET imaging, hypoxic tumors were less likely to fail when
treated with a combined regimen of chemoradiation and the hypoxic cytotoxic agent
Tirapazamine (TPZ) when compared to a non-TPZ regimen.49 Serial F-MISO imaging at 3–4
weeks into the radiation course for HNC has also been performed in 2 studies, which showed
either eliminated or decreased F-MISO uptake in most if not all patients.50, 51 However, the
prognostic implication of decreased F-MISO uptake during treatment is not clear. Although
all patients with persistent or increased F-MISO uptake failed, a substantial portion of those
with improved uptake also recurred, making it hard to interpret the results of these studies.

Other PET tracers that have been investigated in patients are 18F-EF5, 18F-FAZA and 64Cu-
ATSM. Clinical data on the 18F-EF5 and 18F-FAZA are minimal with small series reporting
the feasibility of imaging patients with solid tumor.12, 52 Cu-ATSM (Copper (II) diacetyl-bis
(N4)-methylthiosemicarbazone) is activated under hypoxia by a different mechanism than the
2-nitroimidazole compounds and mechanistic studies suggested the involvement of the
mitochondria.53 It has been shown to correlate strongly with oxygen electrode measurements
in animal tumors and to be feasible to use for imaging tumor hypoxia in cancer patients.54 It
also enjoys the advantage of having a short half-life (23 minutes), which makes it possible to
perform serial imaging studies on the same patients.12 In two small series of less than 20
patients each, Cu-ATSM has been shown to accumulate in tumors in cervical and non-small
cell lung cancers (NSCLC) and its uptake pattern was predictive for treatment response in
NSCLC and survival in cervical cancers.55, 56

From the radiation-targeting standpoint, PET imaging with hypoxic tracers can theoretically
be combined with intensity-modulated radiotherapy (IMRT) for dose escalation to improve
local control. The ability of IMRT for dose painting provides a tantalizing possibility of
delivering higher doses to hypoxic regions visualized by PET tracers in the tumor without
increasing normal tissue toxicity. The premise of such dose escalation requires that hypoxic
regions in the tumor remain relatively stable before and during the course of IMRT treatment
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over several weeks. Serial F-MISO imaging at 3–4 weeks into the radiation course for HNC
suggested that the regions of persistent hypoxia, if present, were located in the pre-treatment
hypoxic volumes.50, 51 In addition, feasibility studies suggested that dose painting can be
applied to target hypoxic regions in the tumor using F-MISO or 18F-FAZA PET/CT-guided
IMRT.51, 57, 58 The main question is whether this is clinically achievable in patients, and
clinical trials for dose escalation using hypoxia PET imaging is warranted. However, since
PET-based hypoxia imaging requires expensive dedicated equipments for both imaging and
tracer generation, it is only available at selective academic institutions, which may limit its
general use.

Indirect approach – Tissue Endogenous markers
Endogenous molecular markers for tumor hypoxia represent proteins and genes whose
expressions are induced by hypoxic exposure. One of the most studied oxygen response
pathways is that mediated by the hypoxia inducible factor-1 (HIF-1), which regulates genes
that are involved in cell metabolism, angiogenesis, invasion, metastasis and apoptosis. HIF-1
and several of its downstream targets such as Glut-1 (glucose transporter-1), CA IX and
vascular endothelial growth factor (VEGF) have been widely investigated as prognostic
markers in HNC with mixed results. Table 2 summarized representative large clinical series
(>40 patients) that focused on the prognostic significance of HIF-1, CA IX and Glut-1 for
certain solid tumors (HN, cervix, breast and lung cancers). It is by no mean an exhaustive list
but it does show that in general, elevated expression of these markers portends poorer outcomes
in patients treated with non-surgical, and for certain sites, surgical therapies.

Other endogenous tissue makers that have been studied in relation to hypoxia include VEGF,
BNIP3 (Bcl-2/adenovirus E1B 19 kDA-interacting enzyme), Lysyl oxidase (LOX), Lactate
Dehydrogenase isoenzyme-5 (LDH-5), Plasminogen activator inhibitor-1 (PAI-1) and
Galectin-1.59–67 At the present time, the clinical relevance of these markers is unclear since
results are either conflicting such as those for VEGF 67–69 or intriguing as for LOX and LDH-5
but would need further validation from larger, more uniform series.

