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ABSTRACT

The concept of functional selectivity has now thoroughly sup-
planted the previously entrenched notion of intrinsic efficacy by
explaining how agonists and antagonists exhibit a range of
efficacies for distinct receptor-mediated responses. It is note-
worthy that functional selectivity accommodates significant
changes in efficacy resulting from differential expression of
G protein-coupled receptor modifying proteins (i.e., “condi-
tional efficacy”)—a phenomenon with profound implications
for drug discovery. We have uncovered a novel regulatory
mechanism whereby p90 ribosomal S6 kinase 2 (RSK2) in-
teracts with 5-hydroxytryptamine,, (5-HT,,) serotonin re-
ceptors and attenuates receptor signaling via direct receptor
phosphorylation (Proc Natl Acad Sci U S A 103:4717-4722,
2006; J Biol Chem 284:5557-5573, 2009). This discovery,
together with the mounting evidence for conditional efficacy,

suggested to us that 5-HT,, agonist signaling might be
disproportionately affected by alterations in RSK2 expres-
sion. To test this hypothesis, we evaluated a chemically
diverse set of 5-HT,, agonists at three readouts of 5-HT,,
receptor activation in both wild-type (WT) and RSK2 knock-
out (KO) mouse embryonic fibroblasts (MEFs). Here we re-
port that 5-HT,, receptor agonist efficacies were signifi-
cantly and variably augmented in RSK2 KO MEFs compared
with WT MEFs. As a result, relative agonist efficacies were
significantly altered, and even reversed, between WT and
RSK2 KO MEFs for a single effector readout. This study
provides the first evidence that deletion of a single kinase
can elicit profound changes in patterns of agonist functional
selectivity.

Ligand “intrinsic efficacy” or “intrinsic activity” (i.e., rela-
tive to a reference agonist) defines the magnitude of response
that a given ligand imparts to a biological system (Stephen-
son, 1956). The classic view of intrinsic efficacy assumes that
a ligand’s ability to impart (or reduce) a stimulus once bound
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to the receptor is an inherent property of the ligand-receptor
complex and is system-independent (i.e., rank orders of effi-
cacy are static across all receptor responses) (Kenakin, 2002).
However, a plethora of recent studies at receptor tyrosine
kinases and G protein-coupled receptors (GPCRs) have un-
equivocally demonstrated that ligands exhibit a wide range
of efficacies for different receptor behaviors (i.e., rank orders
of efficacy are dynamic across various receptor responses)
(Roth and Chuang, 1987; Mailman, 2007; Urban et al., 2007;
Wilson et al., 2009). To address these observations and to
provide a unifying conceptual framework, the related con-
cepts of “functional selectivity” (Ghosh et al., 1996), “agonist-

ABBREVIATIONS: GPCR, G protein-coupled receptor; RSK2, p90 ribosomal S6 kinase 2; 5-HT, serotonin, 5-hydroxytryptamine; WT, wild type;
KO, knockout; SB242084, 6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochlo-
ride hydrate; IP, inositol phosphate; AA, arachidonic acid; ERK, extracellular signal-regulated kinase; DOI, (+)-2,5-dimethoxy-4-iodoamphetamine
hydrochloride; quipazine, 2-(1-piperazinyl)-quinoline maleate; 5-methoxy-DMT, 5-methoxy-N,N-dimethyltryptamine; m-CPP, 1-(m-chlorophenyl)-
piperazine; SCH-23390, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride; a-Me-5-HT, a-methyl
serotonin; MK212, 6-chloro-2-(1-piperazinyl)pyrazine hydrochloride; MDL-100907, R-(+)-)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-
piperidinemethanol; DMEM, Dulbecco’s modified Eagle’s medium; FBS, fetal bovine serum; FLIPR, Fluorometric Imaging Plate Reader; RFU,
relative fluorescence unit; PBS, phosphate-buffered saline; ANOVA, analysis of variance; MEF, mouse embryonic fibroblast; CHAPS,

3-[(3-cholamidopropyl)dimethylammonio]propanesulfonate.
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directed trafficking of receptor stimulus” (Kenakin, 1995;
Berg et al., 1998b), “biased agonism” (Kenakin, 2007), and
“pluridimensionality of signaling” (Galandrin and Bouvier,
2006) (collectively referred to here as “functional selectivity”)
have emerged.

The capacity for ligands to elicit a spectrum of receptor
behaviors is well documented for the Ga,-coupled 5-HT,,
and 5-HT, serotonin receptors. 5-HT,, and 5-HT, recep-
tors are essential for mediating various functions of 5-HT in
both central and peripheral tissues (e.g., modulation of mood
and perception, regulation of appetite, and platelet aggrega-
tion) and are targeted by multiple drugs (Kroeze and Roth,
1998; Berger et al., 2009). In what are now considered classic
studies, the lab of Clarke and Berg (Berg et al., 1998a; Moya
et al., 2007) convincingly demonstrated that the relative rank
orders of efficacy for chemically diverse agonists at 5-HT,,
and 5-HT, receptors were reversed between phospholipase
C B-mediated inositol phosphate (IP) accumulation and phos-
pholipase A2-mediated arachidonic acid (AA) release. Like-
wise, Kurrasch-Orbaugh et al. (2003) reported that rank
orders of efficacy were reversed for several classes of 5-HT, ,
agonists comparing IP accumulation and AA release. Signif-
icantly, the pleiotropic nature of 5-HT, ligands was high-
lighted in a recent study wherein the 5-HT, selective “an-
tagonist” SB242084 both antagonizes 5-HT, -mediated AA
release and promotes IP accumulation (De Deurwaerdere et
al., 2004). In addition, in vitro and in vivo findings have
demonstrated that 5-HT,,-selective ligands behave as “in-
verse agonists” at IP accumulation while simultaneously act-
ing as agonists by promoting receptor internalization (Berry
et al., 1996; Willins et al., 1999; Bhatnagar et al., 2001; Gray
and Roth, 2001). Such pathway-specific reversals in relative
efficacy are incompatible with classic notions of intrinsic
efficacy and are considered benchmark examples of func-
tional selectivity.

As seen for 5-HT,, and 5-HT, receptors, bona fide recep-
tor-based functional selectivity manifests as a reversal in
relative efficacies at different pathways. This behavior is not
predicted by the classic concept of intrinsic efficacy and can
only be explained by agonists stabilizing/promoting different
receptor active states (Kenakin, 2007). It follows that the
functional selectivity concept, unlike the concept of ligand
intrinsic efficacy, ascribes quality to efficacy. Thus, ligand-
specific receptor conformations can elicit multiple effector
responses, including G protein activation; phosphorylation,
desensitization, and internalization; formation of receptor
dimers and oligomers; and interaction with auxiliary mem-
brane and cytosolic proteins (Kenakin, 2002; Urban et al.,
2007). In fact, GPCR-interacting proteins such as protein-
coupling factors and receptor activity-modifying proteins
(Christopoulos et al., 2003) have been shown to have pro-
found effects on ligand efficacy (Kenakin, 2002). In addition,
recent in vitro and in vivo evidence suggests that B-arrestins,
in addition to their classic roles as GPCR-interacting pro-
teins and negative regulators of GPCR signaling, are re-
quired for the signaling and functionally selective responses
of several ligands (Lefkowitz and Shenoy, 2005; Abbas and
Roth, 2008; Schmid et al., 2008). Accordingly, ligand efficacy
is clearly conditional upon the expression of auxiliary modi-
fying proteins within the cellular milieu (a phenomenon re-
ferred to as “conditional efficacy”) (Kenakin, 2002). There-
fore, it is conceivable that cell type-specific expression of

additional GPCR-interacting proteins such as kinases could
result in differential modulation of ligand efficacy (Allen et
al., 2008), although unequivocal evidence for such a phenom-
enon is not yet available.

