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Temporally Diverse Firing Patterns in Olfactory Receptor
Neurons Underlie Spatiotemporal Neural Codes for Odors

Baranidharan Raman,">* Joby Joseph,'* Jeff Tang,' and Mark Stopfer!
'National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, and >Chemical Science and
Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8362

Odorants are represented as spatiotemporal patterns of spikes in neurons of the antennal lobe (AL; insects) and olfactory bulb (OB;
vertebrates). These response patterns have been thought to arise primarily from interactions within the AL/OB, an idea supported, in
part, by the assumption that olfactory receptor neurons (ORNs) respond to odorants with simple firing patterns. However, activating the
AL directly with simple pulses of current evoked responses in AL neurons that were much less diverse, complex, and enduring than
responses elicited by odorants. Similarly, models of the AL driven by simplistic inputs generated relatively simple output. How then are
dynamic neural codes for odors generated? Consistent with recent results from several other species, our recordings from locust ORNs
showed a great diversity of temporal structure. Furthermore, we found that, viewed as a population, many response features of ORNs were
remarkably similar to those observed within the AL. Using a set of computational models constrained by our electrophysiological
recordings, we found that the temporal heterogeneity of responses of ORNs critically underlies the generation of spatiotemporal odor
codes in the AL. A test then performed in vivo confirmed that, given temporally homogeneous input, the AL cannot create diverse
spatiotemporal patterns on its own; however, given temporally heterogeneous input, the AL generated realistic firing patterns. Finally,
given the temporally structured input provided by ORNs, we clarified several separate, additional contributions of the AL to olfactory
information processing. Thus, our results demonstrate the origin and subsequent reformatting of spatiotemporal neural codes for odors.

Introduction

Sensory systems sample the environment, translating external
stimuli into transient and sometimes enduring internal neural
codes or representations. In the olfactory system, volatile odor-
ants are detected in the periphery by olfactory receptor neurons
(ORNs), which transduce chemical stimuli into electrical signals
that are relayed downstream to the olfactory bulb (OB) or the
antennal lobe (AL). In the AL and OB, neural codes for odors take
the form of spatiotemporal patterns of activity distributed across
ensembles of principal neurons [projection neurons (PNs) in
insects, mitral cells in vertebrates] (Laurent and Davidowitz,
1994; Laurent et al., 1996; Giraudet et al., 2002). These odor-
evoked ensemble responses, which contain information about
odor identity, intensity, and timing (Laurent et al., 1996; Stopfer
et al., 2003; Brown et al., 2005; Bathellier et al., 2008), are reliable
over repeated trials and, particularly in insects, can be quite elab-
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orate, often consisting of sequences of excitation and inhibition
that together can long outlast the eliciting odor stimulus (Perez-
Orive et al., 2002; Brown et al., 2005). These dynamic patterns
change most rapidly during the odor’s onset and offset (Mazor
and Laurent, 2005). When responding to the middle portions of
lengthy odor presentations, the firings of principal neurons tend
to settle into stable excitatory or inhibitory patterns; at the en-
semble level, these steady-state epochs have been described, in the
language of dynamical systems analysis, as “fixed points” (Mazor
and Laurent, 2005; Bathellier et al., 2008).

How are these dynamic neural codes for odors generated? The
spatiotemporal odor response patterns have been thought to
arise primarily from excitatory and inhibitory neural network
interactions within the AL/OB (Meredith, 1986; Wehr and
Laurent, 1999; Laurent, 2002; Spors and Grisvald, 2002), an idea
supported, in part, by the assumption that ORNs respond to
odors with simple firing patterns that vary little in temporal pro-
file across the population of ORNs (Bazhenov et al., 2001a,b).
Recently, however, electrophysiological recordings from several
species (Michel and Ache, 1994; Ochieng et al., 1998; Hallem and
Carlson, 2006; Spors et al., 2006) have shown that ORNs can
respond to a single odor puff in a variety of ways. Here we exam-
ined the contributions of the ORNs themselves to establishing
spatiotemporal odor codes and reassessed the contributions of
the AL circuits to processing olfactory information. First, we
sought to characterize the temporal structures of odor-evoked
responses of ORNs in locusts. We found that responses of ORNs
are not temporally homogeneous across the population but,
rather, are temporally heterogeneous: the firing rates, and the
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rates of change of those firing rates, varied both with the type of
ORN and with the odor we presented. Using computational
models constrained by results of our recordings, we then ana-
lyzed the contributions of the temporal structure of ORN re-
sponses to subsequent processing by the AL circuits. Specifically,
we tested both in the model and in vivo the importance of tem-
poral heterogeneity in ORN firing patterns to the generation of
spatiotemporal responses within the AL. Finally, systematically
comparing the characteristics of odor codes in populations of
ORNs in the antenna and in ensembles of PNs in the AL, we
revealed the separate contributions of these circuits for establish-
ing the odor code.

Materials and Methods

Odor stimulation. Odors were delivered as described previously (Brown
et al,, 2005). Briefly, odorant solutions (neat unless noted otherwise)
were placed in 60 ml glass bottles. Odor pulses were delivered by injecting
a measured volume (0.1 L/min) of the static headspace above the odor-
ants into an activated, carbon-filtered air stream (0.75 L/min) flowing
continuously across the antenna. A large (11 cm) vacuum funnel was
placed behind the antenna to remove the delivered odorants. Odorants
used in our study were as follows: hexanol (HEX); hexanal (HXA); octa-
nol (OCT1, OCT10, OCT100; respectively, 1, 10, and 100% solutions
diluted in mineral oil); 3-octanol (30CT); linalool (LIN); geraniol
(GER); trans-2-hexen-1-ol (T2H1OL); trans-2-hexenal (T2H); farnesol
(FAR); octanoic acid (OCTAC); hexanoic acid (HXAC); methyl salicy-
late (MES); blend (BLND; a mix of all odorants); and grass blend (GRB;
a mix of odor components of grass including HEX, OCT, 30CT, and
T2H1OL).

Electrophysiology. Recordings were made from young adult locusts
(Schistocerca americana) of either sex raised in a crowded colony. To
make recordings from PNs, animals were immobilized, and the brain,
along with the antennal nerve, was exposed, desheathed, and superfused
with locust saline at room temperature as described previously (Laurent
and Davidowitz, 1994; Stopfer and Laurent, 1999).

ORN recordings were made from different types of sensilla on immo-
bilized, intact, or cut antennae. Sharpened tungsten electrodes or saline-
filled blunt glass micropipettes (~10 wm diameter, ~10 M()) were
inserted into the base of the sensilla to monitor ORN responses extracel-
lularly. A reference Ag/AgCl wire was inserted into the cut end of the
antenna or into the gut. Acquired signals were amplified using a differ-
ential amplifier (Grass P55). Sensillae contain multiple ORNSs; spike sort-
ing was achieved off-line with Spike-o-Matic software (Pouzat et al.,
2002) implemented in IGOR Pro (Wavemetrics). In our recordings from
ORN:Ss, spike amplitude changed somewhat as ORNs adapted to odors.
When sorting these spikes, we allowed each cell cluster to include events
with amplitude variability as long as different sorted clusters remained
well separated (by at least five times noise SD), and, within a cluster, an
appropriate interspike interval distribution was maintained throughout
an experiment. (We found that using multiple electrodes to record from
a given sensilla contributed very little to the success of spike sorting as
each electrode detected essentially the same waveform.) Examples of
spike sorting of ORN responses are shown in supplemental Fig. S6 (avail-
able at www.jneurosci.org as supplemental material). A total of 53 ORNs
were monitored. Our sample likely underestimates the full diversity of
ORN response patterns.

