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Abstract

We propose an interaction tree (IT) procedure to optimize the subgroup analysis in compara-
tive studies that involve censored survival times. The proposed method recursively partitions the
data into two subsets that show the greatest interaction with the treatment, which results in a num-
ber of objectively defined subgroups: in some of them the treatment effect is prominent while in
others the treatment may have a negligible or even negative effect. The resultant tree structure can
be used to explore the overall interaction between treatment and other covariates and help iden-
tify and describe possible target populations on which an experimental treatment demonstrates
desired efficacy. We follow the standard CART (Breiman, et al., 1984) methodology to develop
the interaction tree structure. Variable importance information is extracted via random forests of
interaction trees. Both simulated experiments and an analysis of the primary billiary cirrhosis
(PBC) data are provided for evaluation and illustration of the proposed procedure.
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1. Introduction

We consider comparative studies which have censored survival times as the
endpoint variable. In these studies, the main goal is to assess the effect of
two or more treatments on survival. Subgroup analysis is important in de-
termining the generalizability of the results. The investigator would like to
know whether and how the treatment effect varies across subgroups induced
by covariates. For example, in randomized clinical trials, practitioners and
regulatory agencies would like to know whether there are subgroups of trial
participants who are more (or less) likely to be helped (or harmed) by the
investigational treatment. Subgroup analysis helps explore the heterogeneity
of the treatment effect and extract the maximum amount of information from
the available data. According to a recent survey conducted by Assmann et
al. (2000), 70% of trials published over a three-month period in four leading
medical journals included subgroup analyses.

In the current practice of subgroup analysis, the subgroups, as well as the
number of subgroups to be examined, are usually prespecified by the inves-
tigator. Traditional subgroup analysis is a highly subjective process leading,
potentially, to dubious results. Its limitations have been widely noted (see, e.g.,
Assmann, et al. 2000, Cook, Gebski, and Keech, 2004, Popock, et al. 2000,
and Sleight 2000). First, it is rather blinded to an analyst in identifying the
true heterogeneity structure of the effect of the investigational treatment in
subjectively-predefined subgroups. One may fail to identify a subgroup of
prospective interest or intentionally avoid reporting subgroups (Hahn, et al.,
2000) where the investigational treatment is found unsuccessful or even po-
tentially harmful. Second, significance testing (see, e.g., Song and Chi, 2007)
has been the main approach in subgroup analysis. Since there is no general
guideline for selecting the number of subgroups, one has to thoroughly examine
numerous possibilities to assess the treatment effect. However, a large num-
ber of subgroups inevitably leads to added difficulties concerning multiplicity
and a potentially severe lack of power in testing significance. Third, it is a
daunting task to clearly define subgroups a priori, even for the field experts.
For example, Parker and Naylor (2000) reviewed 67 large randomized trials
of cardiovascular pharmacotherapy published between 1980 and 1997. They
found that all but five focused on single-factor subgroups solely using univari-
ate analysis techniques and a supporting rationale for the subgroup selection
was lacking for most of them.

In this paper, we propose a tree-based procedure to aid in subgroup anal-
ysis. The tree method was first considered by Morgan and Sonquist (1963).
By recursively bisecting the predictor space, the hierarchical tree structure
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partitions the data into meaningful groups and makes available a piecewise
approximation of the underlying relationship between a response and its asso-
ciated predictors. The applications of tree models have been greatly advanced
in various fields especially since the development of CART (classification and
regression trees) by Breiman et al. (1984). CART has successfully addressed
tree size selection and many other related practical issues. Their idea of prun-
ing has become and remains the current standard in determining the optimal
tree size.

Applying a tree procedure to guide subgroup analysis is intuitive. Sub-
group analysis involves the interaction between the treatment and covariates.
Trees are well known as an excellent tool for exploring interactions, the first
implementation, in fact, being referred to as Automatic Interaction Detection
(AID; Morgan and Sonquist, 1963). Another attractive and unique trait of
tree methods is that they group data in an optimal way. By recursively bi-
secting the data into two subgroups that show the greatest heterogeneity in
treatment effect, we are able to optimize the subgroup analysis and make it
more efficient in representing the interaction structure between the treatment
and covariates. The results are a set of objectively recognized subgroups, rang-
ing from the most effective to the least effective in terms of treatment effect.
The whole procedure is data-driven and automated. The grouping strategy
and the number of subgroups are automatically determined by the procedure
itself. The covariates used in the partition naturally define the subgroups.

Hereafter, we will use the label “interaction trees” (IT) when referring
to the proposed procedure. The rest of the paper is organized as follows. In
Section 2, the IT procedure is presented in detail. Section 3 contains simulation
studies designed for assessing the proposed method. In Section 4, we apply the
proposed tree procedure to analyze the well-known primary billiary cirrhosis
(PBC) data set. Section 5 concludes the paper with a brief discussion.

2. Tree-Structured Subgroup Analysis

We consider a study designed to assess the effect of a binary treatment on
censored survival times while adjusting for a number of covariates. Let Fi and
Ci be the failure time and the censoring time of the i-th case, respectively.
The observed data consist of {(Ti, δi, trti,xi) : i = 1, 2, . . . , n}, where Ti =
min(Fi, Ci) is the ith observed failure time; δi = 1{Fi≤Ci} is the indicator of
whether the ith case is failed or censored; trti is the binary treatment indicator
taking values 1 or 0; and xi = (xi1, xi2, . . . , xip) ∈ Rp is a p-dimensional
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covariate vector for the ith case. We assume noninformative censoring in the
sense that Fi and Ci are independent given the covariate vector xi.