The advantage of endogenous markers is that levels of these proteins can be assessed on
archival materials, thereby allowing rapid correlation to treatment outcomes. In addition it
requires neither the injection of foreign material nor any additional invasive procedure beyond
that of a biopsy at diagnosis. A significant drawback to these approaches is that these proteins
can be regulated by factors other than hypoxia. For example, HIF-1α expression can be
influenced by several non-hypoxic stimuli including nitric oxide, cytokines (interleukin-β and
tumor necrosis factor-α), trophic stimuli (serum, insulin, insulin-like-growth factors) and
oncogenes (p53, Vsrc, PTEN, etc).70–73 Comparison of the staining patterns between
endogenous and injectable markers showed that the former, in general, stained more diffusely
and closer to the blood vessels than the latter, suggesting other modes of induction and
activation at a wider range of oxygen concentration.41, 74 In addition, there is minimal
correlation between intensity of endogeneous marker staining and tumor pO2. In the most
vigorous studies where tumor biopsies were performed along the paths of the polarographic
electrode and stained for HIF-1α, CA IX and Glut-1, there was no observed correlation between
any staining parameter and measured pO2.75–77

Other major drawbacks of endogenous tissue makers include the lack of standardization for
the IHC protocol and result interpretation for individual markers across different laboratories.
For example, different studies used different HIF-1 antibodies with different sensitivities and
binding affinities for the protein. The duration of tissue fixation is highly variable and extended
fixation time has been shown to reduce HIF-1α expression.78 Comparisons of results are further
hampered by diverse image evaluation techniques and different interpretations of positive
staining. While some studies employed quantitative image analysis, others used visual
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estimation of positive stained cell number and intensity. Moreover, while most authors assessed
only nuclear staining for transcriptional factors such as HIF-1α, others also included
cytoplasmic expression. Finally, since only a very small portion of tumor is assessed with
endogenous markers, this approach is prone to sampling bias and does not reflect hypoxia
heterogeneity in the entire tumor. These drawbacks make it less desirable to use individual
endogenous markers alone to select for patients with hypoxic tumors.

To circumvent this dilemma, suggestions have been made to combine several endogenous
markers together to improve hypoxia specificity. For example, gene expression analysis has
been used to generate a hypoxia gene signature or a hypoxia metagene to predict treatment
outcomes in several solid tumors, including HNC.79, 80 Chi et al described a gene array
signature for hypoxia in breast cancer patients that strongly predicted for poor outcomes.79

Using gene expression profiling of 59 HNC, Winter et al generated a hypoxia metagene by
identifying genes whose expression clustered with 10 known hypoxia regulated genes.80 They
found that this metagene was able to predict recurrence-free survival in an independent HNC
data set as well as overall survival in another breast cancer series. We have also used a
combination of gene expression and proteomic analyses to identify novel hypoxia induced
proteins. After confirming their hypoxic inducibility in cell lines and animal models, we
investigated their utility in combination with CA IX to predict outcomes by staining a HNC
tissue array with known tumor pO2. These studies resulted in a panel of 4 hypoxia markers
(CA IX, Lysyl oxidase (LOX), Galectin-1 and Ephrin A1) that can be used to predict treatment
outcomes in terms of cancer-specific survival.60 (Figure 2) These endogenous hypoxia
signatures, though promising, need to be validated in larger independent datasets before they
can be used in the clinical settings.

