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Abstract

The commonly used two-sample tests of equal area-under-the-curve (AUC), where AUC is
based on the linear trapezoidal rule, may have poor properties when observations are missing,
even if they are missing completely at random (MCAR). We propose two tests: one that has good
properties when data are MCAR and another that has good properties when the data are missing
at random (MAR), provided that the pattern of missingness is monotonic. In addition, we discuss
other non-parametric tests of hypotheses that are similar, but not identical, to the hypothesis of
equal AUCs, but that often have better statistical properties than do AUC tests and may be more
scientifically appropriate for many settings.
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1 Introduction
In many clinical trials subjects are evaluated for a continuous outcome (e.g. drug
concentration, HIV-1 viral load, CD4 T-Cell count) at multiple fixed study time-
points, and the randomized groups are compared by testing whether there is a dif-
ference in the mean area-under-the-curve (AUC) of the outcome (or the outcome
minus its baseline value) over time by group. Commonly, each subject’s AUC is es-
timated by the linear trapezoidal method (Yeh and Kwan, 1978) ignoring any miss-
ing observations, and a two-sample t-test (or Wilcoxon Rank Sum test) is employed
to test the null hypothesis of equality of the mean AUCs (or stochastic identity of
the AUC distributions). When the length of follow up varies by subject, this pro-
cedure is commonly modified by defining time-averaged AUC as the area under
the curve from the first to the last observed evaluation, divided by the time from
the first to the last observed evaluation, and then testing for equality of the mean
time-averaged AUCs.

Although AUC analyses may be most commonly used in pharmacology, these
analyses are increasingly used in other settings because they provide an obvious
way to combine measurements across timepoints, even if data may be missing
at certain timepoints. For example in the briefing document produced by Gilead
for the NDA review of tenofovir, the mean AUC of HIV-1 RNA at 24 weeks ad-
justed for baseline was compared between patients receiving tenofovir and those
receiving placebo within subgroups defined by baseline resistance mutations (FDA,
2001). The co-primary endpoint of the randomized placebo-controlled clinical trial
of a Merck therapeutic vaccine for HIV, A5197, in the AIDS Clinical Trial Group,
is the HIV-1 RNA AUC during a sixteen week analytical treatment interruption
phase (AACTG, 2007). In a clinical trial of colloids versus crystalloids for fluid
resuscitation in critically ill patients a secondary endpoint was the AUC of mean
arterial pressure over 24 hours (NCT00318942, 2007). The secondary endpoints of
the HEGPOL randomized placebo-controlled trial of glycine in the postoperative
phase of liver transplantation included the AUCs of AST, ALT and bilirubin serum
levels over the first eight days after transplantation (HEGPOL, 2005).

The analytic procedures described above have good properties as long as there
are no missing data. But typically in clinical research, some evaluations are missing
due either to a missed clinic visit, the inability of a laboratory to obtain an assay
result from the subject’s specimen, or some other reason. A special case, considered
in section 4, is when the missingness is monotonic (once missing, always missing
subsequently.) In the Merck A5197 clinical trial, for example, if a subject resumes
antiretroviral therapy before the end of the treatment interruption phase, then the
HIV-1 RNA evaluations from that point on are missing since they are no longer
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off-therapy evaluations. Monotonic missingness is common in clinical trials due to
patients dropping out early due to toxicity, loss of efficacy or some other reason.

In section 2 we demonstrate that these commonly used tests of equal mean
AUCs (or time-averaged AUCs) may have poor properties (failure to protect the
type I error, poor power and possibly bias in the test) in the presence of missing
data, even when the data are missing completely at random (MCAR Rubin (1976)),
i.e. when the probability of an observation being missing may depend on the group
but is independent of any observed or unobserved outcomes in the study. Section 3
proposes a two-group test of equality of mean AUC, which is unbiased when data
are MCAR. Section 4 proposes a test based on semi-parametric methods, which is
unbiased when the data are missing at random (MAR), (i.e. possibly associated with
the group and with observed outcomes but not with unobserved outcomes) and the
pattern of missingness is monotonic. In AIDS clinical trials, for example, a com-
mon endpoint is based on HIV viral load during a period in which anti-retroviral
treatment is interrupted; some subjects typically resume anti-retroviral treatment
prematurely due to high levels of HIV viremia, resulting in MAR and monotonic
missing data. Section 5 presents simulation results; and section 6 provides a com-
parison of the method described in section 4 to the trapezoidal method, in an anal-
ysis of data from ACTG 398, a recent study conducted by the AIDS Clinical Trials
Group (AACTG, 2007). Section 7 discusses other possible null hypotheses that may
be of greater scientific relevance in the repeated measures context, besides equality
of AUC or time-averaged AUC.