We have recently uncovered a novel regulatory mechanism
whereby the downstream extracellular signal regulated ki-
nase (ERK)/mitogen-activated protein kinase effector, RSK2,
interacts with 5-HT,, serotonin receptors and attenuates
receptor signaling via direct receptor phosphorylation (Shef-
fler et al., 2006; Strachan et al., 2009). Together with the
mounting evidence for conditional efficacy and with reports
of phosphorylation-mediated stabilization of individual re-
ceptor conformations, we hypothesized that 5-HT,, agonist
signaling would thus be disproportionately affected by
changes in RSK2 expression. More explicitly, we wanted to
determine whether genetic deletion of RSK2 differentially
affected ligand efficacy. To this end, we performed a focused
screen evaluating the effect of RSK2 expression (i.e., in WT
and RSK2 KO MEF's) on the signaling of a chemically diverse
panel of 5-HT,, receptor agonists at several readouts of
5-HT,, signaling (i.e., IP accumulation, Ca®" release, and
ERK1/2 phosphorylation).

In this study, we provide evidence to both support and
extend the emerging concepts of functional selectivity and
conditional efficacy by showing that the relative efficacies of
5-HT,, agonists are reversed 1) between different pathways
in WT MEFs and 2) between WT and RSK2 KO MEFs at a
single pathway. It is noteworthy that genetic deletion of
RSK2 results in significant and variable increases in the
relative efficacy, but not potency, of a diverse panel of 5-HT,
agonists. These data demonstrate that the signaling of
5-HT,, receptor agonists is disproportionately regulated by
RSK2. Significantly, this study provides the first evidence
that deletion of a single kinase modulates patterns of agonist
functional selectivity at a GPCR. Moreover, this finding has
profound implications for drug discovery in particular and
molecular pharmacology in general.

Materials and Methods

Materials. Cell culture reagents were supplied by Invitrogen
(Carlsbad, CA) and Cambrex (East Rutherford, NJ). 5-HT,
(*+)DOI, quipazine, 5-methoxy-DMT, m-CPP, SCH-23390, «-Me-5-
HT, LiCl, probenecid, porcine gelatin, paraformaldehyde, Triton
X-100, and all other standard reagents were supplied by Sigma-
Aldrich (St. Louis, MO). MK212 was obtained from Tocris
Bioscience (Ellisville, MO). MDL-100907 and lisuride [1,1-diethyl-
3-((6aR,9S)-7-methyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]lquino-
lin-9-yl)urea] were acquired as detailed previously (Willins et al.,
1999). [myo-Hlinositol (21.7 Ci/mmol) was obtained from
PerkinElmer Life and Analytical Sciences (Waltham, MA). Multi-
well imaging plates (96- and 384-well) were supplied by Greiner
Bio-One (Monroe, NC). Hoechst, concanavalin-A conjugated to
Alexa Fluor 488 nm, and goat anti-rabbit secondary antibody
conjugated to Alexa Fluor 594 nm were supplied by Invitrogen.
Normal goat serum was obtained from Millipore (Billerica, MA).

Cell Culture. This study used polyclonal populations of WT and
RSK2 KO MEFs stably expressing similar amounts of recombinant
5-HT,, receptors (WT B, ., = 1058 * 53 fmol/mg protein; RSK2 KO
B, .« = 731 = 57 fmol/mg protein) as determined via radioligand
binding assays (Gray et al., 2001). These were generated previously
by Sheffler et al. (2006) and were shown to express similar amounts
of surface receptors. Although MEFs endogenously express low lev-
els of 5-HT,, receptors, the overexpressing MEFs were chosen for



this study given their robust performance in scintillation proximity
assays. Fibroblasts were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum (FBS),
1 mM sodium pyruvate, 100 U/ml penicillin, 100 pg/ml streptomycin,
and 4 pg/ml puromycin. Cells were grown at 37°C in a humidified
environment in the presence of 5% CO,.

Fluorometric Imaging Plate Reader Analysis of Intracellu-
lar Ca®* Release. Intracellular Ca®" release was measured using a
Fluorometric Imaging Plate Reader (FLIPR™®*#) and Ca?" assay kit
(Molecular Devices, Sunnyvale, CA) as detailed previously (Strachan
et al., 2009). In brief, 30,000 cells were plated into black-walled,
clear-bottomed 96-well tissue culture plates in dialyzed culture me-
dium (DMEM, 5% FBS dialyzed to <0.05 nM 5-HT, 1 mM sodium
pyruvate, 100 U/ml penicillin, and 100 ug/ml streptomycin). The
following day, cells were treated with Ca®* assay buffer (20 mM
HEPES, 1X Hanks’ balanced salt solution, 2.5 mM probenecid, and
Ca?* assay reagent, pH 7.4) for 1 h at 37°C and equilibrated to room
temperature before drug addition. The FLIPR™"2 was programmed
to add agonist approximately 10 s after establishing baseline relative
fluorescence unit (RFU) values (excitation, 470-495; emission, 515—
575 nm). RFU values were collected every second for 5 min, and
average baseline values were subtracted from maximum RFU values
for each well. Baseline-subtracted values were normalized to cell
number, analyzed by nonlinear regression (GraphPad Software Inc.,
San Diego, CA), and expressed relative to maximal 5-HT signaling at
WT MEF's (set to 100%). The F test was used to determine statistical
significance of the fit parameters EC;, and E, ,, (defined as p <
0.05). Agonist specificity was confirmed in control experiments
wherein the selective 5-HT,, receptor antagonist MDL-100907 (1
uM) completely blocked the Ca®* response elicited by an ECg, of
agonist (data not shown).

Analysis of Inositol Phosphates. Inositol phosphate (IP) accu-
mulation was measured using the scintillation proximity assay
method exactly as detailed previously (Bourdon et al., 2006; Stra-
chan et al., 2009). In brief, 30,000 cells were plated into 96-well
tissue culture plates in dialyzed culture medium. The cells were
inositol-starved for 1.5 h and incubated with 100 ul of labeling
medium (inositol-free basal medium Eagle’s, 5% dialyzed FBS, and
0.01 uCi/ul [myo-2Hlinositol) for 18 h at 37°C. The labeling medium
was removed, and agonists were diluted in assay buffer (1X Hanks’
balanced salt solution, 24 mM NaHCO,, 11 mM glucose, and 35 mM
LiCl, pH 7.4) and added to the cells for 1 h at 37°C. The assay was
terminated by the addition of 50 mM formic acid, and the superna-
tant was incubated with 0.2 mg yttrium silicate beads (Amersham,
Chalfont St. Giles, Buckinghamshire, UK). Radioactivity in the form
of [®HJinositol phosphate was measured via scintillation counting
(Wallac Microbeta TriLux; PerkinElmer Life and Analytical Sci-
ences). Baseline-subtracted values were normalized to cell number,
analyzed by nonlinear regression (GraphPad Software), and expressed
relative to maximal 5-HT signaling at WT MEFs (set to 100%). The F'
test was used to determine statistical significance of the fit parameters
EC;, and E,,,, (defined as p < 0.05). Agonist specificity was confirmed
in control experiments, wherein the selective 5-HT,, receptor antago-
nist MDL-100907 (1 uM) completely blocked IP accumulation elicited
by an ECg, of agonist (data not shown).