Electroantennogram (EAG) recordings were made using AgCl wires
inserted into the cut ends of isolated antennae. The acquired signals were
amplified with a DC amplifier (Brownlee Precision). Intracellular re-
cordings were made using sharp glass micropipettes (100—250 M) when
filled with 0.5 M potassium acetate) pulled by a horizontal puller (P87;
Sutter Instrument Company). Intracellular signals were sampled at 5 kHz
(LabView software; PCI-MIO-16E-4 DAQ cards; National Instruments)
and amplified in bridge mode (Axoclamp-2B; Molecular Devices). Bipolar
electrical stimulation was achieved by inserting saline-filled blunt glass
micropipettes (~10 wm diameter, ~10 M()) into the antennal nerve.
Current injections (2-5 uA) were applied through a digital stimulus
isolator (ISO-Flex; A.M.P.I.). Multiunit recordings from PNs were made
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using 16-channel, 4 X 4 silicon probes (NeuroNexus Technologies),
sampled at 15 kHz, and amplified with a custom 16-channel amplifier
(Biology Electronics Shop; Caltech, Pasadena, CA). Spike sorting was
achieved off-line using the best four channels recorded and consistent
with conservative statistical principles (Pouzat et al., 2002; Brown et al.,
2005) using Spike-o-Matic software (Pouzat et al., 2002) implemented in
IGOR Pro (Wavemetrics). Examples of spike sorting of PN responses are
shown in supplemental Fig. S7 (available at www.jneurosci.org as sup-
plemental material).

Receptor neuron model. Odor representation in the antenna was mod-
eled with a repertoire of 1000 ORNs consisting of 100 different types of
ORNSs (10 replicates of each type). The response of each ORN in the
model to a given odorant was characterized by the following parameters:
response amplitude (from prestimulus baseline to peak), latency, rise
and fall time constants, adaptation rate, and baseline response (see Fig.
3A). Parameter values were chosen to match those we observed in our
recordings from ORN:Gs.

When stimulated with an odorant, the ORN response, after the initial
latency period (randomly generated for each type from a uniform distri-
bution [0, 200 ms]), increased from its baseline firing rate with a rise time
constant (7,;,.) obtained from a uniform distribution [0, 600 ms]. The

ORN response amplitude to a given odor was determined as follows:
»
R} = O’( ‘Odor Z‘ . cos(@m,m) >,

where OR%,- is the three-dimensional selectivity or affinity vector of
receptor neuron i, Odor A is the three-dimensional vector that defines

the odor A, |OdorA| is the length of the odor vector that represents
concentration, 6 is the angle between the ORN selectivity vector and the
odor vector, p defines the receptive field width of the neuron (uniformly
randomly distributed between [1, 15]; small values of p create broadly
tuned ORNs, whereas larger values generate sharply tuned receptor neu-
rons), and o is a sigmoid function (o(x) = (1 + exp(—a,(x — a,))) "' [a,
=15, a, = 0.8]). When 60 was sufficiently large (6 = 82°), the maximum
response amplitude was set to zero to model the inhibitory ORN re-
sponses we (and others; Hallem and Carlson, 2006) observed in vivo.

To simulate results from our recordings of ORNs (and published re-
sults; Hallem and Carlson, 2006), we modeled two categories of ORN
responses with equal probability: those that phasically terminate quickly
after a strong initial response and those with more persistent, tonic re-
sponses. For ORNs with brief firings, responses were set to follow an «
function (t X exp(—2t/7,,.)). For ORNs whose responses persisted
throughout the duration of the odor pulse, the initial response from
baseline to peak amplitude followed ¢ X exp(—#/7,,) (until t = 7).
Subsequently, the responses decreased linearly over time depending on
adaptation rates obtained from a uniform random distribution between
(0.1, 1]. Finally, after the odorant was removed, the ORN responses re-
turned back to baseline following exp(—t/7g,;), where the fall time con-
stant (7g,,) for each ORN type was randomly picked from a uniform
distribution over the interval [0, 1200 ms].

To realize an ORN repertoire with heterogeneous odor selectivity, we
simulated multiple ORN types by using different randomly generated
affinity vectors, and by selecting a different set of values from the defined
uniform distributions for the other parameters. We generated homoge-
neous ORN populations (see Fig. 5A2) by uniformly applying the median
rise time constant and adaptation values and by setting the response
latency and fall time constants to fixed values (0 and 200 ms, respec-
tively), and we set all receptor neurons to the persistent firing category.
To create an ORN repertoire that had homogeneous amplitude (see Fig.
5A3), we set the peak firing rate to 0.75 for all ORNEs.

AL model. The AL model consisted of 100 PNs and 30 local neurons
(LNs). Each cell was modeled as a fast-spiking neuron using a computa-
tionally efficient map-based model (Rulkov et al., 2004). Our choice of
neuronal model was not critical; we obtained comparable results using a
different reduced Hodgkin-Huxley model (Izhikevich, 2003).

Each PN received multiglomerular inputs from 1 to 5% of ORN types.
These convergence values are a little higher than approximations (one to
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three per glomeruli) obtained in the locust AL (Laurent, 1996; Farivar,
2005). Our simulations, though, showed that the model’s properties were
robust within a broad range of convergence values; odor separability in
PN ensembles was consistent when up to 5% of ORN types converged on
a glomerulus, but, as expected, separability success dropped gradually
and monotonically as input from more types of ORNs were combined
(supplemental Fig. S3, available at www.jneurosci.org as supplemental
material).

Each LN received inputs from ~70% of the ORNs [in the locust,
LNs arborize extensively throughout the AL (Leitch and Laurent,
1996)]. Each PN also received fast GABA,-type (peak synaptic
conductance gin_pn,GaBA, 0.8 uS, synaptic time constant
TIN—PN,GABA, = 0TS, t X exp(—#/Ti\_pn,capa, ) and slow GABAg-type
(peak synaptic conductance g n_pn,Gapa, = 0-015 1S, synaptic time
constant 7y _pn,Gapa, = 150 ms, t X exp(—#/Tin_pn,Gaga,)) inhibi-
tory lateral inputs from 25% of the LNs (MacLeod and Laurent, 1996;
Bazhenov et al., 2001b). A small amount of uniformly distributed noise
([0, 5%]) was introduced into each cell to create variability across trials.
There were no excitatory lateral interactions between PNs; to date, none
has been identified in locust. Each LN received excitatory input from
75% of the PNs (peak synaptic conductance gpn—pn,cholinergic = 0-015
WS, synaptic time constant Tpy_in,cholinergic = > MS, ¢ X exp(—t/
TpN—1N,Cholinergic))- Als0, each LN received fast GABA ,-type (peak syn-
aptic conductance gn_inGapa, = 0-4 MS, synaptic time constant
TIN—PN,GABA, = 0 S, £ X exp(—t/Tiny_pn,Gasa,)) and slow GABA;-
type (peak synaptic conductance g;_yn,Gapa, = 0-0075 uS, synaptic
time constant Ty _;n,Gasa, = 150 ms, t X exp(—#/T n_pn,Gasag) 1N
hibitory lateral inputs from 50% of the remaining LNs (Bazhenov et al.,
2001a). No self-inhibition was included in the model. These connection
probabilities and other network parameters including the type of synap-
tic currents were constrained by estimates made from locust AL circuits
(Laurent, 1996; Leitch and Laurent, 1996; MacLeod and Laurent, 1996;
Farivar, 2005).