The methods commonly used to test AUC hypotheses in the presence of missing
data are often appropriate in the settings for which they were developed, but may
not be appropriate in other types of settings, in which they are increasingly applied.
For example, in analyses of results from pharmacology studies, there are widely
accepted non-linear compartmental models of the type discussed by Davidian and
Giltinan (1995), which may be fitted to longitudinal data with MAR missingness
and then used to estimate and test AUC. In other settings, however, such as ran-
domized clinical trials where the outcome is plasma HIV RNA, there typically is no
widely accepted scientific model. Standard statistical methods that accommodate
missing data, such as multiple imputation (MI) or weighted generalized estimat-
ing equation (GEE) modeling have disadvantages, which are overcome, at least in
part, by the method proposed here. For example, in a randomized clinical trial the
goal is not simply to estimate or model an outcome such as drug or viral exposure,
but to find the best treatments for different groups of patients. Robustness to as-
sumptions (provided by the use of non-parametric methods) is of great importance
in this setting. The virtue of the semi-parametric methods we discuss in section 4
are their robustness to misspecification of the model for missingness; furthermore,
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when that model is correctly specified, such methods achieve the semi-parametric
efficiency bound. These methods are particularly well-suited for analyses of results
from clinical trials because they do not require confidence in a model for the entire
longitudinal profile.

Estimating and testing AUCs under the MAR condition require fairly strong
model assumptions, when mixed effects models, or GEE are used. In particular
these approaches require obtaining estimates of the variance-covariance matrix pa-
rameters (of the longitudinal outcomes), which are well known to be difficult to
achieve with good precision (Davidian and Giltinan, 1995, p. 330). In contrast,
the semi-parametric method proposed in section 4 requires only the estimation of
parameters giving the association between the probability of a subject missing data
at a timepoint and observations on that subject at prior timepoints, which is easier
to do with good precision.

In addition, mixed effects modeling and MI methods generally require distribu-
tional assumptions, which may compromise the credibility of conclusions. There-
fore, these approaches may be less appealing for the analysis of results from ran-
domized clinical trials than others that are more robust to distributional assumptions
and provide semi-parametric efficiency.

2 Bias of the trapezoidal method
To demonstrate how a test based on the trapezoidal method of estimating the AUC
may have poor properties in the presence of data missing completely at random, we
consider the following two examples. In the first, a study has evaluations at times
0, 1, and 2; and in group A, the expected value of the outcome is 1 at each of these
three timepoints. In group B, the expected values of the outcome at the three time-
points are 0, 2, and 0 respectively. In both groups the true mean AUC by the trape-
zoidal rule is 2, and the true mean time-averaged AUC is 1. If the observation at
each timepoint is missing with a probability of .4 independently of everything else,
a test based on the trapezoidal-method estimates of time-averaged AUC (ignoring
any subjects with fewer than two observations) will have poor properties. As can
be easily verified, the expected value of the estimated time-averaged AUC will be 1
in group A (and thus not biased) but in group B it will be approximately 0.78 (and
thus biased.) In group A the estimated time-adjusted AUC would be 1 regardless of
which observation is missing; but in group B, the corresponding estimate would be
1 if the first or the last timepoint were missing and zero if the middle timepoint were
missing. Because the expected values of the estimator of time-averaged AUC are
different in the two groups when the data are missing completely at random in this
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scenario, even though the true expected values of time-averaged AUC are the same
in both groups, any test based on these biased estimates will have poor properties.