High-Content Immunofluorescence Microscopy. Here, we
developed a novel high-content microscopic/automated image analy-
sis approach to generate concentration-response curves for ERK1/2
phosphorylation in WT and RSK2 KO MEFs. In particular, we de-
veloped an extremely versatile triple-fluorescence labeling method
that uses information gained from nuclear (Hoechst, 320 nm) and
plasma membrane (concanavalin-A, 488 nm) staining to generate
cellular masks (i.e., segmentation during image processing), which
are then used to quantify the fluorescence intensity of the third
fluorophore representing the protein of interest (referred to here as
the “signal channel,” 594 nm) in distinct cellular compartments. It is
noteworthy that after the testing of several lectins, concanavalin-A
produced the most reliable cellular masks. Thus, the use of con-
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canavalin-A was crucial to the success and general applicability of
this approach. In this study, we detected ERK1/2 phosphorylation
using a primary antibody specific for ERK1/2 phosphorylation and
an Alexa Fluor 594-conjugated secondary antibody. In brief, WT and
RSK2 KO MEFs were plated onto 0.2% gelatin-coated black-walled,
clear- and thin-bottomed 384-well tissue culture plates (Greiner
Bio-One, Monroe, NC) in dialyzed culture medium at a density of
25,000 and 15,000 cells/well, respectively. Twenty-four hours later,
the cells were washed with serum-free medium (DMEM, 100 U/ml
penicillin, and 100 pg/ml streptomycin) and then serum-starved for
18 h. For the initial time course experiments (0-30 min), cells ex-
pressing 5-HT,, receptors were stimulated with 10 uM drug. For all
subsequent experiments, we used the liquid handling capability of a
FLIPR™"2 to simultaneously dispense concentrated drug solutions
(final concentration range of 10 uM to 10 pM, performed in duplicate)
into 384-well plates. Cells were treated with agonist for 5 min at
37°C, which we determined from time course experiments to produce
maximal ERK1/2 phosphorylation for all agonists in both cell lines.
After stimulation, the cells were immediately placed on ice, rinsed
with ice-cold phosphate-buffered saline (PBS) wash buffer (PBS +
0.5 mM CaCl,, pH 7.4), and incubated with fixative (4% paraformal-
dehyde, PBS + 0.5 mM CaCl,, pH 7.4) to terminate activation. After
30 min at 25°C, the cells were washed and then permeabilized with
0.3% Triton X-100 for 30 min on ice. The permeabilized cells were
incubated with blocking buffer (5% normal goat serum and PBS +
0.5 mM CaCl,, pH 7.4) for 1 h at 25°C and subsequently incubated
with blocking buffer containing a phospho-ERK1/2-specific antibody
(Thr202/Tyr204, 1:1000; Cell Signaling Technology, Inc., Danvers,
MA) for 18 h at 4°C. The following day, the cells were extensively
washed and incubated for 1 h at 25°C with blocking buffer containing
Hoechst (5 pg/ml), concanavalin-A conjugated to Alexa Fluor 488 (20
png/ml), and a goat anti-rabbit secondary antibody conjugated to
Alexa Fluor 594 (1:200). The cells were extensively washed and
incubated with fixative for 20 min at 4°C. Plates were then stored at
4°C in wash buffer before imaging.

Imaging was performed on a BD Pathway 855 High Content
Bioimager (BD Biosciences, San Jose, CA) using the Olympus
UAPO40X/340 objective lens (Olympus, Tokyo, Japan). We devel-
oped a workflow that used infrared laser autofocusing, triple excita-
tion/emission parameters (nuclear, 380/435 nm; plasma membrane,
488/515 nm; signal channel, 555/645 nm), and montaging of nine
adjacent fields to produce superimposable nuclear, plasma mem-
brane, and signal-channel images. The images were then exported to
CellProfiler (Broad Institute Imaging Platform, Cambridge, MA) for
image processing and analysis. In particular, we developed a mac-
ropipeline within CellProfiler that produced reliable cell segmenta-
tion wherein Hoechst and concanavalin-A intensities are used step-
wise to generate nuclear, whole-cell, and cytoplasmic cell masks
(Fig. 1A). Using this approach, we could measure the 594 nm intensity
within defined cellular regions. Baseline-subtracted, whole-cell 594 nm
mean intensity values corresponding to ERK1/2 phosphorylation were
then analyzed via nonlinear regression (GraphPad Software) and ex-
pressed relative to the E_ . for 5-HT in WT MEFs. Statistical signifi-
cance of ERK1/2 time course data were determined by one-tailed paired
t test (defined as p < 0.05). The F test was used to determine statistical
significance of the fit parameters ECy, and E,, (defined as p < 0.05).
Assay quality was assessed using the Z’ factor calculation of Zhang et
al. (1999). Agonist specificity was confirmed in control experiments
wherein the selective 5-HT,, receptor antagonist MDL-100907 (1 uM)
completely blocked ERK1/2 phosphorylation elicited by an ECg, concen-
tration of agonist (shown for 5-HT in Fig. 1B).

Immunoblotting. Western blot measurements of ERK1/2 phos-
phorylation were performed according to Sheffler et al. (2006). In
brief, WT and RSK2 KO MEFs were plated onto six-well plates in
dialyzed culture medium at a density of 150,000 cells/well and se-
rum-starved for approximately 18 h before the experiment. During
the experiment, the cells were treated with 10 uM 5-HT for various
times (0-30 min) at 37°C and then immediately placed on ice,
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washed twice with cold PBS, and lysed (50 mM HEPES, 150 mM
NaCl, 1 mM EDTA, 1.0% CHAPS, EDTA-free protease inhibitor
cocktail (Roche Applied Science, Branford, CT), 50 mM NaF, 50 mM
B-glycerol phosphate, 0.1 mM Na;VO,, and 5 mM Na,P,0O,, pH 7.5).
The supernatants were collected after centrifugation (16,000g at 4°C
for 20 min) and stored at —20°C until further use. To measure
ERK1/2 phosphorylation, equal amounts of protein were separated
on 10% SDS-polyacrylamide gel electrophoresis gels and immuno-
blotted using standard procedures (Gray et al., 2001). Nitrocellulose
blots were incubated with blocking buffer (Tris-buffered saline, 0.1%
Tween 20, and 5% nonfat dehydrated milk) and then probed with the
phospho-ERK1/2-specific antibody (Thr202/Tyr204, 1:1000; Cell Sig-
naling Technology, Inc.) diluted in phospho-blocking buffer (Tris-
buffered saline, 0.1% Tween 20, and 5% bovine serum albumin) or
the ERK1/2 antibody (p44/42, 1:1000; Cell Signaling Technology,
Inc.) diluted in standard blocking buffer. The primary antibodies
were detected using the goat anti-rabbit secondary antibody conju-
gated to horseradish peroxidase (1:1000; Vector Laboratories, Bur-
lingame, CA) and the SuperSignal West Pico chemiluminescent sub-

strate (Thermo Fisher Scientific, Rockford, IL). Immunoreactive
bands were quantified using Kodak imaging software (Eastman
Kodak, New Haven, CT).