Response motif analysis. To analyze the PN response motifs induced by
electrical or odor stimulation, we first binned the PN spikes into non-
overlapping 200 ms windows. To be considered stimulus evoked, re-
sponses had to meet two criteria applied to each time bin (Perez-Orive et
al,, 2002): (1) amplitude: the firing rate in each trial had to exceed 3 SDs
of mean baseline activity; (2) reliability: the amplitude criterion had to be
met in at least 5 of 10 trials. The number of response transitions (excita-
tory to no response, excitatory to inhibitory, inhibitory to no response,
inhibitory to excitatory, no response to inhibitory, no response to exci-
tatory) was counted in time bins starting from odor onset to 3 s after odor
offset (20 time bins).

Trajectory analysis. To generate odor-evoked response trajectories, we
followed a procedure outlined previously (Stopfer et al., 2003; Brown et
al., 2005). Briefly, for the trajectories calculated from our physiological
records, odor-evoked responses of 53 ORNs (a subset of 46 ORNs was
used to generate hexanol intensity trajectories in Fig. 2 B) were binned
into 100 ms segments. Deviation from the baseline was computed as
Euclidean distance from the mean baseline vector. Velocity of the trajec-
tory was calculated as the magnitude of vector differences computed with
ensemble ORN and PN firing rates in successive nonoverlapping 200 ms
time bins. For trajectories calculated from the model, ORN responses
and PN spike counts were binned into consecutive 50 ms segments inde-
pendent of local field potential (LFP) cycle boundaries. For the purpose
of visualization, the high-dimensional response vectors were subse-
quently projected onto the first three principal directions (eigenvectors
of the response covariance matrix corresponding to largest eigenvalues)
that accounted for maximum variance in the data (Duda et al., 2000).

Classification of odors based on responses of ORNs. ORN spike counts
were binned into consecutive 200 ms segments so that responses in each
trial (3 s starting at odor onset) were represented by a 15-dimensional
unit vector (Frobenius norm). Classification of a trial was correct if the
Euclidean distance from that trial’s response was less than the distance to
means of responses elicited by other odors. For an analysis of instanta-
neous ensemble coding, spikes elicited by five odors in three ORNs were
segmented into 50, 100, and 200 ms bins. The mean three-dimensional
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vector (one dimension from each ORN) of the five trials for each odor
was used as the centroid for classification for the corresponding odor.

Correlation analysis. Twelve odorants belonging to four different
chemical classes were modeled in this study. Odorants that belonged to
the same class had odor property vectors that were set to be more similar
to each other than those belonging to different classes.

For the correlation analysis, ORN responses and PN spike counts were
binned into consecutive 50 ms segments. Pairwise correlation coeffi-
cients between activity patterns were computed at different response
times to quantify differences in responses to different odor pairs over
time (Friedrich and Laurent, 2001).

To evaluate differences between odor representations in ORNs and in
PN over time, the similarity of the initial ORN and PN response corre-
lation matrices (12 X 12 matrix) with those obtained at later response
times was computed as second-order correlations. The analysis was re-
peated after removing either GABA - or GABA-type inhibitory cur-
rents or both GABA - and GABA-type inhibitory interactions.

Comparison of odor representation in ORN and PN coding space. Fifty
odorants were used to compare the odor representations in populations
of ORNs and PNs. ORN responses and PN spike counts were binned into
consecutive 50 ms segments. The high-dimensional response vectors in
each time bin starting from 1 s before stimulus delivery to 3 s after odor
onset (80 samples per odor, 50 odors, giving 4000 samples) were individ-
ually projected onto the first two principal directions that accounted for
maximum variance in the data. To allow comparison of the intrinsic
dimensionality of the ORN and AL coding space, eigenvalues of the ORN
and PN response covariance matrices were divided by their sum and
plotted in descending order.

LFP and sliding-window cross-correlograms. The LFP in the model was
computed as the sum of action potentials in PNs (filtered between 5 and
55 Hz). Spectrograms for each PN and LN with the LFP were computed
in 200 ms sliding Hamming windows with 95% overlap and averaged
(data not shown). The pairwise cross-correlations obtained for different
PNs and LNs were then averaged.

Analysis of ORN convergence. To systematically explore the relation-
ship between the convergence of ORNs onto PNs and the separability of
odor responses in the model, we simulated ORN responses to 50 odors
and used different mixing matrices to homogeneously vary the number
of ORN types that were integrated (1-25 ORN types) to generate AL
input. Pairwise odor separability (1225 pairs, Euclidean distance mea-
sure) was computed for each convergence value and normalized by max-
imum distance to allow comparison. The means of the peak pairwise
distances were then plotted as a function of the convergence values.

Results

Odorants, but not electrical pulses, evoke reliable, complex
spatiotemporal patterns that outlast the stimulus

In the locust, ORNs distributed along the antenna send processes
to the AL. There, responses of follower neurons arise through the
interactions of the ORNs with two types of intrinsic neuron: the
excitatory PNs (analogous to mitral/tufted cells) and the LN, all
of which in the locust appear to be inhibitory (analogous to gran-
ule and other inhibitory juxtaglomerular neurons) (supplemen-
tal Fig. Sla, available at www.jneurosci.org as supplemental
material). Responses evoked by odors in PNs can consist of di-
verse, elaborate, and long-lasting temporal patterns that change
with, and thus contain information about, the quality, the inten-
sity, and the timing of odors (Laurent et al., 1996; Stopfer et al.,
2003; Brown et al., 2005; Bathellier et al., 2008); some typical
examples of multiphasic firing patterns elicited by different odor-
ants in one PN are shown in supplemental Fig. S1b (available at
www.jneurosci.org as supplemental material).

How are these complex firing patterns generated? In previous
work to determine the aspects of spatiotemporal odor codes con-
tributed by circuit interaction within the AL, Wehr and Laurent
(1999) bypassed the ORNs completely, instead activating the AL
directly by delivering electrical current pulses of varying profiles
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rate patterns only when driven by odor-
ants. In quantitative terms, the number of
transitions between excitatory and inhib-
itory response motifs in PNs was much
greater when responses were evoked by
odors (supplemental Fig. Sle, available at
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Our results confirmed the previous
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Figure1.

used for the analysis increased (see Materials and Methods).

to the antennal nerve. Although some of the current pulse profiles
used to artificially activate the AL had the effect of providing
spatially and temporally varied input to the central circuitry, the
response patterns of PNs elicited by electrical activation were
neither as diverse nor as elaborate and lengthy as those evoked by
pulses of odor.

Before beginning our own analysis, we repeated this experi-
ment to quantitatively compare the response patterns evoked in
PNs by simple square pulses of current with patterns evoked by
odorants. Supplemental Fig. S1c (available at www.jneurosci.org

ORNs responded to multiple odors with a variety of spatiotemporal patterns. 4, Raster plotsillustrate the responses of
two ORNs to multiple odors (10 trials each, bottom to top, 20 s intertrial interval; brown bar, odor pulse; for odor list, see Materials
and Methods). B, Raster plots illustrate the responses of 14 ORNs (recorded sequentially) to two odors. €, ORN firing patterns
contain information about odors. Classification success over time calculated from amplitude-normalized responses of three se-
quentially recorded ORNSs that responded to five odors demonstrates that, at every point during the odor response, temporal
structures in the ensemble of ORNs contain information about odor identity. Performance improved as the duration of sample bins

work (Wehr and Laurent, 1999) in that
temporally simple input could evoke pat-
terned responses in PNs. However, activa-
tion of the AL by simple square pulses of
current never resulted in the complex, re-
alistic responses that might be expected
from a circuit capable of generating pat-
terning on its own. Given that the previ-
ous results were supported, in part, by the
assumption that ORNs respond to odor-
ants with simple firing patterns, we con-
sidered that the realistic, complex
patterning evoked by odors in the AL might depend critically on
factors outside the AL, such as the temporal structure of odor-
elicited activity in ORN:Ss.