Indirect approach - Secreted hypoxia markers
Our laboratory has focused on identifying secreted markers of hypoxia that can be rapidly and
inexpensively measured in the blood. Two markers that have been tested clinically with mixed
results are VEGF and osteopontin (OPN). Although circulating VEGF levels were elevated in
cancer patients81, 82 and in those with acute hypoxia such as obstructive apnea83, the
relationship between tumor hypoxia and systemic VEGF levels is unclear. Dunst et al found
that serum VEGF levels independently correlated with hypoxic tumor subvolume in 56 HNC
patients.84 However, it also correlated with total tumor volume, hemoglobin level and platelet
counts. They did not report on the clinical significance of serum VEGF levels in terms of
treatment outcomes. In contrast, we did not find a direct relationship between plasma VEGF
and tumor pO2 in 48 HNC patients in our study (unpublished observations). We did however
found a small but significant relationship between OPN level and tumor pO2 in our patient
cohort.85 This was confirmed by Nordsmark et al.86 In addition, plasma OPN was an
independent and significant predictor for treatment outcomes in these patients and another
independent group of HNC patients.87 These results were confirmed by the DAHANCA group
in a larger cohort of HNC patients treated with radiation therapy +/− nimorazole, a hypoxic
cell radiosensititizer.88 Intriguingly, only patients with high pretreatment circulating OPN
levels benefited from nimorazole whereas those with low-intermediate levels did not,
suggesting that OPN may be use to select patients for hypoxia targeting. Further validation of
this marker is ongoing in another set of HNC patients treated with or without Tirapazamine
(TPZ), a hypoxic cell cytotoxin. Advantages of secreted markers for hypoxia is that they are
non-invasive, easy to measure, inexpensive and allow for serial measurements through the
course of therapies. However, they do suffer the same drawbacks faced by endogenous tissue
markers including the lack of method standardization and regulation by factors other than
hypoxia. In addition, spatial information is lost and contributions from non-cancerous tissues
and other pathological processes such as inflammation cannot be ruled out. Therefore,
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combining one or multiple of these markers with another approach of assessing hypoxia such
as imaging is more desirable than using them alone.

Conclusion
In summary there exist presently several ways or biomarkers for assessing hypoxia. However,
none of these approaches, by itself, can capture all the intricacies of tumor hypoxia and its
heterogeneity. Therefore, none is currently considered the “gold standard” biomarker for
hypoxia. In theory, a combination of biomarkers is more robust than a single marker; yet, there
is no current clinical data to support such a hypothesis. Further work is needed to validate the
utility of incorporating multiple biomarkers such as imaging plus tissue or blood markers to
identify patients with hypoxic tumors for future targeting.
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Figure 1.
An example of the pO2 distribution as measured by the polarographic electrode in (a) Control
normal subcutaneous tissue, (b) Involved neck node and (3) Primary head and neck cancer in
the same patient with a head and neck squamous cell carcinoma.
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Figure 2.
Cancer-specific survival by hypoxia marker score comprised of Galectin-1, Ephrin A1, Lysyl
Oxidase, CA IX cytoplasmic and CA IX membrane staining, where a score of 1 was assigned
to strong staining for each marker and a score of 0 to negative and week staining. This has been
adjusted for age and hemoglobin levels, 2 other significant factors on univariate analysis.

Le and Courter Page 15

Cancer Metastasis Rev. Author manuscript; available in PMC 2010 March 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Le and Courter Page 16

Ta
bl

e 
1

A
dv

an
ta

ge
s a

nd
 d

is
ad

va
nt

ag
es

 fo
r d

iff
er

en
t a

pp
ro

ac
he

s i
n 

as
se

ss
in

g 
tu

m
or

 h
yp

ox
ia

M
et

ho
d

E
xa

m
pl

es
M

ea
su

re
Sp

at
ia

l r
es

ol
ut

io
n

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es

PO
2 H

is
to

gr
ap

hy
Ep

pe
nd

or
f

el
ec

tro
de

 O
xy

Li
te

fib
er

 o
pt

ic
 p

ro
be

pO
2

0.
5 

m
m

 (t
ho

us
an

ds
of

 c
el

ls
)

•
D

ire
ct

•
R

ap
id

 re
al

-ti
m

e 
m

ea
su

re
m

en
ts

•
V

al
id

at
ed

 in
 h

um
an

 tu
m

or
s

•
In

va
si

ve

•
Tu

m
or

 in
ac

ce
ss

ib
ili

ty

•
Pr

es
su

re
 d

ep
en

de
nc

e

•
In

te
r-

ob
se

rv
er

 v
ar

ia
bi

lit
y

•
R

ea
di

ng
s a

ff
ec

te
d 

by
 n

ec
ro

si
s

•
N

o 
sp

at
ia

l i
nf

or
m

at
io

n

D
ire

ct
 im

ag
in

g
19

F-
M

R
I

B
O

LD
-M

R
I

EP
R

I

pO
2 o

r d
eo

xy
- H

b
0.

2–
1m

m
•

So
m

e 
ap

pr
oa

ch
 (B

O
LD

- M
R

I)
no

n 
in

va
si

ve

•
Sp

at
ia

l i
nf

or
m

at
io

n

•
So

m
e 

ap
pr

oa
ch

es
 (19

F-
M

R
I o

r E
PR

I)
re

qu
ire

 in
je

ct
io

n 
of

 c
on

tra
st

 m
at

er
ia

ls
lo

ca
lly

 o
r s

ys
te

m
ic

al
ly

•
M

in
im

al
 c

lin
ic

al
 d

at
a 

av
ai

la
bl

e

Ex
og

en
ou

s M
ar

ke
rs

EF
5

Pi
m

on
id

az
ol

e
C

hr
on

ic
 h

yp
ox

ia
1.