Statistical Analysis of Ligand Rank Order of Efficacy. Rel-
ative agonist efficacies were analyzed using one-way ANOVA (sig-
nificance set as p < 0.05) and significant differences between groups
(set as p < 0.05) were subsequently identified via the Tukey-Kramer
unplanned multiple comparisons test adjusted for unequal sample
size (GraphPad Software). Mean relative agonist efficacies were then
arranged in descending order and assigned to statistically homoge-
neous groups (labeled “a” through “f” in Table 4) such that significant
differences in rank order were denoted by changes in group mem-
bership. Thus, agonists with nonoverlapping group assignments
were considered to be significantly different.

Results

Validation of a Novel High-Content Microscopic
Approach for ERK1/2 Phosphorylation. In this study,
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Fig. 1. Development of a novel triple-fluorescence high-content microscopic assay in 384-well plates to rapidly measure ERK1/2 phosphorylation in
WT and RSK2 KO MEFs. A, diagram showing stepwise generation of nuclear (Hoechst 320), whole-cell (concanavalin-A 488), and cytoplasmic cell
masks subsequently used to measure fluorescence intensity of the signal channel (594 nm) in distinct cellular regions. This approach incorporates the
nearly limitless application of state-specific antibodies (e.g., phospho-specific) and fluorescently labeled proteins to quantify receptor responses.
Moreover, segmenting the cell into distinct regions allows us to extract a variety of signaling phenotypes with customizable CellProfiler image analysis
software. B, the triple-fluorescence technique was used to generate full concentration-response curves for ERK1/2 phosphorylation in WT and RSK2
KO MEFs after 5-min agonist treatment. The workflow shown here describes the steps used to measure ERK1/2 phosphorylation (594 nm, see
representative images) within whole-cell masks after 5-HT treatment. Concentration-response curves for 5-HT-induced ERK1/2 phosphorylation in
WT (B) and RSK2 KO (O) MEFs highlight the robustness (Z' factor = 0.54) and reproducibility of the triple-fluorescence technique. Values represent
the mean = S.E.M. of 18 independent experiments performed in duplicate. Also shown are representative results (bottom right, mean + S.E.M.) in
which the 5-HT, ,-selective antagonist MDL-100907 (1 «M) blocked the response to 5-HT (ECg, concentration). Identical results were obtained for all

agonists at both cell lines (data not shown).



we developed a novel high content microscopic/automated
image analysis approach to generate concentration-
response curves for ERK1/2 phosphorylation in WT and
RSK2 KO MEFs. We devised a versatile triple-fluorescence
labeling method that uses information gained from nuclear
(320 nm) and plasma membrane (488 nm) staining to re-
liably generate cellular masks, which were subsequently
used to quantify the fluorescence intensity of the signal
channel (594 nm) representing the protein of interest (i.e.,
phosphorylated ERK1/2) (Fig. 1A).

As shown in Fig. 1B, our approach using whole-cell masks
yielded highly reproducible concentration-response curves
(Z' factor = 0.54). We also confirmed that the results ob-
tained using the high-content approach were indistinguish-
able from those obtained using a standard Western blotting
technique (Fig. 2), and the findings agree with our results
published previously (Sheffler et al., 2006). As an additional
control that was also repeated for measures of Ca®* release
and IP accumulation, we demonstrated that 5-HT,,-medi-
ated ERK1/2 phosphorylation was blocked in both cell lines
by the selective 5-HT,, antagonist MDL-100907 (shown for
5-HT in Fig. 1B).

5-HT,, Agonist Responses for Diverse Agonists Are
Differentially Altered by Genetic Deletion of RSK2. We
next determined how genetic deletion of RSK2 might affect
the signaling of a structurally diverse panel of 5-HT,, recep-
tor agonists. In agreement with our recent studies (Strachan
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Fig. 2. Time course of 5-HT-induced ERK1/2 phosphorylation is similar
between the techniques of Western blotting and high-content microscopy.
As shown for both Western blotting (M) and triple-fluorescence high-
content microscopy (O) in WT MEFs, maximal 5-HT-induced ERK1/2
phosphorylation occurred within 5 min. We also determined via high-
content microscopy that ERK1/2 phosphorylation was maximal within 5
min in both WT and KO RSK2 MEF's for the agonists (10 uM) 5-HT, DOI,
quipazine, 5-methoxy-DMT, lisuride, m-CPP, SCH-23390, a-Me-5-HT,
and MK212 (data not shown).

TABLE 1

Potency and relative efficacy values for 5-HT,,-mediated IP accumulation
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et al., 2009), genetic deletion of RSK2 significantly increased
the relative efficacies of most 5-HT,, agonists at multiple
effector pathways. As expected from our previous work (Shef-
fler et al., 2006; Strachan et al., 2009), the reference full
agonist 5-HT, along with a-Me-5-HT and DOI, elicited sig-
nificantly greater maximal increases in IP accumulation,
Ca®" release, and ERK1/2 phosphorylation in RSK2 KO
MEFs relative to WT MEFs (Tables 1-3). In addition, the
relative efficacies of quipazine, 5-methoxy-DMT, lisuride,
and m-CPP were significantly increased at all three effector
readouts in RSK2 KO MEFs (Tables 1-3). In contrast, the
partial agonists SCH-23390 and MK212 were unique in that
their signaling was significantly potentiated at measures of
IP accumulation and ERK1/2 phosphorylation but not at
Ca®" release.

Contrary to effects on maximal signaling, relative agonist
potencies were not globally potentiated in RSK2 KO MEFs,
with few exceptions. These included the full agonists 5-HT
and a-methyl-5-HT, which were significantly more potent for
IP accumulation in RSK2 KO MEFs, and the partial agonist
quipazine, which was significantly more potent for Ca®* re-
lease in WT MEFs (Tables 1-3). Taken together, these data
showed that RSK2 modulates agonist efficacies, whereas ag-
onist potencies remain largely unaffected.

Indeed, compared with a line of identity, RSK2 deletion
significantly potentiated agonist efficacies (Fig. 3, B, D, and
F), with few changes in agonist potency (Fig. 3, A, C, and E).
We also observed that genetic deletion of RSK2 resulted in a
global potentiation of agonist-mediated ERK1/2 phosphory-
lation with little distinction between full and partial agonists
(Fig. 3, E and F). This global potentiation of ERK1/2 phos-
phorylation in RSK2 KO MEFs is, in fact, consistent with
removal of feedback inhibition on the ERK/mitogen-activated
protein kinase pathway, because it is known that RSK2
phosphorylates Sos, thereby decreasing Ras activation (Fro-
din and Gammeltoft, 1999).

Because a major aim was to determine whether genetic
deletion of RSK2 differentially modulates ligand efficacy, we
generated relative efficacy ratios (i.e., EXSEZKO/EWT values)
for each response to quantify an agonist’s propensity to sig-
nal in the absence of RSK2. It is interesting that we found
that ERSK2KO/EWT values differed considerably for each ag-
onist and response (Tables 1-3), with the largest changes
observed for IP accumulation and ERK1/2 phosphorylation.
The partial agonists 5-methoxy-DMT (3.4-fold), m-CPP (3.2-

Agonist potencies (ECj,) and relative efficacies (E,,,,) represent the average of four to five independent experiments. pECs, values are represented as —log of ECj, given

as molar values.

Agonist Potency
EC5, (pEC5o = S.E.M.)

Relative Agonist Efficacy
max + S.E.M.)