ORNs respond to odors with diverse temporal patterns

What are the characteristics of the antenna’s output to the AL,
and what roles does this activity play in establishing the spatio-
temporal neural codes for odors observed in the output of the AL?
To answer these questions, we first measured EAGs from isolated
locust antennae; this measure provides an assay of the summed
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output of ORNs. Previous models of AL~ A
function were based on input similar to
these EAG patterns (Bazhenov et al,
2001a). EAG responses evoked by differ-
ent odorants all showed relatively similar
and simple, nearly square, temporal pro-
files (supplemental Fig. S2a, available at
www.jneurosci.org as supplemental ma-
terial). However, since the EAG sums
population activity, it obscures any possi-
ble diversity in odor-specific temporal
structure contributed by individual recep-
tor neurons. Thus, we next characterized
the responses of the individual ORNs by G
making extracellular recordings from dif-
ferent types of sensilla on intact or cut

PC3
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Hexanal (4s) B Hexanal 100%

Hexanol (4s) Hexanol 100%

Octanol (4s) Hexanol 10%
) Hexanol 1%

Geraniol (4s

Hexanal (4s)
Hexanol (4s)
Octanol (4s)
Geraniol (4s)

Hexanol (4s)
Hexanol (1s)

antennae.
We examined the responses of 53 locust

ORNSs to many types and concentrations
of odorants including monomolecular

chemicals and complex, natural blends
(see Materials and Methods). We used

both brief (<1 s) and lengthy (4 s) pulses

of odor so we could probe both dynamic PC2

and static properties of the ORNSs. Brief
and lengthy pulse durations both ap-
proximate natural situations: locusts in
moving air distant from odor sources en-
counter intermittent and brief patches of
odor; locusts close to odor sources en-
counter odors for longer durations.

We found that responses of the ORNs
varied greatly in their tuning profiles and
response kinetics. ORNs could respond to
odorants with reliable spiking patterns that varied substantially in
strength (firing rate) and time course (delay and duration). A
single ORN could respond with different temporally structured
firing patterns for different odors (Fig. 1A), and a single odorant
could evoke differently structured responses in different ORNs
(Fig. 1 B). The timing of a given response’s onset and offset de-
pended on the ORN-odorant combination; an odorant could
evoke a rapid, excitatory response in one ORN (e.g., ORNb8—
hexanol) but produce a delayed response in another ORN
(ORNb2-hexanol) (supplemental Fig. S2¢, available at www.
jneurosci.org as supplemental material, provides a view of this
delay with an expanded time base). Not surprisingly, the proba-
bility of evoking a response in an ORN was related to the concen-
tration of the stimulus; in a given ORN, high concentrations of an
odorant could evoke responses, although lower concentrations
did not [e.g., only the highest concentration of octanol
(OCT100) evoked a response in ORN2a]. In some ORNs, odors
could elicit responses that greatly outlasted the duration of the
stimulus (ORN1a-hexanoic acid), as well as the duration of an
EAG deflection (data not shown). Also, in many ORNSs, odors
could elicit lengthy inhibitory responses during which spiking fell
well below the ORN's spontaneous firing rate (ORN1a—hexanol).
Some ORNs responded to odors with simple but reliable se-
quences of inhibition and excitation (ORNb14). In many re-
spects, these types of responses are evident in the ORNs of both
insects and vertebrates (Sicard and Holley, 1984; Michel and
Ache, 1994; Duchamp-Viret et al., 1999; Hallem and Carlson,
2006; Spors et al., 2006).

Figure 2.

component.

ORNs and PNs show similar response dynamics. A, Trajectories calculated from the odor responses of 53 ORNs over
time (first 3 principal components; see Materials and Methods) revealed odor-specific patterns with a baseline, fast transient
responses to odor onset, steady-state fixed-points activity, and off-transients that returned activity to baseline when the odor was
removed. Numbers on trajectories indicate time (seconds) past odor onset. B, Trajectories calculated from the responses of 46 ORNs
to hexanal (red) and three concentrations of hexanol (green) revealed odor-specific manifolds in which concentrations traced
trajectories of varying lengths (monotonic with intensity). C, A long odor pulse (4 s, green) elicited fixed-points activity, but a brief
pulse (15, purple) did not (50 ORNs). D, Trajectories calculated from the responses of 94 PNs evoked by the same set of odors used
in A revealed dynamical properties similar to those of the ORNs. FP, Steady-state fixed-points activity; BL, baseline; P, principal

To evaluate the information content of the temporal compo-
nent of responses of ORNs to odors, we performed a simple
classification analysis (see Materials and Methods) on a few
ORN s in our set that responded to multiple odors and multiple
concentrations of odors. Based on amplitude-normalized tem-
poral pattern alone, ORN1a alone (Fig. 1A) could be used to
classify six odors correctly on 76% of trials; ORN2a (Fig. 1A)
could be used to classify five odors correctly on 74% of trials.
Another ORN (supplemental Fig. S2b, available at www.
jneurosci.org as supplemental material) could be used to classify
three concentrations of octanol correctly on 80% of trials. Fur-
thermore, instantaneous classification success far exceeded
chance when ensembles of three ORNSs that responded to all five
odors in the stimulus set were analyzed together, with perfor-
mance that improved as the duration of the sample bin used for
the analysis increased (Fig. 1C). Thus, ORNs could represent
odors using both space (instantaneous ensemble responses) and
time (firing patterns).

We found that the subset of actively spiking ORNs changed
gradually and reliably over the time course of a lengthy odor
stimulus. At the onset of a lengthy (>1 s) odor pulse, a group of
rapidly and transiently firing ORNs (e.g., ORN6b—hexanal) and a
separate group of more slowly and tonically firing ORNs (e.g.,
ORNO9b-hexanal) both contributed to the odor response. But
within 1 s of the odor’s onset, the transiently active group of
ORN s ceased firing, leaving only the stable excitatory or inhibi-
tory responses of the subset of tonically spiking ORNs. Consistent
with this observation, a trajectory analysis (Stopfer et al., 2003;
Mazor and Laurent, 2005) examining the representation of
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lengthy 4 s odor pulses by groups of ORNs over time revealed
reliable three-stage population dynamics [n = 53 (Fig. 2a) and
n = 48 (Fig. 2b)]. These stages consisted of (1) a rapid, transient,
odor identity- and intensity-specific response that then (2) set-
tled within ~1500 ms into the steady-state activity characterized
as a “fixed point” (Mazor and Laurent, 2005) and then, (3) upon
odor offset, a second burst of transient activity, leading to the
response’s gradual return to baseline. Brief 1 s odor pulses elicited
responses in ORNSs that traced response trajectories similar to
those evoked by longer odor pulses, showing these response tra-
jectories are reliable. However, brief pulses did not evoke fixed
points (Fig. 2C) (n = 50).

Like odor responses in ensembles of PNs (Fig. 2 D) (n = 94), odor
responses in ORN's consisted of spatiotemporal patterns of spiking.

J. Neurosci., February 10,2010 - 30(6):1994-2006 * 1999

What roles might these complex peripheral
responses play in establishing neural codes
for odors in the AL?