Tree-based methods have been extended to survival analysis by many au-
thors. These extensions are usually termed as survival trees. See, e.g., LeBlanc
and Crowley (1992, 1993), Keles and Segal (2002), Su and Fan (2004), and Fan
et al. (2006). However, unlike these survival trees whose goal is to facilitate a
tree-structured modeling of the hazard function, our goal is to identify a tree
structure (denoted by T ) that accounts for the interaction structure between
the treatment and covariates. That is, we are interested in the heterogeneity
structure of the treatment effect on survival across terminal nodes of T . To
construct T , we follow the convention of CART (Breiman, et al., 1984), which
consists of three major steps: (1) growing a large initial tree; (2) a pruning
algorithm; and (3) a validation method for determining the best tree size.

The closest work to our proposed methods includes Ciampi et al. (1995)
and Negassa et al. (2005), who also developed a CART-typed tree procedure
for subgroup analysis. Their final model is a stratified Cox (1972) model

λ(t |xi) = λ0(t; T ) exp
{

β · trti + γ 0 · z(T )
i · trti

}
, (1)

where λ0(t; T ) is an unspecified baseline hazard function of time with stratifi-

cation on the terminal nodes of T , z
(T )
i is a dummy vector induced by the tree

structure T , and {β, γ} are unknown regression parameters of appropriate
dimension. Our splitting criterion, pruning, and tree size selection procedures
are all quite different from those papers. We shall discuss the differences and
draw comparisons via simulation studies in the sections that follow.

2.1 Growing a Large Initial Tree

We first consider a single binary split, say, s, of the data. This split is induced
by a threshold on a predictor Xj. If Xj is continuous, then the binary question
whether Xj ≤ c is considered. Observations answering ‘yes’ go to the left child
node tL and observations answering ‘no’ to the right child node tR. Here, the
cutoff point c can be any constant, but in practice its choices are empirically
determined by the distinct values of observed Xj.

If Xj is nominal with categories C = {c1, . . . , cr}, then the form of Xj ∈ A
with A ⊂ C induces the split. When Xj has many distinct categories, the
choices of A would be massive. To reduce the computational burden, one may
‘ordinal’ize Xj in a similar way as used in CART (Section 9.4; Breiman et al.,
1984). To do so, we estimate the treatment effect within each category of Xj

and put the categories of Xj in order according to the treatment effect. Then
splitting on Xj can be processed as if it was an ordinal variable.
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Among all permissible splits of the data, we want to select the one such
that the treatment effect differs most between its two resultant child nodes. In
other words, the best split shows the greatest interaction with the treatment.
A natural measure for assessing this interaction effect is a test statistic for
H0 : β3 = 0 in the following threshold Cox (1972) proportional hazards model

λ(t |xi) = λ0(t) exp
{

β1 · trti + β2 · z(s)
i + β3 · trti · z(s)

i

}
, (2)

where z
(s)
i = 1{Xi≤c} is the indicator variable associated with split s. While

several testing procedures are available for this purpose, we use the partial
likelihood ratio test (PLRT) statistic,

G(s) = −2 · (l2 − l1), (3)

where l2 is the maximized partial log-likelihood (Cox, 1975) of model (2),

l2 =
n∑

i=1

[
δiηi − log

{
n∑

k=1

1{Tk≥Ti} exp(ηk)

}]

with ηi = β1 · trti + β2 · z(s)
i + β3 · trti · z(s)

i , and l1 is the maximized partial
log-likelihood of the reduced model under H0,

λ(t |xi) = λ0(t) exp
{

β1 · trti + β2 · z(s)
i

}
.

For a given split s, G(s) follows a χ2(1) distribution.
The best split s? is the one that yields the maximum G(s) statistic among

all permissible splits; that is, G(s?) = maxs G(s). The data are then split
according to the best split s?. The same procedure is applied to split both
child nodes. Recursively doing so results in a large initial tree, denoted by T0.

Remark 1 Following the formulation of the Cox (1972) proportional hazards
model, we have assumed the same baseline hazard function for the two child
nodes induced by a single split. Alternatively, one may consider different
baseline hazard functions as in Negassa et al. (2005). In this case, the splitting
statistic G(s) is computed as the partial likelihood ratio test statistic that
compares model

λ(t |xi) = λ0(t; z
(s)
i ) exp

{
β1 · trti + β2 · trti · z(s)

i

}

with model λ(t |xi) = λ0(t; z
(s)
i ) exp {β1 · trti} . Namely, a stratification on the

two child nodes is applied.
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2.2 Pruning

The final tree could be any subtree of T0. However, the number of subtrees can
be massive even for a moderately-sized tree. To narrow down our choices, we
follow CART’s pruning method to iteratively truncate the “weakest link” of the
large initial tree T0. Since the splitting statistic G measures the heterogeneity
of child nodes for each link or internal node, we may adopt the split-complexity
pruning algorithm of LeBlanc and Crowley (1993). We shall briefly describe
this procedure in this subsection. Interested readers are referred to CART
(Breiman, et al., 1984) for basic tree terminologies, such as subtree, branch,
etc.

For a given tree structure T , let T̃ denote the set of all terminal nodes and
|·| denote cardinality. An interaction-complexity measure Gλ(T ) is introduced
to evaluate the performance of an interaction tree T :

Gλ(T ) = G(T )− λ · | T − T̃ |, (4)

where G(T ) =
∑

h∈T −eT G(h) corresponds to the amount of heterogeneity
in treatment effect represented by tree T and hence measures the overall
goodness-of-interaction of T , the total number of internal nodes |T − T̃ | is
used to measure the complexity of the tree, and λ ≥ 0, called the complexity
parameter, acts as a penalty for each added split. Given a fixed λ, a tree
structure with larger Gλ(T ) is preferable.

The main idea of the algorithm is that, when the complexity penalty λ
increases from 0, there will be a link or internal node h that first becomes
ineffective, in the sense that the branch descending from h is inferior compared
to h as a single terminal node. This link is then deemed as the weakest link.
The threshold value for λ can be found by solving Gλ(T ) = G(T )−λ·|T −T̃ | =
0, or λ = G(T )/ | T − T̃ |.