0 
um

 (s
in

gl
e 

ce
ll)

•
H

ig
hl

y 
se

ns
iti

ve

•
R

ep
ro

du
ci

bl
e

•
R

eq
ui

re
 d

ru
g 

in
je

ct
io

n

•
R

eq
ui

re
 e

xt
ra

 b
io

ps
ie

s

•
Sa

m
pl

in
g 

bi
as

En
do

ge
no

us
 h

yp
ox

ia
 m

ar
ke

r
H

IF
-1

C
A

 IX
G

lu
t-1

B
io

lo
gi

c 
hy

po
xi

a
1.

0 
um

 (s
in

gl
e 

ce
ll)

•
A

pp
ly

 to
 a

rc
hi

va
l t

is
su

es

•
N

o 
dr

ug
 in

je
ct

io
n

•
N

o 
ex

tra
 b

io
ps

ie
s

•
Le

ss
 h

yp
ox

ia
 sp

ec
ifi

c

•
V

ar
ia

bi
lit

y 
in

 st
ai

ni
ng

 &
 in

te
rp

re
ta

tio
n

•
Sa

m
pl

in
g 

bi
as

•
A

nt
ib

od
y 

sp
ec

ifi
ci

ty

Se
cr

et
ed

 m
ar

ke
rs

O
PN

V
EG

F
B

io
lo

gi
c 

hy
po

xi
a

N
/A

•
N

on
 in

va
si

ve

•
In

ex
pe

ns
iv

e

•
N

o 
bi

op
sy

 o
r d

ru
g 

in
je

ct
io

n

•
Se

ria
l m

ea
su

re
m

en
ts

•
Le

ss
 h

yp
ox

ia
 sp

ec
ifi

c

•
Le

ss
 tu

m
or

 sp
ec

ifi
c

•
Sp

ec
im

en
 p

ro
ce

ss
in

g 
cr

iti
ca

l

•
A

nt
ib

od
y 

sp
ec

ifi
ci

ty

PE
T-

ba
se

d 
hy

po
xi

a 
im

ag
in

g
18

F-
M

IS
O

18
F-

FA
ZA

18
F-

EF
5

18
FE

TN
IM

60
C

uA
TS

M
24

I-
IA

ZG
P

C
hr

on
ic

 h
yp

ox
ia

2–
10

 m
m

•
Sp

at
ia

l r
es

ol
ut

io
n

•
Se

ria
l m

ea
su

re
m

en
ts

•
R

T 
di

re
ct

ed
 ta

rg
et

in
g

•
R

ep
ro

du
ci

bl
e

•
R

eq
ui

re
s d

ed
ic

at
ed

 e
qu

ip
m

en
ts

 (t
ra

ce
r

ge
ne

ra
tio

n 
&

 im
ag

in
g)

•
Ex

pe
ns

iv
e

•
R

ad
ia

tio
n 

ex
po

su
re

•
Tr

ac
er

 sy
nt

he
si

s e
xp

er
tis

e

Cancer Metastasis Rev. Author manuscript; available in PMC 2010 March 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Le and Courter Page 17

M
et

ho
d

E
xa

m
pl

es
M

ea
su

re
Sp

at
ia

l r
es

ol
ut

io
n

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es
•

Lo
w

 se
ns

iti
vi

ty
 fo

r c
er

ta
in

 tr
ac

er
s

H
b:

 H
em

og
lo

bi
n

Cancer Metastasis Rev. Author manuscript; available in PMC 2010 March 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Le and Courter Page 18