Agonist ERSK2KO/pWT
WT MEFs RSK2 KO MEFs F Test, p Value ~ WT MEFs RS2 KO F Test, p Value
nM %
5-HT 134 (6.87 + 0.03)  57.8(7.24 + 0.11) 0.0309 99.1+12  209*85 <0.0001 2.1
DOI 12.4 (7.91 = 0.10) 8.51 (8.07 = 0.10) 0.7145 717+ 24 211 = 13 <0.0001 2.9
Quipazine 188 (6.73 = 0.09) 140 (6.85 = 0.15) 0.7010 82.7+29 220+ 14 <0.0001 2.7
5-Methoxy-DMT 590 (6.23 = 0.13) 386 (6.41 = 0.15) 0.6487 66.6 + 4.0 224 + 14 <0.0001 3.4
Lisuride 3.52 (8.45 = 0.57) 5.99 (8.22 + 0.20) 0.7450 17.1 = 2.6 63.1 + 3.8 <0.0001 3.7
m-CPP 167 (6.78 =+ 0.19) 231 (6.64 + 0.09) 0.5364 278+24  90.0*36 <0.0001 3.2
SCH-23390 16.3 (7.79 = 0.30) 24.6 (7.61 = 0.08) 0.5342 14.0 = 1.5 33.9+1.1 <0.0001 2.4
a-Me-5-HT 178 (6.75 + 0.04)  68.9(7.16 * 0.05) <0.0001 954+ 19 134 = 3.0 <0.0001 1.4
MK212 3390 (5.47 = 0.09) 2330 (5.63 = 0.05) 0.1148 80.4 £ 5.7 152 £ 5.0 <0.0001 1.9
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fold), and lisuride (3.7-fold) differed substantially from the
reference full agonist 5-HT (2.1-fold) with regard to their
abilities to stimulate IP accumulation (Fig. 4, A-D). In fact,
m-CPP and lisuride, whose relative efficacies were extremely
low in WT MEFs, behaved as moderate to full agonists in
RSK2 KO MEFs (i.e., compared with the reference agonist
5-HT in WT MEFs; Fig. 4).

Considering that differences in stimulus-response coupling
manifest as large increases in partial agonist efficacy and are
often encountered comparing different cell lines or tissues, it
was conceivable that partial agonists, as a class, signal more
effectively in RSK2 KO MEFs. However, as shown in Fig. 4E,
the relative efficacy of the weak partial agonist SCH-23390,
which has an efficacy and potency comparable with lisuride
in WT MEFs, increased only 2.4-fold in RSK2 KO MEFs. We
also observed a small increase in the relative efficacy of the
partial agonist MK212 in RSK2 KO MEF's (1.9-fold; data not
shown). This suggested that increased receptor responsive-
ness was not exclusive to partial agonists, thus eliminating
the influence of differences in stimulus-response coupling
comparing WT with RSK2 KO MEFs.

Similar to our observations with partial agonists, highly
efficacious ligands such as 5-HT (2.1-fold) and «-Me-5-HT
(1.4-fold) were differentially sensitive to genetic deletion of
RSK2. «-Me-5-HT behaved as a full agonist in WT MEFs,
whereas it was substantially less responsive for IP accumu-
lation in RSK2 KO MEFs (Fig. 4F). This behavior could not
be explained by saturation of the response system because

TABLE 2

5-HT was significantly more efficacious than a-Me-5-HT in
RSK2 KO MEFs (relative E,,,,. = 134 = 3.0% versus 209 =
8.5% for a-Me-5-HT and 5-HT, respectively; p < 0.05). To-
gether with the discrepancies seen with partial agonists,
these data suggest that 5-HT,, receptor agonists are differ-
entially responsive to RSK2 deletion. Furthermore, in the
case of IP accumulation, these discrepancies underlie rever-
sals in relative rank order of efficacy between WT and RSK2
KO MEFs (see below).

5-HT,, Agonists Are Functionally Selective for
ERK1/2 Phosphorylation in WT MEFs. To identify novel
instances of functional selectivity within our data set, we
generated statistically rigorous rank orders of efficacy for
each receptor response in WT and RSK2 KO MEFs. This
approach enabled us to identify changes in rank orders of
efficacy between receptor responses in WT MEFs and be-
tween WT and RSK2 KO MEFs at each receptor response.
Fundamental to this approach was the assignment of ago-
nists to statistically homogeneous groups such that signifi-
cant differences in rank order (set as p < 0.05) were denoted
by changes in group membership (Table 4 and Figs. 5 and 6).
Therefore, agonists with nonoverlapping group assignments
were considered to be significantly different.

A comparison of agonist responses in WT MEFs revealed
that the relative efficacies did not differ substantially be-
tween the dependent measures of IP accumulation and Ca2™*
release, in agreement with previous studies (Berg et al.,
1998a) (Table 4). By contrast, relative rank orders of efficacy

Potency and relative efficacy values for 5-HT,,-mediated intracellular Ca®* release
Agonist potencies (EC5,) and relative efficacies (E,,,,) represent the average of four to five independent experiments. pEC5, values are represented as —log of EC;, given

as molar values.

Agonist Potency

Relative Agonist Efficacy

ECso (pECso = S.E.M.) E,. *SEM
Agonist EEEEZKO/EXEX
WT MEFs RSK2KO MEFs F Test, p Value ~ WT MEFs ROK2 0 F Test, p Value
nM %
5-HT 7.79 (8.11 = 0.07) 10.2 (7.99 = 0.17) 0.6969 97.0 + 2.2 202 + 12.5 <0.0001 1.5
DOI 2.81(8.55 = 0.12)  4.68(8.33 = 0.11) 0.2309 87.3+29 141+ 46 <0.0001 16
Quipazine 22.8(7.64 + 0.12) 62.3 (7.21 = 0.09) 0.0114 88.1 + 3.6 157 = 5.7 <0.0001 1.8
5-Methoxy-DMT  60.0 (7.22 + 0.08)  58.2(7.24 + 0.14) 0.9509 832+26 145+ 78 <0.0001 1.7
Lisuride 985 (6.01 + 0.17) 1023 (5.99 * 0.12) 0.9405 29.1+27  58.7+38 <0.0001 2.0
m-CPP 155 (6.81 = 0.18) 234 (6.63 = 0.31) 0.6959 60.5 + 5.0 116 = 17 0.0039 1.9
SCH-23390 329 (6.48 + 0.32) 197 (.71 = 0.34) 0.6864 257+ 40 332%52 0.2974 1.3
a-Me-5-HT 25.0 (7.60 = 0.12) 21.9(7.66 * 0.41) 0.9401 106 = 4.5 212 + 32 0.0046 2.0
MK212 817 (6.09 + 0.18) 846 (6.07 + 0.33) 0.9793 725+78 168 + 33 0.1035 2.3
TABLE 3

Potency and relative efficacy values for 5-HT, ,-mediated ERK1/2 phosphorylation

Agonist potencies (ECj5) and relative efficacies (E,,,) represent the average of four to five independent experiments. pECj5, values are represented as —log of EC5(, given

as molar values.