Following such logic leads to an efficient pruning algorithm. We start with
T0. For each internal node h of T0, calculate the value of

g(h) =
G(Th)

| Th − T̃h |
,

where Th is the branch with h as its root and |Th − T̃h| denotes the number of
internal nodes of Th. Then the weakest link, h?, is the node such that g(h?)
(call it λ1) is the smallest. Let T1 be the subtree after pruning off the branch
Th? from T0. Apply the same procedure to prune T1. Repeating this procedure
results in a nested sequence of subtrees TM ≺ · · · ≺ Tm ≺ Tm−1 ≺ · · · ≺ T1 ≺
T0, where TM is the tree with only the root node and ≺ means “is a subtree
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of”. Associated with this sequence of subtrees is a corresponding sequence of
λ values, ∞ > λM > · · · > λm > λm−1 > · · · > λ1 > λ0 = 0. By Breiman et
al. (1984) and LeBlanc and Crowley (1993), Tm is the smallest subtree that
maximizes Gλ for any λ such that λm ≤ λ < λm+1. In particular, this is true
for the geometric mean of λm and λm+1, λ′m =

√
λmλm+1.

2.3 Tree Size Selection

Now we need to select the optimally sized tree from the nested subtree se-
quence. Again, the split-complexity measure Gλ(T ) given in (4) is the yard-
stick for comparing these candidates. That is, tree T ? is best sized if

Gλ(T ∗) = max
m=0,...,M

{
G(Tm)− λ · |Tm − T̃m|

}

LeBlanc and Crowley (1993) suggest that, for the purpose of size selection, λ
be fixed within the range 2 ≤ λ ≤ 4, where λ = 2 is in the spirit of the Akaike
information criterion (AIC; Akaike, 1974) and λ = 4 corresponds roughly to
the 0.05 significance level on the χ2(1) curve. A similar suggestion is found in
Bhansali and Downham (1977) for selecting autoregressive time series models.

However, there is one problem due to the very adaptive nature of recursive
partitioning. We have already used the sample to grow and prune the tree. The
goodness-of-interaction measure G(Tm) would be over-optimistic if computed
using the same data. Thus, an “honest” estimate of G(Tm) is in need. This can
be achieved by cross validation. In the following, the notation G(L2;L1, T ) is
used to denote the validated goodness-of-split measure for tree T built using
sample L1 and validated using sample L2.

When the sample size is large, a test sample method can be applied. First
divide the whole data into two parts: the learning sample L1 and the test sam-
ple L2. Then grow and prune the initial tree T0 using L1. At the stage of tree
size determination, the goodness-of-split measure G(Tm) is recalculated or val-
idated as G(L2;L1, Tm) using the test sample L2. The subtree that maximizes
the validated Gλ is selected as the best-sized tree.

When the sample size is small or moderate, one has to resort to v-fold
cross-validation or bootstrapping methods in order to validate G(Tm). We
adopt a bootstrap method proposed by Efron (1983) for bias correction in the
prediction problem (also see LeBlanc and Crowley, 1993). In this method,
one first grows and prunes a large initial tree T0 using the whole data. Next,
bootstrap samples Lb, b = 1, · · · , B, are drawn from the entire sample L.
A rough guideline for the number of bootstrap samples is 25 ≤ B ≤ 100,
following LeBlanc and Crowley (1993). Based on each bootstrap sample Lb, a
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tree T b
0 is grown and pruned. Let Tb(λ

′
m),m = 1, · · · ,M , denote the optimally

pruned subtrees corresponding to the λ′m values, where λ′m,m = 1, · · · ,M ,
are geometric means of the λm values obtained from pruning T0. Then the
bootstrap estimator of G(Tm) is given by

G(B)(Tm) = G(L;L, T (α′m))− 1

B

B∑

b=1

{G(Lb;Lb, Tb(λ
′
m))−G(L;Lb, Tb(λ

′
m))} .

(5)
The rational is as follows. The first part of (5), G(L;L, T (λ′m)), is over-
optimistic as the same sample L is used for both tree construction and calcu-
lation of G. The second part of (5) aims to correct this bias, being an estimate
of the difference between G’s when the same (Lb and Lb) versus different (Lb

and L) samples are used for growing/pruning the tree and for recalculating G,
and averaged over B bootstrap samples.

Remark 2 Ciampi et al. (1995) adopts the cost-complexity pruning algo-
rithm of CART (Breiman et al., 1974). In their procedure, the cost is defined
as the partial likelihood associated with model (1). To select the best tree
size, they considered four different selection methods: cross-validation, 1SE
rule, minimum AIC rule, and an elbow rule, all requiring a fit of model (1).
According to the suggestion of Negassa et al. (2005), a two-step procedure
should be applied to determine the best tree size: first rely on cross-validation
to decide whether an interaction tree structure is necessary, and then apply
the elbow rule to select the best tree size. In the elbow rule, one determines
the tree size by browsing the plot of validated costs and looking for “kinks”
which might be local minima, not necessarily the global minimum.

Nevertheless, the partial likelihood associated with model (1) does not ex-
actly measure the strength of interaction accounted for by a tree structure.
A higher partial likelihood score may be caused by the stratification on sub-
groups, instead of the interaction between treatment and subgroups. Further-
more, fitting model (1) itself could be problematic, especially when T has
many terminal nodes. As indicated by Kalbfleisch and Prentice (Sections 4.4
and 4.7, 2002), one would encounter efficiency loss in estimation when strat-
ification is introduced unnecessarily. This, in particular, could be a problem
in the tree method of Ciampi et al. (1995) and Negassa et al. (2005) as their
whole procedure relies heavily on the maximized partial likelihood associated
with model (1).