Odor coding by populations of ORNs

To allow us to systematically and compre-
hensively explore how response features
we had observed in our recordings from
ORNSs could influence responses in the
AL, we constructed a two-part computa-
tional model consisting of ORNs and AL
circuitry. The model’s first part was a sim-
ple parametric simulation of the ORN
population (n = 1000 ORNs; see Materi-

Odor coding in model ORNs. A, In a parametric model of ORNs, the response (firing rate) evoked by an odorant was
characterized by its rise, saturation, and fall time constants; its peak amplitude; and its rate of adaptation. For each model ORN,
parameters were selected at random from a range determined by our recordings from locust ORNs. B, Our model’s diverse ORN
responses were constrained such that the sum of its odor-elicited activity (model EAG, red traces) evoked by brief to prolonged
stimuli match actual EAG recordings from locust antennae (blue traces). Brown bars indicate odor presentations. ¢, Model ORN
population response. Responses of 100 different types of model ORNs to a single odor (odor A) presented at three different
concentrations, and to a different odor (odor B), are shown. D, Model ORN population response trajectories (first 3 principal
components) elicited by three concentrations of an odorant and by pulses (1 s) of three different odors show odor manifolds on
which different concentrations traced trajectories of different lengths. E, Trajectories show model ORN population responses over
time, elicited by odor pulses of three different durations: 500 ms, 1s,and 4 s. Numbers on the trajectories indicate time (seconds)
past odor onset. As in vivo (see Fig. 20), brief odor pulses (0.5, 1'5) generated only transient onset and offset response dynamics,
whereas a long odor pulse (4 s) elicited a stable, fixed point (FP) between odor onset and offset. BL, Baseline; PC, principal component.

als and Methods). In this simulation, re-
sponses (firing rates) evoked in an ORN
by a given odorant were characterized by
five parameters (as shown in Fig. 3A): la-
tency; rise time; fall time; peak amplitude;
and rate of adaptation. Based on our re-
cordings from locust ORNs, we modeled
two categories of ORN response (with
equal probability): those that phasically
terminate quickly after a strong initial re-
sponse [e.g., ORND6 (Fig. 1B)] and those
with persistent, tonic responses [e.g.,
ORNDY (Fig. 1 B)]. To simulate an ORN’s
sensitivity to more than one type of odor-
ant, we defined each odorant as an “n”-
dimensional vector (Raman et al., 2006)
of abstract molecular features (to repre-
sent characteristics such as carbon chain
length, functional group, and charge dis-
tribution), and we defined the chemical
selectivity or affinity of an ORN as a sim-
ilar vector of features. The response of an
ORN to a given odorant was determined
by the similarity of the ORN's selectivity
vector and the odorant’s feature vector
(see Materials and Methods). In our
model, tuning width was uniformly and
randomly distributed from sharp to
broad. Guided by results obtained in
Drosophila (Hallem and Carlson, 2006),
model ORNs converging onto the same
glomerulus had similar response profiles,
affinities, noise levels, and time constants
(although a strict convergence ratio was
not critical for the model’s function)
(supplemental Fig. S3, available at www.jneurosci.org as supple-
mental material). Our model of peripheral responses to odors
was not intended to realistically reflect mechanisms underlying
the function of ORNSs, but rather to allow us to systematically
explore the significance of firing pattern heterogeneity and other
characteristics of the ORNS’ responses to odors.

We tightly constrained our receptor model parameters in two
ways to generate ORN responses like those we observed in our
electrophysiological recordings. First, the model’s summed ORN
population responses had to match EAG responses we recorded
in vivo from locust antennae (Fig. 3B); second, all response pa-
rameters were set such that odor responses of individual model
ORNSs had to qualitatively match responses we recorded in vivo
from locust ORNs (Fig. 3C). Increasing concentrations of an
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odor recruited increasing numbers of re-
ceptor types, and different odors elicited
responses in different but overlapping sets
of receptor types, as we and others have
observed in vivo (Malnic et al., 1999; Hal-
lem and Carlson, 2006).

Because responses of individual model
ORN:Ss varied in their temporal structure,
the population of receptor neurons driven
to spike by a given odor was not constant
but varied during the course of odor pre-
sentations. Trajectory representations of
the model ORN population responses
(Fig. 3D, E) (see Materials and Methods)
showed that, in several respects, the en-
semble responses of model ORNs resem- B
bled the ensemble responses of real ORN's
and PNs (Fig. 2). When stimulated by
brief odor pulses, model ORN responses
traced closed paths away from, and then
back to, the origin (the point signifying
spontaneous activity). Model ORN re-
sponses formed manifolds for odor iden-
tity that encompassed trajectories for
odor intensity (Fig. 3D). Furthermore,
when stimulated by lengthy odor pulses
(>1s), model ORN response trajectories
settled into fixed points (Fig. 3E). These
results show that our model successfully
mimicked the dynamical properties of the
ORNs we had recorded in vivo and pro-
vide additional evidence that the odor re-
sponse dynamics well characterized in the
AL already exist in the ORNS.

PC3

Figure 4.
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Glomeruli

Odor coding in a model AL. 4, The AL network model. A population of 1000 ORNs (10 each of 100 different receptor
types) provided temporally heterogeneous input to a model AL in which ORNs of the same type converged to the same glomerulus
(although precise convergence, not known to exist in the locust, was unnecessary; see Materials and Methods and supplemental
Fig. S3, available at www.jneurosci.org as supplemental material). The AL network comprised 100 excitatory PNs and 30 GABAergic
LNs. B, A trajectory analysis (first 3 principal components) of model PN ensemble activity revealed transient dynamics elicited by
brief odor pulses (500 ms, 1) and fixed points elicited by a long odor pulse (4 s), matching results obtained in vivo (see Fig. 2C)
(Mazor and Laurent, 2005) and similar to responses of model ORNs (see Fig. 3£). C, Model PN response patterns formed manifolds
for odoridentity with subtrajectories for odor intensity, as in vivo (Stopfer etal., 2003) and similar to responses of model ORNs (see

Fig. 3D). FP, Fixed points; BL, baseline; PC, principal component.

Odor coding in the AL
To examine how the spatiotemporal out-
put of the ORNs is subsequently processed, we prepared the sec-
ond part of our computational model: a simulation of the AL
network, consisting of PNs and LNs, and constrained by pub-
lished descriptions of locust neural circuitry (Fig. 4A) (see Mate-
rials and Methods) (Laurent, 1996; Leitch and Laurent, 1996;
MacLeod and Laurent, 1996; Bazhenov et al., 2001a; Farivar,
2005). We used the output of our simulation of the population of
ORN s as the input to our model of the AL. We found that, as a
population, the model PN responses changed with both the iden-
tity and intensity of the odor stimulus (Stopfer et al., 2003). A
trajectory analysis of our model’s PN ensemble responses re-
vealed fixed points elicited only by long odor pulses (Fig. 4B)
(Mazor and Laurent, 2005) and revealed concentration-specific
trajectories traced on odor-specific manifolds (Fig. 4C) (Stopfer et
al., 2003). These results match those we had obtained in vivo (Fig. 2).
We used our combined ORN-AL model to evaluate the prop-
erties of input to the AL needed to generate realistic firing pat-
terns in groups of PNs. Given temporally heterogeneous output
from ORNs (Fig. 5A1), our model PNs individually displayed a
rich repertoire of complex spatiotemporal firing patterns that
often included multiple transitions between periods of excitation
and inhibition (Fig. 5B1). We found the diversity of PN patterns
was significantly reduced (Fig. 5B2) (Sign test, p < 0.0001) when
we provided temporally homogenous input to the AL (Fig. 5A2)
(see Materials and Methods). When we provided temporally het-
erogeneous input with homogenous amplitudes (Fig. 5A3), we

could generate firing patterns in PNs no different (Fig. 5B3) (Sign
test, p = 0.3222) from those elicited by the full diversity of ORN
responses. Thus, heterogeneity in the response time constants of
ORNs rather than heterogeneity in response amplitude was the
key requirement for generating complex firing patterns in PNs.
Figure 5C shows that the firing patterns of individual model PNs
showed realistic complexity (quantified as the number of transi-
tions between periods of excitation and inhibition; see Materials
and Methods) only when they were driven by temporally heter-
ogeneous input from ORNS.