The direction and magnitude of the bias in a particular study depend upon the
times of observation and the mean values of the outcomes in each group. The fol-
lowing example illustrates bias in the opposite direction from the first. Suppose the
timepoints are 0, 1, 2, and 3 and the expected values in group A are 1 at every time-
point, and in group B, are 0, 1.2, 0, and 3.6 respectively. Then the expected AUC
and time-averaged AUC are 3 and 1 respectively in both groups. If, as before, eval-
uations at a given time are missing with probability 4 independently of everything
else and subjects with fewer than two observations are ignored, then the expected
value of the trapezoidal- method estimate of time-averaged AUC in group A is 1,
but in group B it is approximately 1.11.

3 A test (“Mean AUC”) of equal mean AUCs when
data are MCAR

Let ���� be the observation on the �th subject at the � th timepoint in arm �, for
� in �� � � � � ��, � in �� � � � � � and � in �� �, for randomly sampled and independent
subjects (i.e. for each group, the vector of observations on each subject are iid). The
trapezoidal-method estimate of the AUC for a given subject with observations ��,
� � �� � � � � � , is

��
���	��� where the weights, 	�, are the average of �
����� � 
��

and �
� � 
������ with 
� defined as equal to 
� and 
����� defined as equal to 
� .
With MCAR data, an unbiased estimator of the expected AUC in the �th arm is�AUC� �

��
���	�

���� where ���� is the mean of the observed values at time � on
arm �. Because the expected value of the sample mean with data MCAR is equal to
the expected value of the population sampled, it follows that if the observations for
a given arm and timepoint are approximately normally distributed, or the sample
size is large, and the null hypothesis of equal mean AUCs in both groups is true,
then by large-sample theory the statistic �AUC��

�AUC�, divided by an unbiased and
asymptotically efficient estimator of its standard deviation will be a standard normal
random variable, making possible a test of equal AUCs with good properties.

An unbiased and asymptotically efficient estimator of the standard deviation of�AUC� �
�AUC� is

� �
�
� �� �� � ����

������
(1)

where
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� � ���� � � � � �� �
� with �� defined as above; (2)

��� � ��������� �� �
� in �� � � � � � � 	 in �� �� (3)

where
������ � �����


����


��
���

(4)

where 
���� is the number of subjects in group 	 with observations at both time-
points � and � �; 
�� is the number of subjects in group 	 with observations at time-
point �; and

����� �

���

���

�������������� �
����	������ �

�����	


���� � �
(5)

where ���� � � if ���� is observed, otherwise 0, and

���� �

���

���

��������

���

���

����

(6)

This estimator is analogous to one based on the usual unbiased sample variance-
covariance matrix, but uses only the observed data. Provided that the data are
MCAR, it will also be unbiased and asymptotically efficient like its analog in the
compete-data setting.

4 A test of equal mean AUCswhen the data areMAR
with monotonic missingness

4.1 When the only missingness mechanism is monotonic MAR
If only the group assignment �		 and observed values for the th subject in group 	
are associated with the probability that ���� is missing, then the data are missing
at random (MAR). If whenever ���� is missing, then ����� is also missing for all
� � � � then the missingness is monotonic. When the missingness is both MAR and
monotonic, then a valid semi-parametric test of equal AUCs based on the methods
of Schisterman and Rotnitzky (2001) is asymptotically possible under the following
condition: for every outcome vector, ������ � � � � ����	

�, in the sample space with a

5

Spritzler et al.: Two Sample AUC Test

Published by The Berkeley Electronic Press, 2008



positive probability of being realized, the probability of being completely observed
is also non-zero. For finite sample sizes, one would need to assume that the sample
size is large enough so that outcomes with a low probability of being completely
observed are completely observed at least once in the sample.