Our proposal circumvents this difficulty by utilizing the maximum split-
ting statistic at each partition. However, a tree model similar to Negassa et
al. (2005) can be readily fit by using our procedure. The only modification
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necessary is to employ the alternative splitting statistic discussed in Remark
1. Note that we do not have to fit the global model (1) in our tree method.
This helps avoid the potential loss of efficiency due to unnecessary or excessive
stratification.

2.4 Summarizing the Terminal Nodes

The subgroups are determined by the terminal nodes of the best interaction
tree structure. The total number of subgroups, which may be further reduced,
correspond to the automatically selected best tree size. Unlike conventional
subgroup analysis, these subgroups obtained from the IT procedure are mu-
tually exclusive.

Subgroup analysis has been a highly controversial subject (see, e.g., Sleight
2000). This is mainly due to the subjective process used to determine the
subgroups and the multiplicity issue that emerges from testing across many
subgroups. Nevertheless, it is generally agreed that subgroup analysis should
be regarded as supportive and exploratory. And it is often useful for generat-
ing new research hypotheses for future studies. As recommended by Lagakos
(2006), it is best not to present p-values for within-subgroup comparisons,
but rather to give an estimate of the magnitude of the treatment difference
and corresponding confidence intervals. To summarize the terminal nodes in
our setting, one can compute the median survival time for both treatment
groups, give an estimate of the hazard ratio between treatments, and present
the comparative Kaplan-Meyer survival curves within each terminal node.

Very often the treatment is expected to show homogeneous effects in some
of the terminal nodes, especially those from different branches. A merging
scheme would be useful in this case. In this algorithm, one computes the
G statistic in equation (3) between every pair of terminal nodes. The pair
showing the least heterogeneity in treatment effect are then merged together.
The same procedure is executed iteratively until all the remaining subgroups
show heterogeneity above a reasonable threshold. This merging scheme further
reduces the number of subgroups and results in a better representation of the
heterogeneity structure for the treatment effect. In the end, one can sort the
final subgroups based on the effect of the investigational treatment, from the
most effective to the least effective. We will illustrate this merging idea with
the example presented in Section 4. We also note that Ciampi et al. (1995)
performs merging by fitting model (1) and examining the coefficient estimates.
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2.5 Variable Importance via Random Forests

Variable importance ranking (see, e.g., van der Laan, 2006) is another attrac-
tive feature offered by recursive partitioning. It provides excellent augmen-
tation to tree analyses based on one single tree structure. In the context of
subgroup analysis, it will help answer questions such as which covariates are
important effect-modifiers for the treatment. This issue cannot be fully ad-
dressed by simply examining the splitting variables shown in one single final
IT structure, as an important variable can be completely masked by other cor-
related ones. While there are many methods available for extracting variable
importance information, we develop an algorithm analogous to the procedure
used in random forests (Breiman, 2001), which is among the newest and most
promising developments in this regards.

Once again we make use of the overall goodness-of-interaction measure
G(T ) for tree T . Let Vj denote the importance of the j-th covariate Xj for
j = 1, . . . , p. We construct random forests of interaction trees by taking B
bootstrap samples Lb, b = 1, . . . , B. Different from constructing an ordinary
IT structure, ITs in random forests are grown with a greedy search over only
a subset of randomly selected m covariates at each split and without pruning
and tree size selection. For each tree Tb, the b-th out-of-bag sample (denoted
as L − Lb), which contains all observations that are not in Lb, is sent down
to compute G(Tb). Next, the values of the j-th covariate in the out-of-bag
sample L − Lb are randomly permuted. The permuted out-of-bag sample is
run down Tb again to recompute Gj(Tb). Then the relative difference between
G(Tb) and Gj(Tb) is recorded. This is done for every covariate. The procedure
is repeated for B bootstrap samples. Finally, the importance Vj is the average
of those relative differences over all B bootstrap samples.

The whole procedure is summarized in Algorithm 1. Because of the mech-
anism of constructing random forests, a covariate that is unimportant but has
many levels may show up frequently in the tree structure. The out-of-bag sam-
ples are used to achieve internal validation in bootstrapping. Permutation of
covariate values provides further help in reducing the potential bias in variable
importance determination.

3. Simulated Studies

This section contains simulation experiments designed to evaluate the perfor-
mance of the IT procedure in detecting the true interaction structure. We
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generated data from the following four models:

A λ(t) = exp{−2 + log(2) · trt− 1.5 · Z1 + 1.5 · Z2}
B λ(t) = exp{−2 + log(2) · trt− 1.5 · Z1 · trt + 1.5 · Z2 · trt}
C λ(t) = exp{−2 + log(2) · trt− 3 ·X1 · trt + 3 ·X3 · trt},
D λ(t) = exp{−2 + log(2) · trt− log(2) · Z1 · trt + log(2) · Z2 · trt}

where Z1 = 1{X1≤0.5} and Z2 = 1{X2∈(a,c)}. Each data set involves a binary
treatment and four covariates X1 to X4. Covariates X1 and X3 are simulated
from a discrete uniform distribution over values (0.1, 0.2, . . ., 1.0) while X2

and X4 are nominal, each having four levels {a, b, c, d}. However, only a sub-
set of these covariates interact with the treatment. More specifically, model
A is an additive model with no interaction. A null interaction tree structure
with the root node only is expected. This model helps assess the type I error
or false-positive rate when using the IT procedure. models B and D involve
two additive terms of thresholds on X1 and X2 that interact with the treat-
ment effect but model B has a stronger interaction signal than model D. If
the IT procedure works well, it is expected to select a tree structure with
four terminal nodes. In model C, the original values of X1 and X3 interact
with treatment directly. In this case, a large tree is needed to represent the
interaction structure.