Ta
bl

e 
2

Si
gn

ifi
ca

nc
e 

of
 H

IF
-1

, C
A

 IX
 &

 G
lu

t-1
 e

nd
og

en
ou

s m
ar

ke
rs

 fo
r s

el
ec

tiv
e 

so
lid

 c
an

ce
rs

, i
nc

lu
di

ng
 h

ea
d 

an
d 

ne
ck

, c
er

vi
ca

l, 
br

ea
st

 &
 n

on
-s

m
al

l c
el

l l
un

g
ca

nc
er

s

H
IF

 M
ar

ke
rs

H
ea

d 
&

 N
ec

k 
C

an
ce

r

A
ut

ho
r

H
yp

ox
ia

 M
ar

ke
r

# 
Pt

s
T

re
at

m
en

t
Su

rv
iv

al

A
eb

er
so

ld
89

H
IF

-1
α

98
R

T 
or

 R
T+

C
LR

C
, D

FS
, O

S 
(M

ul
tiv

ar
ia

te
)

K
ou

ko
ur

ak
is

90
H

IF
-1
α,

 H
IF

-2
α

75
R

T+
C

LR
C

, O
S 

fo
r H

IF
-2
α 

on
ly

 (M
ul

tiv
ar

ia
te

)

B
ea

sl
ey

91
H

IF
-1
α

69
S

Im
pr

ov
ed

 D
FS

, O
S 

(M
ul

tiv
ar

ia
te

)

H
ui

92
H

IF
-1
α,

 H
IF

-2
α,

 C
A

 IX
, V

EG
F

90
 (N

PC
)

R
T 

or
 R

T+
C

PF
S 

fo
r H

IF
-1
α 

+ 
C

A
 IX

 &
 H

IF
-1
α 

+ 
V

EG
F 

bu
t n

ot
 in

di
vi

du
al

 m
ar

ke
r

(M
ul

tiv
ar

ia
te

)

K
yz

as
93

H
IF

-1
α,

 V
EG

F
81

S
O

S 
fo

r V
EG

F,
 n

ot
 fo

r H
IF

-1
α 

(U
ni

va
ria

te
)

W
in

te
r9

4
H

IF
-2
α,

 C
A

 IX
14

0
S

C
SS

 &
 D

FS
 fo

r H
IF

-1
α 

(m
ul

tiv
ar

ia
te

); 
Im

pr
ov

ed
 w

ith
 ad

di
tio

n 
of

 H
IF

-2
α;

 N
o

si
gn

ifi
ca

nc
e 

fo
r C

A
IX

K
ou

ko
ur

ak
is

95
H

IF
-2
α,

 C
A

 IX
19

8
R

T 
(C

H
A

R
T 

vs
 c

on
ve

nt
io

na
l)

LR
C

, O
S 

fo
r b

ot
h 

(M
ul

tiv
ar

ia
te

)

H
IF

 M
ar

ke
rs

C
er

vi
ca

l C
an

ce
rs

B
ac

ht
ia

ry
96

H
IF

-1
α

67
R

T
PF

S,
 C

SS
 (M

ul
tiv

ar
ia

te
)

B
irn

er
97

H
IF

-1
α

91
S 

± 
R

T
D

FS
, O

S 
(M

ul
tiv

ar
ia

te
)

B
ur

ri9
8

H
IF

-1
α

78
R

T 
± 

C
LP

FS
 (U

ni
va

ria
te

), 
O

S 
(M

ul
tiv

ar
ia

te
)

H
ut

ch
is

on
99

H
IF

-1
α

99
R

T
N

o 
(D

FS
, M

FS
, L

R
FS

 a
s e

nd
po

in
ts

)

H
au

gl
an

d7
8

H
IF

-1
α

42
R

T
N

o 
(D

FS
 a

s e
nd

po
in

t)

H
IF

 M
ar

ke
rs

B
re

as
t C

an
ce

rs

D
al

es
10

0
H

IF
-1
α

74
5

S
D

M
FS

, O
S 

(M
ul

tiv
ar

ia
te

)

K
ro

nb
la

d1
01

H
IF

-1
α,

 V
EG

F
37

7,
 S

ta
ge

 II
, p

re
m

en
op

au
se

S 
+ 

R
T+

 C
/T

am
R

FS
 fo

r l
ow

 g
ra

de
 tu

m
or

s (
M

ul
tiv

ar
ia

te
)

Sc
hi

nd
l1

02
H

IF
-1
α

20
6 

(L
N

 +
)

S 
± 

C
D

FS
, O

S 
(M

ul
tiv

ar
ia

te
)

V
le

ug
el

10
3

H
IF

-1
α,

 C
A

 IX
, G

lu
t 1

16
6

S 
+ 

C
D

FS
 (O

nl
y 

H
IF

-1
α 

ev
al

ua
te

d 
&

 U
ni

va
ria

te
)