The test statistic we consider is a � statistic

� �

�

������

�
�
������ � � � � �����

�
� ������� � � � � ������

�
�

���� ������
������

�
(7)

where � is the set of all pairs, ��� ���, such that the �th and ��th subjects in groups 1
and 2 respectively have complete data; ���� is an unbiased estimate, based on some
efficient parametric model fitted to all of the observed data, of the probability that
the �th subject in group 	 has complete data, given 	 and ����, 
 � �� � � � � �� � ��;
and ���� �� is a “kernel” function whose first and second arguments are vectors of
observations from group 1 and 2 respectively, and which returns a scalar whose
value is zero if the estimated AUC of each vector is the same and otherwise is a
value larger or smaller than zero that indicates directional evidence against the null
hypothesis of equality of the AUCs. For testing the null hypothesis of equal mean
AUCs, ���� � could be defined as the estimated AUC from  minus the estimated
AUC from � (a �-test type kernel.) For testing the null hypothesis of stochastic
equality of the distributions of AUC in the simulation study below, ���� � is defined
as -1, 0 or +1 according to whether the estimated AUC of  is less than, equal to or
greater than the estimated AUC of �.

As we will show, under the null hypothesis of equal expected AUCs in both
groups, � divided by a consistent estimate of its standard deviation is asymptoti-
cally a standard normal random variable, and provides the basis for a test of the null
hypothesis.

� clearly has a mean of zero under the null hypothesis because the null hypoth-
esis is that the kernel function, �, has a mean of zero. The asymptotic normality
and consistency of � stems from the fact that � is a special case of Schisterman and
Rotnitzky’s ����� defined in their section 3 and modified as in their section 6, which
they show to be an asymptotically normal and consistent estimator of � under the
assumption of regularity conditions.

A consistent estimator of the standard deviation of � may be obtained by using
the method described by Wei and Johnson (1985) in section 2, with the following
considerations: 1) in this AUC context we have only one “repeated measurement,”
which is the estimated AUC of subjects with complete data, and so Wei and John-
son’s indices for the repeated measures, 	 and �, are always 1 in our case; 2) because
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� includes only subjects with complete data, their indicators of non-missingness, Æ
and �, are always 1 in our case; 3) the kernel function must include division by the
product of ��� and ����; 4) two typographical errors in Biometrika should be noted:
where it reads “� � � �” and “� � ��” it should read “� �� � �” and “� �� ��”; 5) the
expected value of the kernel function under the null should be replaced with the
sample mean of the kernel function value, as this has the same asymptotic proper-
ties but also may improve the test’s efficiency. In terms of this paper’s notation, Wei
and Johnson’s estimator of the standard deviation of � is

�
����	 where

�	 � ��
�� �	� � ��
�� �	� (8)

and where � and � are the number of subjects with complete data in groups 1 and
2, respectively, and � = � + �; and where

�	� � ��� ��� �����
�

��

���� � �������� � ��� (9)

where ��� =
�

�
���������������

�����������������
�

�

���� ����
, �� =

�
�

����

�	
; �� is the set of all triples,

��� �� � �� such that the �
� subject has complete data in group 1 and the � 
� and � �
�

subject have complete data in group 2 and � �� � �; also

�	� � ��� ��� �����
�
��

���� � �������� � ��� (10)

where �� is the set of all triples, ��� ��� �� such that the �
� and ��
� subject have
complete data in group 1 and the � 
� subject has complete data in group 2 and
� �� ��.

By Slutsky’s theorem, therefore, � divided by its consistently estimated stan-
dard deviation is a standard normal random variable under the null hypothesis that
the expected value of the kernel function, , is zero.

The probabilities, ���, may be estimated as follows, taking advantage of the
monotonic missingness pattern. Let ����� be an estimator of Prob����� � � �
�	�������� � �	������ �

� � ��� � � 
� � � � � � based on fitting a logistic or other
appropriate model, regressing ���� on �����, � � � �, for all � such that the �th sub-
ject in group � has observed data through timepoint �� � ��. Then define ���� to be
the product of �����, � � 
� � � � � � .

At first glance it may seem as if this method uses only a subset of the data since
the test statistic, T, has the form of a sum over only those subjects with complete
data. All of the data, however, is incorporated into T because even those subjects
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without complete data contribute to the estimation of the probabilities, � ��, that are
used in the calculation of T.