The spatiotemporal structures generated by our combined
ORN-AL model were reliable, repeatable, and substantially more
complex, enduring, and realistic than those arising from previous
models based on simple, homogenous ORN activity (Bazhenov et
al., 2001a,b). Given the realistic temporally heterogeneous out-
put of our simulated ORN set, our model of the AL successfully
mimicked the odor response properties of the PN ensemble.

AL patterning requires temporally heterogeneous input

from ORNs

The results of our computational model (Fig. 5) led us to predict
that the AL cannot generate realistic, temporally structured out-
put in PNs unless it receives temporally heterogeneous input
from ORNS. To test this prediction in vivo, we made use of our
finding that brief odor pulses elicit only heterogeneous ORN ac-
tivity, but that long odor pulses elicit homogenous ORN activity
during the fixed points (Fig. 2). By varying the durations of odor
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delivery and removal) but settled down to
the baseline level during the fixed point.
If the AL can generate temporally struc-
tured patterns on its own, then the PN en-
semble response should display rapidly
shifting patterning when the AL is given ei-
ther temporally heterogeneous or tempo-
rally homogenous input. In quantitative
terms, the velocity of the PN ensemble re-
sponse should remain high throughout
both transient and fixed points of ORN
activity. Our recordings from PNs re-

vealed high-trajectory velocities when
the ORNs provided heterogeneous input

% I Heterogeneous amplitude (A2)
o 60 [l Heterogeneous time (A3)
+*

40

20

(Fig. 6C; individual odor velocity traces
are shown in supplemental Fig. S4, avail-
able at www.jneurosci.org as supplemen-

tal material). However, when the output

of the ORNs shifted to the homogenous

[l Heterogeneous amplitude and time (A1)

state, PN trajectory velocity dropped to
the baseline level (Fig. 6 D). Thus, con-
firming our model’s prediction (Fig. 5),
the AL does not generate temporally
structured response patterns except when
provided temporally heterogeneous input
from ORNSs.

Olfactory information processing by

AL circuits

Our physiological and computational re-
sults revealed that many features of odor
codes (spatiotemporal patterns, details of
response dynamics, partitioning of odor
identity and intensity) are driven directly
by ORNs. What then are the contribu-

2 3 4 5 6
# Response transitions

Figure 5.

see Materials and Methods). These differences were statistically significant (see Results).

pulses, we could manipulate the temporal structure of the input
to the AL, allowing a controlled shift from heterogeneous to ho-
mogenous response kinetics.

Figure 6 A shows the mean rate of change (velocity; see Mate-
rials and Methods) of the ORN ensemble response elicited by
brief odor pulses (1 s; individual velocity traces for different
odors are shown in supplemental Fig. S4, available at www.
jneurosci.org as supplemental material). Brief odor pulses acti-
vated the population of ORNs in a temporally heterogeneous
manner: the response consisted entirely of rapidly shifting on-
and off-transients. Throughout the odor’s duration, ORN pat-
terning velocity greatly exceeded the baseline level. Long odor
pulses, however, evoked both heterogeneous and homogenous
responses. Figure 6 B shows the mean velocity of the ORN ensem-
ble response to long odor pulses (4 s). ORN patterning velocity
was high during the on- and off-transients (within 1 s of odor

PNs require input with heterogeneous time constants to generate realistic firing patterns. A, Model ORN firing
patterns with heterogeneous time constants and heterogeneous response amplitudes (firing rates; A7) (see Materials and Meth-
ods); homogeneous time constants and heterogeneous response amplitudes (42); and heterogeneous time constants and homo-
geneous response amplitudes (43). Brown bars indicate odor pulses. B7, B3, When driven by temporally heterogeneous input
from model ORNs (41, A3), the model PNs (first trial shown as an intracellular current trace, following trials shown as rasters)
exhibited arich repertoire of lengthy and complex odor-evoked spatiotemporal patterns that qualitatively matched our recordings
made in vivo (see Results). B2, When provided input from ORNs with homogeneous time constants, model PNs responded simply
(A2). €, Histogram shows heterogeneous input caused PNs to generate more complex firing patterns (more response transitions;

7 tions of the AL circuits to odor coding?

Inlocusts and other insects, odors have
been shown to elicit the oscillatory syn-
chronization of AL neurons (Laurent and
Davidowitz, 1994; Ito et al., 2009; Tanaka
etal., 2009). In a few species (Dorries and
Kauer, 2000; Ito et al., 2006), odors can
elicit the oscillatory synchronization of
ORNs. However, we never observed oscil-
latory synchronization among the ORNs
we recorded in vivo from locusts; this
characteristic of the AL’s response to
odors arises entirely within the circuitry of the AL. Our model of
the AL mimicked the odor-elicited, ~20 Hz oscillations observed
in the locust (Fig. 7A). An analysis of subthreshold activity in
model PNs and LN cross-correlated with the LFP revealed tran-
sient synchronization that was cell and odor specific (data not
shown) as observed in vivo (Laurent and Davidowitz, 1994). Fig-
ure 7B shows these transient oscillations in sliding-window cross-
correlation diagrams obtained by averaging across all of the
model’s PNs (left) and LNs (right). The interval between the
peaks is ~50 ms, corresponding to ~20 Hz oscillations, as ob-
served in vivo. Consistent with previous physiological and com-
putational results (MacLeod and Laurent, 1996; Bazhenov et al.,
2001b), our model demonstrated that GABA ,-type inhibitory
currents originating from LNs within the AL underlie these odor-
evoked oscillations (supplemental Fig. S5, available at www.
jneurosci.org as supplemental material).
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We next used our model to explore
changes in odor-evoked response patterns
over time in the populations of ORNs and
PNs (Friedrich and Laurent, 2001). Figure ORNs
7, Cand D, shows pairwise correlations of
ORN and PN activity patterns evoked by 2
12 odors from four odor classes (see Ma- 0
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terials and Methods) at five points in time
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ORNs (Fig. 7C) show that responses -
evoked by odors of the same type re- 1s
mained highly correlated with each other
(large red blocks distributed around the
diagonal) throughout the odor response.
In contrast, matrices calculated from
the responses of PNs (Fig. 7D) show
these odor-type blocks dissolved over
the course of the response.

These results indicate that, in the pop-
ulation of ORNs (Fig. 7C), responses to
odorants with similar structures remained
correlated with each other throughout the duration of the stim-
ulus. Across the PN ensemble (Fig. 7D), however, responses be-
gan like those of ORNs but became progressively more different
(decorrelated) from one another (Friedrich and Laurent, 2001).
Figure 7E quantifies the change in odor relationships over time in
both ORNs and PNs: decorrelation over time occurred only
within the AL (two-way ANOVA: F, 555, = 984.56; p < 0.001).
Removing GABA ,-type inhibitory current alone did not signifi-
cantly disrupt the decorrelation process (two-way ANOVA:
F(1s550) = 2.4; p = 0.1217). In contrast, removing GABAg-type
conductances alone produced results that were significantly dif-
ferent from models with and without both inhibitory currents
(two-way ANOVA: for comparison with AL model having no
inhibitory conductances, F(, 559y = 61.22, p < 0.001; for compar-
ison with AL model having both GABA,, and GABAj, inhibition,
Fs550) = 157.35, p < 0.001). These results suggest that the
GABAergic inhibition from LNs within the AL could restruc-
ture odor-elicited input from ORNSs over time, thus magnify-
ing differences among responses of PNs to different odors
(Friedrich and Laurent, 2001).