We assess both the test sample and bootstrap methods in selecting the
optimal tree size. For the test sample method, a sample size n = 450 is used,
300 observations forming the learning sample L1 and 150 observations forming
the validation sample L2. For the bootstrap method, a sample size n = 300 is
used. We consider two censoring rates, 0% and 50%. Each model is examined
for 100 simulation runs. And for each simulated data set, three choices of λ,
{2, 3, 4}, are applied to determine the best tree size.

The relative frequencies of the final tree sizes selected by the IT procedure
are reported in Table 1. The expected final tree size for each model has been
highlighted in boldface. In addition to the correct tree size selection, there is
also a variable selection issue involved. For example, both X1 and X2, but
neither X3 nor X4, are actually involved in the IT structure for models B and
D. If this is the case in a particular run, we say a ‘hit’ is made. Similarly, we
expect to see both X1 and X3 and only these two variables show up in the
final tree for model C and none of them for the null model A. To address this
variable selection issue, we counted the frequency of ‘hits’. The results are
also presented in the last column of Table 1.
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Table 1
Simulation Results for Assessing the Tree Procedure: frequencies of the final tree

sizes identified by the interaction tree (IT) procedure in 100 runs.

Sample Validation Censoring Final Tree Size
Model Size Method Rate λ 1 2 3 4 5 6 ≥ 7 Hits

A 450 test sample 0% 2 79 6 5 5 2 3 0 79
3 93 5 2 0 0 0 0 93
4 96 2 2 0 0 0 0 96

50% 2 77 6 7 4 2 2 2 77
3 94 3 2 1 0 0 0 94
4 96 3 0 1 0 0 0 96

300 bootstrap 0% 2 71 0 1 5 14 8 1 71
3 87 2 3 3 3 2 0 87
4 94 3 2 1 0 0 0 94

50% 2 72 1 1 4 16 6 0 72
3 94 1 2 2 1 0 0 94
4 98 0 1 1 0 0 0 98

B 450 test sample 0% 2 0 0 4 57 12 11 16 68
3 0 0 8 70 11 4 7 82
4 0 0 10 75 9 2 4 88

50% 2 1 6 11 33 14 12 23 46
3 4 14 19 39 9 6 9 58
4 9 20 29 32 7 2 1 62

300 bootstrap 0% 2 0 0 1 26 35 30 8 42
3 0 2 3 52 29 10 4 64
4 0 2 6 66 20 5 1 79

50% 2 1 0 5 15 39 33 7 34
3 2 5 15 33 31 13 1 54
4 3 12 24 34 20 7 0 59

C 450 test sample 0% 2 2 1 15 34 16 18 14 76
3 2 6 23 39 13 12 5 83
4 5 13 25 39 8 8 2 75

50% 2 5 15 19 25 13 16 7 54
3 16 17 26 23 9 6 3 56
4 19 23 22 19 11 4 2 52

300 bootstrap 0% 2 0 0 0 0 0 2 98 9
3 0 0 0 11 5 5 79 33
4 0 0 3 17 15 11 54 58

50% 2 1 1 3 2 0 2 91 8
3 1 3 14 10 5 4 63 34
4 5 15 35 22 9 9 5 54

D 450 test sample 0% 2 23 29 16 13 6 11 2 17
3 42 33 12 9 1 2 1 13
4 55 31 12 1 0 1 0 10

50% 2 49 19 10 7 9 5 1 7
3 69 17 6 4 4 0 0 5
4 90 8 0 2 0 0 0 2

300 bootstrap 0% 2 9 14 9 15 19 21 13 19
3 30 11 6 11 16 21 5 12
4 52 15 11 9 6 4 3 13

50% 2 33 15 12 11 10 11 8 15
3 59 5 4 8 12 7 5 10
4 81 4 3 5 5 1 1 9
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It can be seen that the IT procedure does reasonably well in detecting the
true interaction structure and selecting the desired splitting variables in all
models but model D. We first look at the results for the null model, model A.
The results correspond roughly to the size of a statistical test or the probability
of making type I errors. This is particularly important in subgroup analysis as
we really do not want to identify subgroups across which the treatment effects
are, in fact, the same. One of major criticisms towards conventional subgroup
analysis is that one can always find something if one looks hard enough. The
problem has led to Sleight’s (2000) comments that subgroup analyses are ‘fun
to look at, but don’t believe them.’ The IT procedure correctly selects the
null tree structure at least 71 times out of 100 runs. When λ = 4 is used, the
percentage of correct selections is over 94%, which yields an empirical size of
100-94% = 6%, staying well within the acceptable level. This implies that the
chance the IT procedure extracts an unsolicited interaction structure or makes
false positive errors is rather small. For models B and C, the IT procedure also
successfully signals the existence of interactions (i.e., by selecting a non-null
tree) for a majority of the runs and identifies the true final IT structure. The
test sample and bootstrap methods show similar performance when working
with models A and B. With model C, the bootstrap method seems to overfit
a little more than the test sample method. In general, it is not surprising to
see that weaker signals, heavier censoring, and smaller sample sizes lead to
deteriorated performance for both methods. For example, the tree procedure
clearly performs poorly for model D, which, however, can be explained by the
very weak signals. Actually, with data generated from model D and of sample
sizes n = 150 or 300, one can verify that one or both of the interaction terms
are insignificant for most of the runs even if one fits the Cox proportional
hazards model with terms (trt, Z1, Z2, Z1 · trt, and Z2 · trt). In other words, the
interaction signal in model D is too weak to be detectable using the current
simulation setting.