Tr
as

to
ur

10
4

H
IF

-1
α,

 C
A

 IX
13

2
S 

± 
R

 ±
 C

/T
am

D
FS

, M
FS

 fo
r H

IF
-1
α 

m
ai

nl
y 

(M
ul

tiv
ar

ia
te

)

H
IF

 M
ar

ke
rs

N
on

-S
m

al
l C

el
l L

un
g 

C
an

ce
rs

G
ia

tro
m

an
ol

ak
i 1

05
H

IF
-1
α,

 H
IF

-2
α,

V
EG

F
98

S
O

S 
fo

r H
IF

-2
α 

on
ly

 (M
ul

tiv
ar

ia
te

)

Cancer Metastasis Rev. Author manuscript; available in PMC 2010 March 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Le and Courter Page 19

H
IF

 M
ar

ke
rs

H
ea

d 
&

 N
ec

k 
C

an
ce

r

A
ut

ho
r

H
yp

ox
ia

 M
ar

ke
r

# 
Pt

s
T

re
at

m
en

t
Su

rv
iv

al

Sw
in

so
n1

06
H

IF
-1
α

17
2

S 
± 

R
T 

± 
C

O
S 

fo
r C

A
 IX

 o
nl

y 
(M

ul
tiv

ar
ia

te
)

K
im

10
7

H
IF

-1
α,

 C
A

 IX
74

, S
ta

ge
 I-

II
S

D
FS

 fo
r C

A
 IX

 O
nl

y 
(M

ul
tiv

ar
ia

te
)

C
A

 IX
 o

nl
y

H
ea

d 
&

 N
ec

k 
C

an
ce

r

B
ea

sl
ey

10
8

C
A

 IX
79

Su
rg

er
y

N
ot

 a
ss

es
se

d

K
ou

ko
ur

ak
is

10
9

C
A

 IX
75

C
R

T
LR

C
S,

 O
S 

(U
ni

va
ria

te
 o

nl
y)

Jo
na

th
an

11
0

C
A

IX
, G

lu
t-1

, G
lu

t-3
58

R
T 

+ 
A

R
C

O
N

B
et

te
r L

R
C

 &
 M

FS
 w

ith
 st

ro
ng

er
 C

A
 IX

 &
 G

lu
t-3

 (U
ni

va
ria

te
)

D
e 

Sc
hu

tte
r1

11
C

A
 IX

, G
lu

t-1
67

R
T 

± 
C

LR
C

, D
FS

 o
nl

y 
fo

r C
A

 IX
 +

 G
lu

t-1
 (m

ul
tiv

ar
ia

te
)

C
A

 IX
 o

nl
y

C
er

vi
x

H
ed

le
y1

12
C

A
 IX

10
2

R
T 

± 
C

N
o 

pr
og

no
st

ic
 si

gn
ifi

ca
nc

e

Lo
nc

as
te

r1
13

C
A

 IX
13

0
R

T
M

FS
, O

S 
(M

ul
tiv

ar
ia

te
)

C
A

 IX
 o

nl
y

B
re

as
t C

an
ce

r

Sp
an

11
4

C
A

 IX
 (m

R
N

A
)

25
3

S 
± 

R
T 

± 
C

/T
am

M
or

e 
re

si
st

an
ce

 to
 a

dj
uv

an
t s

ys
te

m
ic

 tr
ea

tm
en

t (
M

ul
tiv

ar
ia

te
)

B
re

nn
an

11
5

C
A

 IX
40

0,
 S

ta
ge

 II
, p

re
m

en
op

au
se

S 
+ 

R
 ±

Ta
m

C
SS

 (M
ul

tiv
ar

ia
te

)

H
us

sa
in

11
6

C
A

 IX
14

4
S

O
S 

(M
ul

tiv
ar

ia
te

)

C
hi

a
C

A
 IX

‘1
03

S 
+ 

R
T 

± 
C

/T
am

O
S 

(M
ul

tiv
ar

ia
te

)

C
A

 IX
 o

nl
y

N
on

 S
m

al
l C

el
l L

un
g 

C
an

ce
r

G
ia

tro
m

an
ol

ak
i1

17
C

A
IX

, H
IF

-1
α,

 H
IF

-2
α

10
7

S
O

S 
(M

ul
tiv

ar
ia

te
)