This decorrelation of odor representation appeared to en-
able the AL to redistribute odor representations. Such a mech-
anism could allow the AL to make better use of its coding space.
We tested this possibility in our model using a large set of 50
odorants. Applying standard techniques (see Materials and
Methods) (Stopfer et al., 2003; Brown et al., 2005), we calculated
trajectories (50 ms time bins) elicited by these odorants from the
firing patterns of our model population of ORNs and PNs over
the course of 4 s beginning with the onset of a 1s odor pulse.
Figure 8 A shows the first two principal components of ensemble
patterns in ORNs (left) and PNs (right) elicited by the odor set
(each odor response shown as a different color). The PN patterns
(Fig. 8A, right) were more evenly distributed in coding space
than those of ORNSs (Fig. 8 A, left); two dimensions were adequate
to differentiate the responses of the ORN ensemble to different
odors, but additional dimensions would be needed to fully dif-
ferentiate the responses of the PN ensemble. We also compared

Figure 6.

4s

In vivo, odor response patterning in the AL requires temporally heterogeneous input from ORNs. A, Mean rate of
change (velocity, arbitrary units) of ORN ensemble activity (50 cells from 13 animals) during the response to a short odor pulse
(brown bar, 1's). Response velocity exceeded baseline levels throughout the response. B, Mean ORN response velocity during
exposure to along odor pulse (4 ). During the fixed points (yellow area), response velocity dropped to baseline level. ¢, Mean rate
of change of PN ensemble activity (94 cells from 9 animals) during the response duration for a short odor pulse (1 s). Response
velocity exceeded baseline levels throughout the response. D, Mean PN response velocity during exposure to a long odor pulse
(4'5). During the fixed points (yellow area), when the ORNs provide temporally homogenous output, response velocity in the PN
ensemble dropped to baseline level; confirming results of our model, given temporally simple input, the AL does not generate
temporally structured responses on its own.

the intrinsic dimensionality of odor representations with and
without the contributions of LNs by examining the distribution
of variance among eigenvectors characterizing the odor represen-
tations (Fig. 8 B) (see Materials and Methods); the contributions
of LN shifted the elbow of this “scree plot” (Joliffe, 1986) toward
the right, indicating that lateral interactions provided by LNs
transformed the input received from ORNSs into a higher-
dimensional representation within the PN population. These re-
sults suggest the AL reformatted the information contained in the
temporal dynamics of the ORN population into more distributed
patterns within the PN population through GABAergic inhibi-
tion from LNs.

With our combined ORN and AL model, we also compared
the separability of responses to 50 different odors (1225 ran-
domly chosen pairs) over time (Fig. 8C). We used the same odor
set shown in Figure 8, A and B, for this analysis. Consistent with
reports from Drosophila (Bhandawat et al., 2007), we noted a
trend for peak odor separation to occur faster in the PN ensemble
than in the ORNGs. This result suggests a role for the AL circuits in
encoding odors rapidly.

In summary, our combined ORN-PN model demonstrated
that many properties of odor codes originate within ORNs but
that the AL then reformats these codes in a number of specific
ways.

Discussion

Olfactory systems use both space and time to encode stimuli
(Laurent, 1999): pulses of odor evoke complex, reliable, tempo-
rally structured response patterns distributed across ensembles of
PNs in the AL (Wehr and Laurent, 1999; Laurent, 2002) [and of
mitral cells in the OB (Friedrich and Laurent, 2001)]. In the in-
sect, the spatiotemporal activity patterns of the PN ensemble
constitute the only olfactory representations transmitted to
deeper neural structures including the mushroom body and the
lateral horn (Laurent, 2002). Where and how are these tempo-
rally structured neural representations for odors generated?
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The AL contributes in several ways to odor processing. A7, Our ORN—AL model generated odor-evoked oscillatory synchronization. The LFP oscillations (sum of PN spiking) were similar

to those observed in vivo. A2, LFP power spectrum showed ~20 Hz oscillations, as in vivo. B, Cross-correlograms of subthreshold activity shows PNs and LNs transiently phase locked to the LFP; red
and blue banding patterns indicate, respectively, the peaks and troughs of the cross-correlation. €, The AL network (but not ORNs) decorrelated responses to different odorants over time. Pairwise
similarity of ORN activity patterns to 12 different odorants belonging to four chemical classes (color coded in the first panel) over time (each matrix shows a 50ms time bin) is shown. Each pixel in the
12 X 12 matrix shows the correlation coefficient between ORN response patterns evoked by two odors. The responses evoked within a chemical class remain correlated over the course of the
response, evident as persistent dark red blocks along the diagonal. D, Similar analysis for PN activity patterns; responses of PNs decorrelated over time, evident as the blocks along the diagonal
dissolve over the response. E, Decorrelation is evident in PNs but not ORNs, because of interactions of PNs with LNs. Plots show, over time, for ORNs and PN, the overall correlation of activity with
initial representations (200 —250 ms). Five conditions were tested: ORNs; PNs with intact input from LNs (GABA, and GABAy); PNs with only GABA, or only GABA; and PNs with no input from LNs
(data not shown). GABAergic input was required for responses in PNs to decorrelate. Error bars indicate variability over simulation runs (n = 10 different AL models).

Origins of slow temporal patterning in the AL

The EAG, which provides an assay of the summed output of
ORNS, resembles a simple square pulse of activity when driven by
a square pulse of odor (supplemental Fig. S2 A, available at www.
jneurosci.org as supplemental material). Until recently, the EAG
was often regarded as a representative reflection of the temporal
response characteristics of individual ORNs. Thus, the complex,
spatiotemporal odor representations observed in the PN ensem-
ble were proposed to arise entirely within the circuitry of the AL

when activated by simply structured input from the ORNs (Wehr
and Laurent, 1999). Consistent with previous work (Wehr and
Laurent, 1999), we found we were able to elicit relatively simple
activity patterns in the AL by stimulating the antenna nerve with
square pulses of electrical current. However, these response pat-
terns were neither as complex nor as enduring as those elicited by
odor presentations (supplemental Fig. S1b—e, available at www.
jneurosci.org as supplemental material). Previous computational
models of the AL that were driven by input resembling the EAG



2004 - J. Neurosci., February 10, 2010 - 30(6):1994 —2006

also generated odor responses that were A
brief and simple versions of those rou-
tinely observed in vivo (Bazhenov et al.,
2001a,b). A previous phenomenological
investigation (Geffen et al., 2009) had
shown that the temporally structured re-
sponse patterns of ORNs and PNs,
grouped together as a single dynamical
system, could be approximated by a set of
filters. We considered the roles of the
ORN s and PN separately, testing the idea

ORNs
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that interactions within the AL may not,
on its own, generate the spatiotemporally B
structured response patterns elicited by
odors. We wondered whether these pat-
terns might originate, in part, earlier in
the olfactory pathway, within the ORN?s.
Our recordings from locust antennae
revealed that ORNs are themselves capa-
ble of generating odor-elicited firing pat-
terns with temporal properties that vary
with, and thus contain information about,
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the identity, concentration, and duration
of the odor (Figs. 1C, 2 A-C; supplemental
Fig. S2b, available at www.jneurosci.org as
supplemental material). Variable tempo-
ral response properties included latency
to spike, onset and offset dynamics, re-
sponse duration, peak firing rates, and
simple combinations of excitation and in-
hibition. These results are generally con-
sistent with observations from both
mammalian (Spors etal., 2006) and inver-
tebrate olfactory systems (Michel and
Ache, 1994; Hallem and Carlson, 2006).