When comparing different complexity parameters, the results are mixed.
However, λ = 4 seems to provide favorable selection for most cases considered
in our simulation study. First it wins out in model A. This is important as
we definitely do not want to extract interactions that actually do not exist. It
also provides the best selection in model B. In model C, when the sample size
is 450 and the test sample method is used, λ = 3 seems to work best in terms
of a high frequency of hits. But the selection by λ = 4 provides only slightly
worse results in this case. When the bootstrap method is used, the choice
of λ = 4 performs best in terms of excluding spurious splits in the final tree
structure, even though a greater number of trees with at least seven terminal

12

The International Journal of Biostatistics, Vol. 4 [2008], Iss. 1, Art. 2

http://www.bepress.com/ijb/vol4/iss1/2



nodes were selected when λ = 2 or 3. This can be seen from the column
of “hit” frequencies. When there is no censoring, λ = 4 selects a final tree
structure that is split by X1 and X3 and only by them for 58% of the runs,
while this percentage is only 9% for λ = 2. Based on the above simulation
studies, we recommend using λ = 4 for final tree size determination.

In terms of comparison with the tree method of Ciampi et al. (1995), we
first notice that their best selection method (the 1SE rule) could correctly
identify the null tree structure for about 85% of the runs in both censored
and noncensored cases, as reported in Negassa et al. (Page, 237; 2005). This
corresponds to an empirical ‘size’ of 15%. We suspect this is because their pro-
cedure based on the stratified partial likelihood tends to pick up unnecessary
structures that are due to stratification rather than interaction. To facilitate
another comparison, we next try out the same model used in their simulations,
which can be expressed as

λ(t) = exp
{
log(0.33) · (1−X1) · 1{X2<40} · trt + log(3) ·X1 · 1{X3>2} · trt

}
.

Each data set contains n = 600 observations and six covariates, although only
X1, X2, and X3 actually modify the treatment effect. Here, X1 and X4 are
binary 0-1 variables; X2, X5 ∼ Unif(0, 100); and X3, X6 ∼ Discrete Uniform
{1, 2, 3, 4, 5}. To make the comparison fair, the bootstrap method is used to
construct interaction trees. We report only the results when λ = 4. Figure 1
plots the relative frequency of final tree sizes obtained from 150 simulation
runs. It can be seen that our method performs better when no censoring is
involved. Their best method, the elbow rule, yields only about 55% of accurate
selections while ours is 67%. When the censoring rate is 50%, our results are
similar to theirs, both around a 40% chance of selecting a final tree of size
four. Nevertheless, the elbow rule is a somewhat subjective method.

As suggested by a referee, we made some further efforts to gain more insight
into the potential optimism or bias involved in the tree procedure. Consider
models B and C with no censoring. For each simulation run, we generated three
independent data sets: the training or learning sample L1, the test sample L2,
and the validation sample L3, which contain 300, 150, and 450 observations,
respectively. For the final tree structure identified by the test sample method,
we computed two test statistics separately using the pooled data L1 ∪L2 and
using the validation sample L3: (1) the likelihood ratio test (LRT) for overall
interaction; and (2) the logrank test for treatment effect within the terminal
node that showed maximal treatment efficacy. Both tests are usually referred
to χ2 distributions with respective degrees of freedom (df) |T̃ | − 1 and 1. We
recorded the resultant p-values, since the df associated with the LRT for overall
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Figure 1. Comparison with Negassa et al. (p. 235; 2005): Relative Frequencies (in
Percentage) of Final Tree Sizes Selected with λ = 4. Results are based on 150 runs
and the sample size for each run is 600. The bootstrap method is used to determine
the tree size.
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Table 2
Bias Evaluation for Interaction Trees. The sample sizes for the training sample
L1, the test sample L2, and the validation sample L3 are 300, 150, and 450,

respectively. Using the pooled data L1 ∪ L2 and the validation sample L3
separately, we computed the LRT for overall interaction and the logrank test for

treatment effect within the subgroup showing maximal treatment efficacy and their
corresponding p-values. The mean and sd of the resultant logworths, which are

defined as minus logarithms of p-values with base 10, are reported out of 100 runs.

LRT for Interaction Logrank Max Treatment Effect
L1 ∪ L2 L3 L1 ∪ L2 L3

Model λ mean sd mean sd mean sd mean sd
B 2 20.666 4.206 18.907 4.513 16.788 3.687 15.947 4.464

3 20.515 4.525 18.716 4.827 17.245 3.428 16.376 4.337
4 20.083 4.638 18.254 4.920 17.285 3.376 16.322 4.224

C 2 20.417 4.621 16.324 4.586 14.239 4.012 12.231 4.316
3 19.777 4.823 15.755 4.855 14.562 3.941 12.254 4.242
4 18.670 5.658 14.889 5.609 14.449 4.381 11.948 4.611

interaction depends on the final tree size. For presentation convenience, the
logworth of the p-value, which is defined as − log10 (p-value), was used. Note
that the higher the logworth, the more significant result. Table 2 presents the
mean and standard deviation of the logworths out of 100 runs. A clear inflation
of logworth can be seen when the results are not based on an independent
validation sample L3. This is particularly the case for model C when the final
tree is of larger size. Also, with a smaller complexity parameter λ that leads
to a larger final tree, we expected to see more inflation; nevertheless, the
empirical results are mixed. Once again, we would like to remind the user
to be keenly aware of the possible optimism involved in this highly adaptive
procedure. When another independent sample is available, summarization of
the final subgroups is best conducted based on this independent sample. When
such an independent data set is not available, one should be cautious when
interpreting the results.

4. An Example - The PBC Data

As an illustration, we consider data from a randomized placebo-controlled
trial of the drug D-penicillamine (DPCA) for the treatment of primary billiary
cirrhosis (PBC) conducted at the Mayo Clinic between 1974 and 1984 (Fleming
and Harrington, 1991). Among the 312 subjects randomized to the study,
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125 died by the end of follow-up. For each patient, 16 clinical, biochemical,
serologic, and histologic measurements were collected. Since this is a well-
known data set which has been widely studied in the statistics literature, one
is referred to Fleming and Harrington (1991) and Dickson et al. (1985) for
detailed description of the clinical background, design, variables, and related
analyses.