4.2 When there are two missingness mechanisms: monotonic
MAR, and MCAR

Frequently both types of missingness, montonic MAR as well as MCAR, occur in
the same study. If one assumes that the two types of missingness mechanism are
independent, and that the mechanism that caused each missing datum is known,
then one way to handle this case is as follows: The method described above for
monotonic MAR alone is used with the modification that the probabilities, � �� (con-
ditional probabilities of being completely observed despite both types of possible
missingness) are estimated as the product of the conditional probabilities of hav-
ing no monotonic MAR missingness and of having no MCAR missingness. The
former probabilities are estimated by regression modeling as described above, but
eliminating subjects from the regressions if they are missing any of the required
observations, no matter the cause of the missingness. For each group, unbiased
estimates of the latter probabilities are obtained as the product of the empirical esti-
mates of the probability of missing due to the MCAR mechanism at each timepoint.
These empirical estimates combine data from all timepoints that are presumed to
have the same true MCAR law and are calculated for each group at each time point
(or set of combined timepoints) as the number of non-missing observations divided
by the number of intended observations that are observed or that are missing due
to the MCAR mechanism (excluding those missing by the MAR mechanism). Pre-
liminary simulations (not shown) imply that the type I error is preserved with this
approach in this setting.

5 Simulation results

5.1 Generation of the data
Data were simulated for two treatment arms, each with nine observations at the
following times: 1,5,8,10,12,15,20,21, and 22. The outcomes for each subject in
arm � were from distributions with mean vectors ��, � � �� �, where �� was
[10,10,10,10,10,10,10,10,10] and �� under the null hypothesis was [10, 8 �

�
, 6�

�
, 6, 7,

8.5, 11, 11, 73] (Figure 1). We chose these values to produce identical mean AUCs
in a setting that accentuates the biasing effects of missingness that is completely at
random for standard tests of AUCs. For alternative-hypothesis simulations, the data
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were generated the same way except that each element of �� was increased by 0.2.
AUCs based on �� and the null version of �� are the same, but the shapes are very
different and thus provide any test with a “challenging” version of the null hypoth-
esis, in particular one very sensitive to random missingness. Each result below is
based on 1000 simulated data sets.

For each method and data set, the null hypothesis of identically distributed
AUCs in both arms was tested at the � � ���� level against the one-sided alter-
native of larger AUCs in arm 2, and against the two-sided alternative of different
distributions. For Table 1, the outcomes for each subject in a given arm were from
iid standard multivariate normal distributions, uncorrelated across timepoints. The
sample size in each arm was 100. Each observation was made missing completely
at random (MCAR), with an independent probability of .40. One thousand simula-
tions were run for each set of conditions. The “trapezoidal” method had an observed
Type I error for the two-sided test of 0.10, reflecting the bias of this estimator. The
“mean AUC” method, in contrast, had an observed Type I error of 0.050 and 0.049
for the one- and two-sided tests, respectively.

For Table 2, the data and missingness pattern were generated the same way as in
Table 1 except that the data at the �th timepoint were generated from an exponential
distribution (mean = 1) shifted to have the mean specified by the �th element of ��,
� � �� �. The results are similar to those of Table 1 when the data come from an
exponential rather than a normal distribution.

For Table 3, the data were generated from iid standard multivariate normal dis-
tributions as in Table 1 but with within-subject correlations in arm �=2 of .5, .4, .3,
.2, .1, 0, 0, and 0 for timepoints that were separated by 1, 2, 3, 4, 5, 6, 7, and 8 time-
points, respectively; and uncorrelated data in arm � � �. These data were created
with a dependency over time in arm 2 in order to illustrate the effect of the two arms
having different correlations over time in this setting. A pattern of MAR monotoni-
cally missing data was created using three different probability laws, denoted in the
table (“Missing” column) as “logistic,” “U-shape” and “Threshold.” The “logistic”
law made logit���	���� is missing ���������
� � �� � ����������. The “U-shape”
law made ��	���� is missing ���������
 � 		
�������������� � ���

�
�	� � 	
�����
�������������

�
. Thus for the “U-shape” law observations following a very low- or
a very high-valued observation are more likely to be missing than values following
intermediate-valued observations. The “Threshold” law made ��	���� is missing �

��������
 � �� if ��������  �th quantile of ������ � � � � ������
� in the given arm,

otherwise zero. In each case the arm-specific parameters in these three probability
laws were selected to yield complete observations in approximately 80% of subjects
in each arm. Table 3 (“Estimate” column) also indicates the model for the missing-
ness probability law that was employed by the Inverse Complete Cases Probabil-
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ity Weighting (ICCPW) method to estimate the missingness probabilities. “Truth”
means the correct model was employed, “Logit” means a logistic model with only
an intercept and the previous observation in the model was employed. The sample
size in each arm was 200, and 500 simulations were run for each set of conditions.

Table 3 shows that the “trapezoidal” method rejection rate for the two-sided test
under the null hypothesis is far greater than �. This table also shows that the IC-
CPW method has Type I error rates close to the nominal � when the model for the
MAR missingness is correctly specified and when there are 80% complete cases,
except when the missingness is generated by a threshold probability law. When
the missingness model is incorrectly specified the null rejection rates are close to �
in some cases and much lower in others. In simulation results (not shown) under
the same conditions as Table 3 but with no within-subject correlation of outcomes,
model mis-specification was less of a problem. Model mis-specification is more
serious when the within-subject correlation is different in the two arms. If the cor-
relation is the same in the two arms then model mis-specification would result in
giving complete cases the wrong weight, but the same wrong weight in both arms
and thus potentially introducing less bias in the test. When the correlation is differ-
ent in the two arms then different wrong weights in the two arms result, introducing
possibly more bias.

6 Application of the method of section 4 to data from
ACTG 398

To illustrate the issues described above, we apply different AUC testing methods
for comparing repeated measures of plasma HIV-1 RNA between two groups of
patients defined by the number of antiretroviral drug resistance mutations measured
at baseline in protocol 398 of the AIDS Clinical Trials Group (ACTG). ACTG 398
was a randomized clinical trial that compared time to virological failure (rebound)
among patients receiving drug regimens containing either one or two drugs of the
protease inhibitor class. While there was little difference in virological response
to treatment among the randomized groups, the presence of certain antiretrovi-
ral drug mutations did have a major effect on this response. In particular, the
mutation K103N, which confers resistance to the drug efavirenz, from the class
of non-nucleoside reverse transcriptase inhibitors sharply reduced virological re-
sponse. Our interest was in the comparison of two groups of patients defined by
the presence or not of at least two mutations that confer resistance to the class of
nucleoside reverse transcriptase inhibitor (NRTI) drugs. (In this illustration we do
not investigate the possibility of unknown confounders of the association between
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group membership based on mutations and the AUC of HIV-1 RNA.)
The data we used consisted of measurements of plasma HIV-1 RNA that were

made at weeks 0, 8, 16, and 24 weeks after randomization. Data on 430 subjects
were included in the analysis, of which 243 had at least 2 NRTI mutations. Of the
187 patients with fewer than 2 mutations, 37%, 22% and 11% of patients were miss-
ing visits at 24, 16 and 8 weeks, whereas in 243 patients with � � mutations, these
percentages were lower: 22% 13% and 4%. Three different AUC tests (two-sided)
were considered: 1) the method based on the trapezoidal rule, 2) the method based
on a linear mixed effects model, and 3) the method based on the semi-parametric
test. The first method yielded a two-sided p-value of 0.024, implying a significant
effect of two or more NRTI mutations on decreasing the HIV-1 RNA response to
treatment at the 0.05 level. The second method was based on a linear mixed effects
model that had fixed effects for group (� � or � � mutations), for an intercept, for
dummy variables for means at the three post-baseline timepoints, and for interac-
tions between group and the timepoint dummy variables; random effects for inter-
cept and each timepoint dummy variable; and an unstructured variance-covariance
matrix for within-subject RNA levels. This model was used to test for a difference
in AUC between the two groups by forming the appropriate linear combinations
of the fixed effects and finding its standard error; this method yielded a p-value
of p=0.10. The third method, based on our proposed semi-parametric test, used a
logistic regression model to estimate the probability of missing a measurement as
a function of all previous RNA measurements. The choice of this logistic model
was based on inspection of plots of proportion of missing data at given timepoints
versus RNA level (categorized into five intervals) at the previous timepoints; these
plots were approximately sigmoid-shaped implying the appropriateness of a logis-
tic model. Selection of the covariates for inclusion in the final model was based
on a likelihood ratio test of nested models; all previous RNA measurements were
included in the final model. The semi-parametric test yielded p= 0.20, which fails
to provide evidence of a group effect on RNA AUC.