Agonist Potency

Relative Agonist Efficacy

EC:o (pECy = S.E.M.) E,. *SEM
Agonist EESI,SZKO/E}XEX
WT MEFs KO F Test p Value WT MEFs ROR2 KO F'Test p Value
%

5-HT 6.51 (8.19 = 0.08) 3.92(8.41 = 0.11) 0.4729 99.1 + 3.5 325 £ 15 <0.0001 3.3
DOI 0.370 (9.43 = 0.16)  0.889 (9.05 = 0.22) 0.4866 99.0+39 348+ 24 <0.0001 3.5
Quipazine 2.42 (8.62 = 0.17) 4.24 (8.37 = 0.20) 0.4796 108 = 7 270 = 22 <0.0001 2.5
5-Methoxy-DMT 8.23 (8.08 = 0.19) 7.45(8.13 = 0.19) 0.9356 89.8 + 7.7 343 + 29 <0.0001 3.8
Lisuride 7.39(8.13 + 0.21) 2.27 (8.64 + 0.32) 0.5414 90.9 +83 278 =32 0.0010 3.1
m-CPP 21.6 (7.67 = 0.18) 21.6 (7.67 = 0.19) 0.9976 105 =9 245 + 25 <0.0001 2.3
SCH-23390 21.2 (7.67 = 0.29) 3.65 (8.44 + 0.23) 0.3295 51.3+74  202=19 0.0100 3.9
a-Me5-HT 3.07 (8.51 = 0.19) 3.91(8.41 = 0.17) 0.8488 83.4 + 6.3 327 = 23 <0.0001 3.9
MK212 133 (6.88 = 0.13) 425 (7.37 = 0.14) 0.2023 712+46  261=+18 0.0005 3.7




differed significantly comparing measures of IP accumula-
tion and ERK1/2 phosphorylation (Fig. 5A, and Table 4). For
example, lisuride and m-CPP, which were weak to moderate
partial agonists for IP accumulation and Ca®" release, max-
imally activated ERK1/2 in WT MEFs. In agreement with
several other studies (Berg et al., 1998a; Kurrasch-Orbaugh
et al., 2003), lisuride only weakly activated 5-HT,,-mediated
= 17.1 = 2.6%, n = 4) and
Ca?" release (relative E,,, = 29.1 = 2.7%, n = 4). However,
despite its behavior as a weak partial agonist for IP accumu-
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lation and Ca®* release, lisuride stimulated ERK phosphor-
ylation similarly to the reference full agonist 5-HT (relative
E_ .. =909 = 83 and 99.1 £ 3.5% for lisuride and 5-HT,
respectively; p > 0.05). Similar observations were made for
the partial agonist m-CPP, which was a partial agonist for IP
accumulation (relative £ = 27.8 + 2.4%, n = 5) and Ca®*
release (relative E,,,. = 60.5 = 5.0%). By contrast, m-CPP
and 5-HT were equal in their abilities to induce ERK phos-
phorylation (relative E
m-CPP and 5-HT, respectively; p > 0.05).

= 105 = 9.0 and 99.1 = 3.5% for

Fig. 3. The relative efficacies of 5-HT,,
receptor agonists are globally aug-
mented by genetic deletion of RSK2. Ag-
onist potencies (pEC;,) and relative ef-
ficacies (E,,,,) for IP accumulation (A
and B), Ca®" release (C and D), and
ERK phosphorylation (E and F) in WT
and RSK2 KO MEFs were plotted as
X-Y correlations. Relative to a line of
identity (dashed line), £, values were
consistently higher in RSK2 KO MEFs,
whereas pEC;, values were similar be-
tween cell lines. E_ .. and pEC;, values
were calculated via nonlinear regres-
sion as reported in Tables 1 to 3. Values
represent the mean = S.E.M. of three to
six independent experiments performed
in duplicate. Agonists tested were 5-HT
(M), DOI (0), quipazine (@), 5-methoxy-
DMT (O), lisuride (A), m-CPP (A), SCH-
23390 (V), a-Me-5-HT (V), and MK212
(#).
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Similar to the observations made comparing agonist sig-
naling in WT and RSK2 KO MEFs, the relative efficacies of
partial agonists were not uniformly increased for ERK1/2
phosphorylation in the WT MEFs. This suggested that the
ERK1/2 pathway was not more efficiently coupled compared
with IP accumulation. In support of this, the partial agonist
MK212 signaled similarly between measures of IP accumu-
lation and ERK phosphorylation (Fig. 5, A and B). In fact, the
relative efficacies of MK212 and m-CPP were significantly
reversed between measures of IP accumulation and ERK1/2
phosphorylation, which is consistent with classic examples of
functional selectivity at 5-HT, family receptors (Fig. 5, B-D).

Genetic Deletion of RSK2 Alters the Relative Rank
Order of Efficacy of 5-HT,, Receptor Agonists. We next
determined whether genetic deletion of RSK2, a novel GPCR
kinase that is known to modulate 5-HT,, agonist signaling,
results in significant reversals in 5-HT,, agonist efficacies.
To test this hypothesis, we compared relative rank orders of
efficacy between WT and KO MEF's at each effector readout.
As shown in Table 4, genetic deletion of RSK2 significantly
affected the relative rank orders of efficacy at each effector
readout. Further statistical analysis revealed that, in addi-
tion to a general reordering of rank orders of efficacy, genetic
deletion of RSK2 resulted in significant reversals in relative
agonist efficacies for IP accumulation (Table 4 and Fig. 6).
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TABLE 4

We observed that a-Me-5-HT signaled as a full agonist in WT
MEFs (relative E . = 95.4 = 1.9% versus 99.1 = 1.2% for
a-Me-5-HT and 5-HT, respectively; p > 0.05), whereas 5-me-
thoxy-DMT and DOI signaled as partial agonists in WT
MEFs (relative E,,,, = 66.6 = 4.0 and 71.7 = 2.4% for
5-methoxy-DMT and DOI, respectively; p < 0.05 for both
ligands versus a-Me-5-HT) (Fig. 6, B and C). However, de-
spite signaling as a full agonist in WT MEFs, a-Me-5-HT was
significantly less efficacious than 5-methoxy-DMT and DOI
in RSK2 KO MEFs (relative E,,,,, = 134 = 3.0 versus 224 =
14% for «-Me-5-HT and 5-methoxy-DMT, respectively; rela-
tive E_,.. = 134 * 3.0 versus 211 = 13% for a-Me-5-HT and
DOI, respectively; p < 0.05) (Fig. 6, B and D). Altogether, it
is clear that the relative rank order of efficacy switched from
a-Me-5-HT > DOI = 5-methoxy-DMT in WT MEFs to 5-me-
thoxy-DMT = DOI > «a-Me-5-HT in RSK2 KO MEFs. These
results thus provide the first evidence indicating that a rel-
atively minor change in the cellular kinome is sufficient to
elicit profound alterations in relative agonist efficacy.

As reported above, striking variations in ENon2KO/EWT
values for IP accumulation suggested that the responses to
some agonists were differentially sensitive to genetic deletion
of RSK2. Furthermore, these discrepancies could not be ex-
plained by agonist class, because RSK2 deletion did not sim-
ilarly potentiate all partial agonists or full agonists. For

Fig. 4. 5-HT,, receptor agonists are dif-
ferentially responsive to RSK2 deletion.
Concentration-response curves for IP ac-
cumulation in WT (H) and RSK2 KO (O)
MEFs in response to 60-min treatment
with 5-HT (A), 5-methoxy-DMT (B), m-
CPP (C), lisuride (D), SCH-23390 (E), and
a-Me-5-HT (F) show differential sensitiv-
ity to RSK2 expression. Relative efficacy
values (E .., 5-HT set to 100%) were de-
termined via nonlinear regression and
were significantly potentiated for all ago-
nists in RSK2 KO MEFs, as shown in
Table 1. Values represent the mean =+
S.E.M. of four to five independent exper-
iments performed in duplicate. EXSK2K0/
EYT values were calculated for each ag-
onist and are shown next to each plot as a
measure of an agonist’s propensity to sig-
nal in the absence of RSK2.