The logrank test for assessing the effectiveness of DPCA compared to
placebo yields a p-value of 0.7498. After adjusting for covariates, the p-value
is 0.4654, see pp.153-162 of Fleming and Harrington (1991). Hence the study
established that DPCA is not effective for the treatment of PBC.

Now we apply the proposed IT procedure to explore subgroups that ac-
count for possible heterogeneity in the effect of DPCA. We first used sample
medians to impute the missing values of four variables, triglycerides, serum
cholesterol, platelets, and urine copper, as they have highly skewed dis-
tributions. A similar strategy was used in Fleming and Harrington (1991).

Due to its relatively small sample size and heavy censoring (rate 59.9%),
the bootstrap method was utilized. To proceed, a large initial tree was grown
and pruned using the whole data set. With some restrictions on the minimum
node size and the maximum tree depth, we grew an initial tree T0 of 10 terminal
nodes. After pruning, a sequence of 5 subtrees were obtained. Thirty (B = 30)
bootstrap samples were then generated to validate the G(Tm) statistic for each
subtree Tm. Figure 2 plots the validated Gλ(Tm) values versus tree sizes, as
well as several intermediate measures during the process. It can be seen from
Figure 2(d) that the choices of λ = 3 and λ = 4 selected the same best
interaction tree at size 5 while λ = 2 selected T0 at size 10.

The best IT structure T ? of size 5 is plotted in Figure 3, together with some
related summary statistics. Next, the amalgamation algorithm was run to
merge the terminal nodes of T ?, which resulted in three final subgroups. Table
3 summarizes the three final subgroups. The numbers of observations and
deaths and the median survival time within each subgroup are included. The
hazard ratio and the two-sample logrank test statistic for comparing DPCA
versus the placebo are also provided. Note that one should be very cautious in
interpreting their associated p-values and confidence intervals due to the very
adaptive nature of the IT method. These three subgroups are then ranked
as I-III according to the effectiveness of DPCA versus the placebo. These
rankings are also marked next to each terminal node in Figure 3. Figure 4
plots the comparative Kaplan-Meyer survival curves for each subgroup.

The findings are interesting. First of all, the overall effect of DPCA has
been deemed as insignificant. This is true for the majority of the sample, i.e.,
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Figure 2. Final Tree Size Determination for the PBC Data via Bootstrap Resam-
pling: (a) plot of G(Tm) vs. tree size; (b) plot of the estimated bias vs. tree size;
(c) plot of bias-corrected G(B)(Tm) vs. tree size; (d) plot of Gλ(Tm) vs. tree size for
three different choices of λ (2, 3, and 4).
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Figure 3. The Best-Sized Interaction Tree for the PBC Data. For each internal
node denoted by a box, the splitting rule is given inside the box. Observations
satisfying the condition proceed to the left node while observations not satisfying
the condition proceed to the right node. To the left of each internal node is the
PLRT statistic G. Terminal nodes are denoted by circles and ranked with Roman
numerals on the left. The node size (i.e., number of observations) is given inside the
circle.

Group II. However, we can see that DPCA seems to dramatically help improve
survival in Subgroup I, which makes up a substantial portion, 22%, of the sub-
jects in the trial. Patients in Subgroup I are characterized by {platelets ≤
132} or {platelets > 132 & serum cholesterol > 216 & urine copper

≤ 177 & alkaline ≤ 823}. PBC is a fetal chronic liver disease of unknown
cause. Until recently, effective treatments for PBC did not exist, and the ap-
proach to patients with the disease was limited to supportive care (Fleming and
Harrington, 1991). This finding suggests that DPCA could be potentially use-
ful for patients falling into the Group I category. The IT procedure also identi-
fied a subgroup, Group III, in which DPCA performs worse than the placebo.
It is characterized by {platelets > 132&serum cholesterol ≤ 216}. Group
III contains only 26 individuals. Although the sample size is too small to draw
any reliable conclusion, this piece of information could be useful for modifying
the exclusion criteria for future study designs or in the considerations of a drug
label.

To gain further insight into these subgroups, we fit a separate Cox (1972)
model within each subgroup by incorporating the baseline covariates used in
Fleming and Harrington (p.162, 1991). The results are included in Table 3(b).
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Figure 4. The Kaplan-Merier Survival Curves within Each of the Three Identified
Subgroups for the PBC Data. The dotted line corresponds to the D-penicillamine
(DPCA) group and the dashed line corresponds to the placebo group.
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Note that the treatment effect in Group III is no longer prominent after ad-
justing for covariates. In fact, none of the covariates was found significant in
the multiple Cox (1972) model. This may again be due to the small sample
size in this group.

We computed variable importance for all sixteen predictors, as plotted in
Figure 5. The computation was based on 500 bootstrap samples. The results
show that alkaline appears to be the most important effect-modifier, fol-
lowed by cholesterol, platelets, triglicerides, and urine copper. This
matches well with the final tree structure in Figure 3, except that triglicerides
might have been masked out.

As a word of caution, one should always be keenly aware of not only the
exploratory nature of subgroup analysis itself but also the adaptive nature
of recursive partitioning. The exploratory nature of subgroup analysis entails
that no decisive conclusion be drawn from the results. In terms of the adaptive
nature of the IT procedure, both the greedy search scheme and the amalga-
mation algorithm tend to yield optimistic results. Thus, caution should be
exercised in interpreting the findings in Table 3. In the case of large samples,
one convenient way of undermining this optimism is to compute the figures
presented in Table 3 using another independent data set. When the sample size
is relatively small, which is the case for this PBC example, how to produce
a more ‘honest’ estimate of the treatment effect within the final subgroups
seems to pose additional challenges for future research.