The difference between the semi-parametric and the trapezoidal methods ap-
pears to result from the fact that the patterns of missingness differ between these
two groups. Patients with 2 or more NRTI resistance mutations were consistently
less likely to have missed visits and therefore had fewer missing HIV RNA mea-
surements throughout the study. This difference may reflect the fact that patients
with higher rates of resistance to NRTI drugs may have had fewer treatment op-
tions outside of the study, and therefore were more likely to remain in the study.
In addition, the dependence of missingness on the previous RNA measurement dif-
fered between the two arms across timepoints: for example, higher RNA values at
baseline were associated with a greater probability of having an observed value at
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week 8 for the more resistant patients but a lower probability for the more sensi-
tive patients. The semi-parametric method accounts for the difference between the
two groups in the number of missed visits and the dependence of missingness on
previous measurements, whereas the trapezoidal method does not.

While the method based on the linear mixed effects model does accommodate
the missing data, and, like the semi-parametric method, finds the difference be-
tween groups to be non-significant, this result requires estimation of a covariance
matrix. A fully flexible model would require estimation of many parameters and
therefore a large dataset in order to provide reliable results. Using a highly struc-
tured covariance matrix permits obtaining results with a dataset of modest size, but
at the cost of fairly strong parametric assumptions. This need for the linear mixed
effects method to estimate a covariance matrix may make it less preferable than
the semi-parametric approach in many settings. As Davidian and Giltinan (1995,
p. 330) write, “Second moment behavior is inherently difficult to characterize, and
this is especially true for correlation parameters.” Estimated within-group means
at each timepoint (and hence the estimated AUC) based on the linear mixed ef-
fects method can be sensitive to the estimated covariance matrix, which in turn
may be sensitive to the pattern of missingness. In contrast, the semi-parametric
method trades a) the need to estimate a covariance matrix for the RNA outcome
for b) the need to estimate, for subjects without missing data, the probability of
their being fully observed conditional on their observed data. The latter estimates
of probabilities across timepoints require no assumption about their joint distribu-
tion. Furthermore, in contrast to the difficulty of estimating a covariance matrix,
there are many flexible and efficient methods (such as logistic regression) available
for estimating a probability – methods that can be selected according to how well
their different required assumptions about the distribution of the outcome (miss-
ingness in this case) fit the data. Additionally, the most commonly used methods
for fitting linear mixed effects model rely on an assumption of normality, whereas
no such assumption is required by the semi-parametric method. While more flex-
ible methods for fitting such models exist, they nonetheless rely on estimation of
a covariance matrix (Zhang and Davidian, 2001), as would approaches based on
generalized estimating equations.

7 Non-parametric alternatives to testing the AUC
In some settings the AUC is of particular scientific interest. For example, in phar-
macokinetics studies the AUC is conceptually the cumulative drug exposure and
has intuitive value as a statistic. In other settings, however, the AUC may not nec-
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essarily be the most scientifically relevant summary statistic. For example, when
repeated measures of HIV viral load are obtained, testing the null hypothesis of
equal mean AUCs may not be as appropriate as testing the null hypothesis that
mean HIV levels are the same at each timepoint against the alternative hypothesis
that in one group the mean levels are greater than or equal to the corresponding lev-
els in the other group with strict inequality applying to at least one timepoint. This
latter null hypothesis may be tested when the data are MCAR by using the fully
non-parametric method described by Wei and Johnson (1985). In this method one
specifies a priori the alternative hypothesis, against which one wants greatest effi-
ciency, by assigning weights to the timepoints reflecting the relative deviation from
equality between groups at each timepoint. One could choose these weights to be
the same as the weights (�� in section 3) for the linear combination of observations
that yield the estimated AUC, in which case the test would weight each datum by an
amount based on its timepoint’s contribution to the estimated AUC as well as on its
correlation with the data from other timepoints. Alternatively, the U-statistic and its
estimated variance-covariance matrix obtained from the Wei and Johnson method
may be used to perform a test without first specifying an alternative hypothesis, in
the manner described by Xu, Tian and Wei (Xu et al., 2003).