Extending these efforts, we also char-
acterized the response properties of the ORNs to lengthy odor
stimuli. We found that ORN's could exhibit simple excitatory and
inhibitory responses, as well as persistent tonic responses, and
phasic responses that terminated quickly after a strong initial
response (Fig. 1). Overall, we found that the ORNs of locusts
respond to odors in very diverse ways.

Furthermore, we found that the responses to odors we re-
corded in groups of ORNSs, although less elaborately structured,
shared many fundamental properties earlier characterized in
groups of PNs (Fig. 2D). A trajectory analysis of ORN response
patterns (Fig. 2 B, C), for example, revealed ORN population re-
sponse dynamics could be characterized as odor concentration
trajectories upon odor identity manifolds. Furthermore, the odor
onset, fixed point, and offset dynamics matched those characterized
in groups of PNs. Thus, decoupling of odor identity from intensity
and the transient and fixed-point dynamical properties of the PN
ensemble appear to arise entirely within the ORNS.

Given the well structured output of the ORNs, what addi-
tional specific odor-encoding roles are performed by the AL? To
answer this question, we developed a combined computational
model (Fig. 4A) to link the newly revealed response properties of
ORN:Ss to a realistic simulation of the AL. We simulated a large set
of ORNGs with realistic firing patterns (Fig. 3A—C) that were well
constrained by individual and population odor response proper-
ties we had characterized in vivo (Figs. 1, 2). Odor-elicited dy-
namical properties of the model’s ORN population closely
matched those observed in vivo (Fig. 3 D, E). Given the output of
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Figure8.  Odor representations in our model were more uniformly distributed in PNs than in ORNs. 4, ORN (left) and PN
(right) response trajectories [first 2 principal components (PC)] elicited by 50 different odors (5 odor classes) over time (see
Materials and Methods). Each color-coded circle represents an ORN (left) or PN (right) response pattern evoked by an odor
ina 50 ms time bin; circles are joined in sequence by solid lines. Odor representations are more uniformly distributed in the
PN coding space, and more than two dimensions are needed to separate responses in PNs. B, GABAergic inhibition within
the AL helps transform its input from ORNs to a higher-dimensional space. The amount of variance captured by different
eigenvectors (sorted by their eigenvalues) is shown for a model AL network without (red) and with (blue) GABAergic
inhibition from LNs. Local interactions within the AL distributed the information evenly across more eigen directions. €, AL
processing provides for rapid odor discrimination. Pairwise distance between representation of 50 different odors (1225
randomly selected pairs) rises faster in PNs (purple) than in ORNs (green). Thick lines, Median; thin lines, first and third
quartiles. The brown bar indicates odor presentation.

our model ORNs, the model PN ensemble displayed many of the
response characteristics observed in vivo, including complex dy-
namical properties (Fig. 4 B) and the ability to separate responses
to different odors and concentrations of odors (Fig. 4c). Consis-
tent with this, a previous computational model of the vertebrate
olfactory system found that varying the latencies and amplitudes
of inputs could modulate the system’s behavior and also discrim-
ination time for odors (Kunsting and Spors, 2009).

Diversity of ORN response time constants underlies AL
spatiotemporal patterns

Given the full diversity of ORN activity we had observed in vivo
(Fig. 5A1), individual model PNs generated responses that re-
sembled those recorded in vivo (Fig. 5B1). In our model AL net-
work, brief, homogeneous inputs failed to elicit enduring,
complex activity patterns (Fig. 5B2). We found that heterogene-
ity in the ORNS’ response time constants (Fig. 5B3), rather than
heterogeneity in firing rate (Fig. 5B2), was essential for generating
complex patterns in the AL. Relative differences in firing rates
over time in different, simultaneously active ORNSs, even when
held to a constant amplitude (Fig. 5A3), enabled diverse and
shifting competitive interactions (mediated by the GABAergic
LNs) in the AL, thereby creating complex response patterns for
encoding odors in PNs. These results did not depend on the scale
of the model (see Materials and Methods). Thus, our model pre-
dicted that the AL could not generate realistic output in the ab-
sence of temporally heterogeneous input from ORNS.
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We tested this prediction in vivo by varying the duration of
odor pulses to elicit responses from ORNSs that were temporally
heterogeneous or temporally homogenous. When driven by tem-
porally heterogeneous responses from ORNs (Fig. 6A), PNs re-
sponded with rapidly shifting, complex temporal patterns (Fig.
6C). However, when driven by temporally homogenous re-
sponses from ORNs (Fig. 6 B, yellow portion), PNs settled into
stable firing states indistinguishable from baseline (Fig. 6 D, yel-
low portion). Together, these results show that temporally heter-
ogeneous input from ORNs is required to drive complex
patterning in the AL.

GABAergic local neurons in the AL restructure input received
from ORNs

Our combined model showed that information contained within
the temporal dynamics of the responses of ORNs could be trans-
formed into patterns of increasing temporal and spatial complex-
ity within the AL through GABAergic inhibition from LNs.
Specifically, fast GABAergic inhibition caused oscillatory syn-
chronization of PNs within the AL (Fig. 7A,B). Responses to
different odorants measured across the PN ensemble decorre-
lated over time, but no such decorrelation occurred within the
ORN population (Fig. 7C,D) or in PNs when LNs had been re-
moved from our model (Fig. 7E). Thus, response decorrelation
was achieved by the AL.

Our model showed that the AL expanded the coding space
available for odor representations (Fig. 8A,B). Notably, our
model showed that, during an odor response’s onset transient,
the peak of odor discriminability in the PN ensemble occurred
before the peak of odor discriminability in the ORNs (Fig. 8C),
consistent with results obtained in Drosophila (Bhandawat et al.,
2007). Our model shows this occurred because the AL’s inhibi-
tory network quickly limited PN firing rates in a way ORNs were
not limited, and in the absence of nonlinear amplification be-
tween ORNs and PNs (Bhandawat et al., 2007), a feature not built
into our model.

Our work provides the first systematic analysis of the re-
sponses of ORNs to odors in the locust. Our electrophysiological
recordings showed that odor responses in ORNs consist of di-
verse and sometimes enduring spatiotemporal patterns of activ-
ity. Our computational model showed that temporal diversity in
the responses of ORNs is critical for generating the odor-specific
patterning observed in vivo in ensembles of PN, establishing that
a combination of spatiotemporally structured inputs from ORNs
and well understood simple circuit mechanisms within the AL
can explain the origins of temporal codes for odors. We also
showed that the population response dynamics (onset, fixed
point, offset) observed in the PN ensemble directly follow from
the time-varying responses of the ORN ensemble. Given tempo-
rally heterogeneous structured input from ORNs, the AL per-
forms a number of additional spatiotemporal transformations to
process olfactory information. Thus, the role of the AL in olfac-
tory coding is to begin to extract information from the ORN
responses and to reformat this information into a synchronized
and decorrelated structure appropriate for further processing
downstream. Because of the remarkable structural and functional
parallels between insect and vertebrate olfactory systems (Kay
and Stopfer, 2006), it seems likely similar mechanisms will be
found to operate across diverse species. It will now be of great
interest to determine how ORN’s generate diverse temporal re-
sponses to odors (Grosmaitre et al., 2006).
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