5. Discussion

We propose a tree-based method, the IT procedure, to conduct subgroup anal-
ysis with censored survival data. Although we employ a PLRT statistic on
interaction as the splitting measure, the main tree procedure does not involve
any significance testing. The IT procedure provides a data-driven, objective,
and automatic way to assess and explore the heterogeneity structure of the
treatment effect across subgroups.

Interaction between treatment and covariates is the essence of subgroup
analysis. Detecting interaction is always a challenging problem. In traditional
analyses, interactions are modeled with cross-product terms, which is not ef-
ficient as interactions may occur in complicated forms. Recursive partitioning
offers a nonparametric way to explore interactions. However, it handles inter-
actions implicitly. Often it is still very hard to tell from a given tree struc-
ture whether interactions really exist and how variables interact with each
other. The proposed IT procedure instead focuses explicitly on the interaction
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Table 3
Summary Statistics for the Three Final Subgroups of the PBC data. Note that the

median survival time in Table (a) for the placebo group in Subgroup III is not
available as there are only 3 deaths out of 16 patients. In Table (b), the covariates
considered are age, log(albumin), log(bilirubin), edema, and log(prothrombin
time). These are the same covariates used in the best natural history model built

by Fleming and Harrington (p.162, 1991).

(a)

sample DPCA placebo
subgroup size deaths censorings median deaths censorings median

I 69 11 33 11.175 14 11 6.627
II 217 47 57 7.367 43 70 8.466
III 26 7 3 2.862 3 13 NA

(b)

Without Other Covariates
hazard logrank

subgroup ratio 95% C.I. statistic p-value
I 0.319 (0.141, 0.721) 8.364 0.0038
II 1.224 (0.809, 1.851) 0.919 0.3377
III 5.259 (1.323, 20.902) 6.808 0.0091

After Adjusting for Other Covariates
hazard wald

subgroup ratio 95% C.I. statistic p-value
I 0.358 (0.148, 0.865) -2.2818 0.0230
II 0.926 (0.602, 1.424) -0.349 0.7271
III 2.649 (0.151, 46.321) 0.667 0.5048

between a primary variable (i.e., the treatment) and other covariates. The
existence of interactions is assessed by inspecting whether a nontrivial tree
structure can be developed. If interactions do exist, the resultant IT structure
can automatically provide a delineation of the interaction structure. In prac-
tice, it is often important to distinguish two types of interactions. If there is
no directional change in terms of the comparison, the interaction is said to be
quantitative; otherwise, it is termed qualitative. The presence of qualitative
interactions causes much more concern than quantitative ones (see, e.g., Gail
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and Simon, 1985). The results from the IT procedure allow us to address this
issue. Once the interaction structure is delineated, summarizing the terminal
nodes in the final tree allows for insightful exploration of the existence of pos-
sible qualitative interactions. For instance, qualitative interaction might exist
among the final three subgroups in the PBC example.

The proposed IT structure helps with the identification of the most and
least effective subgroups of a treatment under investigation. As demonstrated
by simulation studies, one advantage of such algorithmic and adaptive meth-
ods is that they allow for empirical control of the overall type I error, which
contrasts to the size issue in a designed experiment that has planned tests
for well-defined subgroups. However, the IT procedure has the potential to
help uncover what has not been discovered in planned subgroup analysis and
generate interesting new research hypotheses. The results can be used in dif-
ferent ways. Take clinical trials as an example again. If the new medicine
shows an overall plausible effect, and, if even in the least effective subgroup
the investigational medicine does not present any harmful side effect or only
the null interaction tree structure is found, then its release may be endorsed
without reservation. The subgroups identified by the IT procedure may also
be useful in exploring safety profiles. In trials where the proposed compound is
not found to be effective, tree-structured subgroup analyses may help identify
sub-populations that contribute to the failure of the compound. Information
gained by using the IT procedure could be a good reference for establishing
inclusion/exclusion criteria in planning future clinical trials, and as such, could
be of considerable value to existing efforts to synthesize compounds for fighting
deadly diseases such as cancer and HIV/AIDS.

To conclude, we emphasize the exploratory nature of subgroup analyses.
There is a real danger to over-interpret the results and be over-optimistic
about the findings. Some tentative guidelines for applying the IT method
are in order. First, the IT method seems rather empirically conservative to
the size issue. To further prevent false positive errors, we suggest applying
the IT method multiple times by varying control parameters (e.g., minimum
node size and maximum tree depth) and the training/test samples, especially
when a non-trivial tree structure is developed via the test sample method.
Secondly, there may still be considerable variations in a non-null IT structure.
It might include spurious splits or omit important ones. We thus suggest that
one should also consult the variable importance ranking when interpreting
identified subgroups. Finally, it is a common suggestion that no conclusive
inference be drawn from the results of a subgroup analysis. Same may be said
for the IT procedure, the findings should never be inferred as scientific claims.
Instead, they should be treated as research hypotheses to be further evaluated
in future studies.
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Appendix A
Algorithm 1: Computing Variable Importance via Random Forests.

Initialize all Vj’s to 0.
For b = 1, 2, . . . , B, do

• Generate bootstrap sample Lb and obtain the out-of-bag
sample L − Lb.
• Based on Lb, grow a large interaction tree Tb by searching
over m randomly selected covariates at each split.
• Send L − Lb down Tb to compute G(Tb).
• For all covariates Xj, j = 1, . . . , p, do

◦ Permute the values of Xj in L − Lb.
◦ Send the permuted L − Lb down to Tb to compute
Gj(Tb).

◦ Update Vj ← Vj +
G(Tb)−Gj(Tb)

G(Tb)
.

• End do.

End do.
Average Vj ← Vj/B.
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