3.2-fold
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Relative agonist rank order of efficacy for IP accumulation, Ca?" release, and ERK1/2 phosphorylation in WT and RSK2 KO MEFs
Letters in parentheses indicate group assignment. Mean relative efficacies were analyzed via one-way ANOVA, and significant differences were determined via the

Tukey-Kramer multiple comparison post-test (significance set at p < 0.05). Agonists

were arranged in descending order (i.e. 1 through 9) and placed into statistically

homogeneous groups (i.e., a through f) such that significant differences in rank order are denoted by changes in group membership. Agonists with nonoverlapping group

assignments were considered to be significantly different.

Rank IP Accumulation Ca?" Release ERK1/2 Phosphorylation

Order WT MEFs RSK2 KO MEFs WT MEFs RSK2 KO MEFs WT MEFs RSK2 KO MEFs
1 5-HT (a) 5-Methoxy DMT (a) a-Me5-HT (a) a-Me5-HT (a) Quipazine (a) DOI (a)
2 a-Me5-HT (a,b) Quipazine (a) 5-HT (a,b) 5-HT (a) m-CPP (a) 5-Methoxy DMT (a)
3 Quipazine (b,c) DOI (a,b) Quipazine (a,b,c) MK212 (a) 5-HT (a) a-Me5-HT (a,b)
4 MK212 (c) 5-HT (a) DOI (a,b,c) Quipazine (a,b) DOI (a,b) 5-HT (a)
5 DOI (c,d) MK212 (b,c) 5-Methoxy DMT (b,c,d) 5-Methoxy DMT (a,b,c) Lisuride (a,b) Lisuride (a,b)
6 5-Methoxy DMT (d) a-Me5-HT (c) MK212 (¢,d) DOI (a,b,c) 5-Methoxy DMT (a,b) Quipazine (a,b)
7 m-CPP (e) m-CPP (c,d) m-CPP (d) m-CPP (a,b,c) a-Me5-HT (a,b,c) MK212 (a,b)
8 Lisuride (e,f) Lisuride (d) Lisuride (e) Lisuride (b,c) MK212 (b,c) m-CPP (a,b)
9 SCH-23390 () SCH-23390 (d) SCH-23390 (e) SCH-23390 (c) SCH-23390 (c) SCH-23390 (b)




example, EFSKZKO/EWT yalues for the partial agonists 5-me-

thoxy-DMT and DOI were highly responsive to RSK2 dele-
tion, as exhibited by 3.4- and 2.9-fold increases in IP accu-
mulation in RSK2 KO MEFs, respectively. In contrast, the
full agonist a-Me-5-HT was the least responsive to RSK2
deletion, resulting in a meager 1.4-fold increase in IP accu-
mulation in RSK2 KO MEFs. As a result, rank position
significantly increased for 5-methoxy-DMT and DOI but not
a-Me-5-HT in RSK2 KO MEFs. Taken together, the unique
responsiveness of 5-methoxy-DMT and DOI in the absence of
RSK2 most likely explains the conditional efficacy observed
for IP accumulation in RSK2 KO MEFs.

Discussion

The major finding of this article is that patterns of 5-HT,,
agonist functional selectivity are modulated by genetic dele-
tion of a single kinase. Via high-throughput and high-content
technologies, we identified global increases in agonist effica-
cies but not potencies for 5-HT,,-mediated IP accumulation,
Ca?" release, and ERK1/2 phosphorylation in the absence of

A Il IP accumulation
ERK phosphorylation
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RSK2. These findings imply that 5-HT,, receptors are more
responsive in the absence of RSK2 (i.e., less desensitized) and
confirm our previous reports showing that RSK2 attenuates
5-HT,, receptor signaling (Sheffler et al., 2006; Strachan et
al., 2009). It is noteworthy that this study shows that pat-
terns of functional selectivity vary depending upon the cel-
lular milieu.

In agreement with many studies demonstrating that
ligands elicit a spectrum of receptor behaviors (Urban et
al., 2007; Mailman, 2007), including studies at 5-HT,,
receptors (Berg et al., 1998a; Kurrasch-Orbaugh et al.,
2003; Moya et al., 2007), we uncovered novel examples of
functional selectivity between 5-HT,,-mediated IP accu-
mulation and ERK1/2 phosphorylation in WT MEFs, and
between WT and RSK2 KO MEFs at 5-HT,,-mediated IP
accumulation.

First, we documented functional selectivity in WT MEFs.
We identified significant reversals in relative agonist effica-
cies between effector readouts in WT MEFs. These changes
in relative efficacy could be explained either by increased
system responsiveness (i.e., cell-based functional selectivity)
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Fig. 5. Evidence of functional selectivity between measures of IP accumulation and ERK1/2 phosphorylation in WT MEFs. A, relative rank orders of
efficacy (E,,,., 5-HT set to 100%) were significantly altered between measures of IP accumulation () and ERK1/2 phosphorylation (E) for 5-HT,,
agonists in WT MEFs. Statistical ranking of relative E ., values was performed via one-way ANOVA and Tukey-Kramer multiple comparison
post-tests in which agonists were assigned to statistically homogeneous groups (designated “a” through “f” in Table 4, labeled bars). Significant
differences in rank order were denoted by changes in group membership, and agonists with nonoverlapping group assignments were considered to be
significantly different. Values represent the mean of four to five independent experiments performed in duplicate. B, the relative efficacies of MK212
and m-CPP were reversed between measures of IP accumulation (M) and ERK1/2 phosphorylation (1) in WT MEF's (+, significantly different from
MK212, p < 0.05). Labeled bars represent statistically homogeneous groups (designated “a” through “f” in Table 4). C, concentration-response curves
showing the relative abilities of MK212 (M) and m-CPP (O) to stimulate IP accumulation via 5-HT,, receptors in WT MEFs. Relative E_,, values were
significantly different (p < 0.05). Values represent the mean * S.E.M. of four to five independent experiments performed in duplicate.
D, concentration-response curves showing the relative abilities for MK212 (B) and m-CPP (O) to stimulate ERK phosphorylation via 5-HT,, receptors
in WT MEFs. Relative E_,, values were significantly different (p < 0.05). Values represent the mean = S.E.M. of four to five independent experiments
performed in duplicate.
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or by changes in the agonist-receptor complex (i.e., receptor-
based functional selectivity). Kenakin (2007) has proposed
that relative measures of efficacy are system-independent
and are solely functions of agonist efficacy. It follows, then,
that a reversal in the relative efficacies of two agonists, a
hallmark of receptor-based functional selectivity, requires a
change in the agonist-receptor complex (i.e., multiple recep-
tor active states). Consistent with reports of receptor-based
functional selectivity in the literature, we found that the
relative efficacies of m-CPP and MK212 were significantly
reversed between measures of IP accumulation and ERK1/2
phosphorylation.