K
on

-N
o1

18
C

A
 IX

13
4

S
O

S,
 D

FS
 (U

ni
va

ria
te

 o
nl

y,
 n

ot
 m

ul
tiv

ar
ia

te
)

Sw
in

so
n1

19
C

A
 IX

17
5

S
O

S 
fo

r p
er

in
uc

le
ar

 st
ai

ni
ng

 p
at

te
rn

 (M
ul

tiv
ar

ia
te

)

G
lu

t-1
 o

nl
y

H
ea

d 
&

 N
ec

k 
C

an
ce

r

O
liv

er
12

0
G

lu
t-1

54
, O

C
 o

nl
y

S
LR

C
, F

FR
, C

SS
 (U

ni
va

ria
te

)

K
un

kl
e1

21
G

lu
t-1

11
8,

 O
C

 o
nl

y
S 

± 
R

T
O

S 
(m

ul
tiv

ar
ia

te
)

M
in

et
a1

22
G

lu
t-1

99
, H

P 
on

ly
C

R
T

PF
S 

(M
ul

tiv
ar

ia
te

)

G
lu

t-1
 o

nl
y

C
er

vi
ca

l C
an

ce
r

A
irl

ey
12

3
G

lu
t-1

12
1

R
T

M
FS

 (M
ul

tiv
ar

ia
te

)

Cancer Metastasis Rev. Author manuscript; available in PMC 2010 March 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Le and Courter Page 20

H
IF

 M
ar

ke
rs

H
ea

d 
&

 N
ec

k 
C

an
ce

r

A
ut

ho
r

H
yp

ox
ia

 M
ar

ke
r

# 
Pt

s
T

re
at

m
en

t
Su

rv
iv

al

M
ay

er
76

G
lu

t-1
47

S 
± 

C
 o

r R
T 

± 
C

O
S,

 P
FS

 (U
ni

va
ria

te
 o

nl
y)

G
lu

t-1
 o

nl
y

B
re

as
t C

an
ce

r

St
ac

kh
ou

se
12

4
G

lu
t-1

14
1

S 
± 

R
T 

± 
C

/T
am

N
o 

si
gn

ifi
ca

nc
e 

fo
r r

ec
ur

re
nc

e

G
lu

t-1
 o

nl
y

N
on

-S
m

al
l C

el
l L

un
g 

C
an

ce
r

M
in

am
i1

25
G

lu
t-1

47
S

O
S 

(M
ul

tiv
ar

ia
te

)

N
gu

ye
n1

26
G

lu
t-1

53
S 

± 
R

 ±
 C

N
o 

si
gn

ifi
ca

nc
e 

fo
r D

FS

Pt
: p

at
ie

nt
s;

 S
: S

ur
ge

ry
; R

T:
 ra

di
ot

he
ra

py
; C

: c
he

m
ot

he
ra

py
; T

am
: T

am
ox

ife
n;

 A
R

C
O

N
: C

ar
bo

ge
n 

an
d 

ni
co

tid
am

id
e;

 C
H

A
R

T:
 C

on
tin

uo
us

 h
yp

er
fr

ac
tio

na
te

d 
ac

ce
le

ra
te

d 
ra

di
ot

he
ra

py

O
C

: O
ra

l c
av

ity
 c

an
ce

r; 
N

PC
: N

as
op

ha
ry

ng
ea

l c
ar

ci
no

m
a;

 H
P:

 H
yp

op
ha

ry
ng

ea
l c

ar
ci

no
m

a;
 L

N
+:

 L
ym

ph
 n

od
e 

po
si

tiv
e;

 L
R

C
: l

oc
or

eg
io

na
l c

on
tro

l; 
D

FS
: d

is
ea

se
-f

re
e 

su
rv

iv
al

; P
FS

: P
ro

gr
es

si
on

-f
re

e 
su

rv
iv

al
:

O
S:

 O
ve

ra
ll 

su
rv

iv
al

; C
SS

: C
an

ce
r s

pe
ci

fic
 su

vi
va

l; 
LP

FS
: L

oc
al

 p
ro

gr
es

si
on

-f
re

e 
su

rv
iv

al
; M

FS
: M

et
as

ta
si

s-
fr

ee
 su

rv
iv

al
; F

FR
: F

re
ed

om
 fr

om
 re

la
ps

e

Cancer Metastasis Rev. Author manuscript; available in PMC 2010 March 9.