It is apparent that the functional selectivity observed for
m-CPP and MK212 in WT MEFs could be explained by a
single activated receptor state and pathway-specific differ-
ences in stimulus-response coupling (e.g., receptor reserve for
ERK1/2 phosphorylation). It follows, then, that if stimulus-
response coupling was primarily enhanced for one pathway
(e.g., ERK1/2) over another (e.g., IP accumulation), we would
expect to observe increased efficacy for all partial agonists at
the more efficiently coupled pathway. This assumption is
central to the system-independence of the “intrinsic efficacy”
concept, because the strength of signal imparted to the re-

Il WT MEFs
| RSK2 KO MEFs

= WT MEFs, o-Me-5-HT
o WT MEFs, 5-methoxyDMT
» WT MEFs, DOI

a2 2NN
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ceptor between two agonists is reflected by the effector re-
sponse. In functional terms, enhanced stimulus-response
coupling manifests as increases in the efficacies of all ago-
nists (i.e., until the response system is saturated), wherein
the rank order of efficacy is retained, not reversed (Kenakin,
2009). As presented here, the relative efficacy of the partial
agonist MK212 remained unchanged between measures of IP
accumulation and ERK1/2 phosphorylation, whereas in the
same cells, the relative efficacy of the partial agonist m-CPP
was 4-fold higher for ERK1/2 phosphorylation than for IP
accumulation. These data challenge the system-independent
notion of intrinsic efficacy. Moreover, these data agree with
previous reports of functional selectivity at 5-HT,, receptors,
in which partial agonist efficacies (e.g., of quipazine and
TFMPP) were not uniform comparing different pathways
(Berg et al., 1998b; Kurrasch-Orbaugh et al., 2003).

The second and most intriguing example of functional se-
lectivity at 5-HT,, receptors resulted from a comparison
between effector readouts in WT and RSK2 KO MEFs. Our
findings show that genetic deletion of RSK2 elicits a reversal
in the relative rank order of efficacy for IP accumulation. We
observed that the relative efficacies for IP accumulation were
potentiated to different extents in RSK2 KO MEFs, as illus-

= RSK2 KO MEFs, a-Me-5-HT
o RSK2 KO MEFs, 5-methoxyDMT
Q 4+ RSK2 KO MEFs, DOI
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log drug (M)

IP accumulation (relative
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o

Fig. 6. Genetic deletion of RSK2 significantly alters the relative rank order efficacy of 5-HT,, agonists: evidence for functional selectivity between WT
and RSK2 KO MEFs. A, relative rank orders of efficacy (E .., 5-HT set to 100%) were significantly altered between WT () and RSK2 KO MEF's (&)
for 5-HT,,-mediated IP accumulation. Statistical ranking of relative E . values was performed via one-way ANOVA and Tukey-Kramer multiple
comparison post-tests in which agonists were assigned to statistically homogeneous groups (designated “a” through “f” in Table 4, labeled bars).
Significant differences in rank order were denoted by changes in group membership, and agonists with nonoverlapping group assignments were
considered to be significantly different. Values represent the mean of four to five independent experiments performed in duplicate. B, the relative
efficacies of a-Me-5-HT, 5-methoxy-DMT, and DOI were reversed between WT (M) and RSK2 KO MEFs (E) for 5-HT,,-mediated IP accumulation
(*, statistically different from a-Me-5-HT, p < 0.05). Labeled bars represent statistically homogeneous groups (designated “a” through “f” in Table 4).
C, concentration-response curves showing the relative abilities of a-Me-5-HT (H), 5-methoxy-DMT (O), and DOI (A) to stimulate IP accumulation via
5-HT,, receptors in WI' MEFs. Relative E . values were significantly different between a-Me-5-HT and both 5-methoxy-DMT and DOI (p < 0.05).
Values represent the mean = S.E.M. of four to five independent experiments performed in duplicate. D, concentration-response curves showing the
relative abilities of a-Me-5-HT (M), 5-methoxy-DMT (O), and DOI (A) to stimulate IP accumulation via 5-HT,, receptors in RSK2 KO MEFs. Relative
E .. values were significantly different between a-Me-5-HT and both 5-methoxy-DMT and DOI (p < 0.05). Values represent the mean = S.E.M. of

max

four to five independent experiments performed in duplicate.



trated by different ERSK2KO/EWT yalues. This suggests that
agonist responses are differentially regulated by RSK2. Mod-
est differences between WT and RSK2 KO cell lines cannot
account for reversals in relative efficacies because a-Me-5-
HT, which is a full agonist in WT MEFSs, exhibited weak
partial agonist activity in RSK2 KO MEFs.

From a conceptual perspective, differences in
EWT values and reversals in agonist relative efficacy be-
tween RSK2 KO and WT MEFs are not entirely surprising,
because auxiliary GPCR-interacting proteins, of which there
are many (Bockaert et al., 2004; Allen et al., 2008), have the
potential to alter ligand activity at target receptors (Christo-
poulos et al., 2003). This new set of pharmacological behav-
iors is believed to arise from interactions between ligand-
enriched GPCR conformations and auxiliary proteins and
has been tentatively termed “conditional efficacy.” Indeed,
we have shown previously that RSK2 interacts with the
5-HT,, receptor third intracellular loop and induces receptor
phosphorylation, thereby attenuating receptor signaling
(Sheffler et al., 2006; Strachan et al., 2009). Thus, it is con-
ceivable that agonists are disproportionately affected by
RSK2-mediated receptor phosphorylation. To support this
concept, recent studies have shown evidence of 1) agonist-
specific GPCR phosphorylation (Zhang et al., 1998; Roush et
al., 1999; Li et al., 2003; Trester-Zedlitz et al., 2005), 2)
agonist-specific third intracellular loop conformational
changes (Swaminath et al., 2004, 2005), 3) phosphorylation-
dependent functional responses (Tobin, 2008), and
4) phosphorylation-mediated stabilization of individual re-
ceptor conformations (Francesconi and Duvoisin, 2000;
Thomas et al., 2000; Palanche et al., 2001). Although plausi-
ble, it remains to be determined how receptor phosphoryla-
tion differentially affects agonist signaling. Nevertheless,
this is an intriguing hypothesis and warrants further study.

Zidar et al. (2009) demonstrated recently that endogenous
CCR7 chemokine receptor ligands differentially activate
GRK isoforms, thus leading to differences in receptor phos-
phorylation and functionally distinct pools of B-arrestin. Dif-
ferential kinase activation is of fundamental interest to the
field of functional selectivity and could perhaps explain the
disproportionate affects on agonist signaling in RSK2 KO
MEFs. However, considerable evidence argues against this
mechanism. First, 5-HT,, receptors are known to be regu-
lated by a GRK-independent mechanism in some cell types
(Gray and Roth, 2001; Gray et al., 2001). Second, despite
numerous attempts by our laboratory and others, agonist-
mediated phosphorylation of 5-HT,, receptors has never
been detected (Sheffler et al., 2006; Strachan et al., 2009;
B.L. Roth, unpublished observations). Instead, 5-HT,, re-
ceptors seem to be constitutively phosphorylated (Vouret-
Craviari et al., 1995) and desensitized (i.e., the “tonic
brake”) (Sheffler et al., 2006), presumably through growth
factor-mediated activation of RSK2 (Strachan et al., 2009).
Therefore, the most likely hypothesis remains that RSK2-
mediated receptor phosphorylation differentially affects
agonist signaling.

To our knowledge, this is the first study to demonstrate
that deletion of a single kinase leads to differential patterns
of functional selectivity at a GPCR. Because it is well known
that different cell types express distinct sets of GPCR-inter-
acting proteins and kinases, this study exposes the potential
for minor changes in the kinome to elicit large alterations in

RSK2KO
E max /
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effector readouts, with obvious implications for drug actions
in vitro and in vivo.
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