8 Discussion
Area under the curve is a widely used method for comparing two groups in which
there are repeated measurements on each experimental unit. Sometimes AUC is
appropriate because of prior theoretical considerations. Drug concentration area
under the curve, for example, is the theoretical measure of an organism’s cumulative
exposure to a drug. But in other cases, for example repeated measurements of HIV-
1 viral level in a clinical trial, there may be no clear rationale for using area under
the curve as an endpoint, and in cases like this it is sometimes used for convenience
or for lack of immediate access to a more appropriate method.

We have shown that analyses based on the trapezoidal method for estimating
AUC may have very poor properties in the presence of missing data, even when
the data are missing completely at random (MCAR), i.e. the likelihood of an event
being unobserved is independent of either observed or unobserved events. This
potential problem is a frequently overlooked shortcoming in analyses of AUC, and
distinguishes them from many standard analysis methods that have good properties
when data are MCAR.

We propose two strategies for analyzing AUC when data are MCAR: 1) In the
absence of compelling theoretical reasons to use the AUC metric, use unbiased ap-
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proaches for 2-group comparisons, e.g. the Wei and Johnson method. Like methods
based on AUC, it also makes use of all of the measurements to test a null hypothesis
of group equality, but with a null hypothesis regarding equality that is defined dif-
ferently from hypotheses regarding mean AUC; 2) Use the AUC metric, but avoid
methods that require estimating the AUC of an individual experimental unit with
missing data and thereby introduce potential bias. For the latter strategy we pro-
pose both a test of equal mean AUCs when the data are MCAR and another test
when the data are not MCAR but rather missing at random (MAR) monotonically,
i.e. after the first unobserved event all subsequent events in that experimental unit
are also unobserved, and the likelihood of an event being unobserved depends only
upon group membership and observed events.

Further work is required to handle the setting where the data are MAR but not
monotonically missing. This would occur, for example, in a clinical trial if the out-
come of interest at a given time were associated with previously observed values
and also associated with a subject’s ability or willingness to come to the clinic on a
scheduled visit to have the outcome observed. This might be the case with any num-
ber of clinical outcomes experienced subjectively by the subject. In some situations,
however, the only non-monotonic missingness is due to an MCAR mechanism op-
erating in addition to, and independently of, a monotonic MAR mechanism, and it
is known which missingness mechanism is responsible for each missing observa-
tion. This would be the case, for example, in an HIV clinical trial with an analytical
treatment interruption (ATI) readout period during which subjects remain off of an-
tiretroviral medications to see how well they control the virus without them, and
interest focuses on the AUC of viral level during the ATI. In this context, some ATI
viral measurements may be missing MCAR (not monotonic), for example due to a
difficulty in attending the clinic for a scheduled visit, but other viral measurements
may be missing MAR monotonically because of recommendations for patients to
resume antiretroviral medications if their virus level exceeds some threshold value
during the ATI. For this situation we have proposed a simple modification of the
method for the case of data monotonic MAR. Preliminary simulations of this ap-
proach look promising, but further work is required to establish its properties in a
variety of scenarios.

In some cases a test comparing the partial AUC is appropriate, based on the area
under only some part of the outcome curve, for example only the part corresponding
to the analytical treatment interruption period of a clinical trial as discussed above.
In this case, the methods we propose can be used by applying them only to the
outcomes from the time-interval of interest, while, in the case of MAR monotonic
missingness, still allowing all outcomes before a given timepoint to be used when
modeling the probability of missingness at that timepoint.
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Table 1. Bias and Power for Normal Data MCAR

Null Alternative

Methods Type I error (1 sided) Type I error (2 sided) Power (1 sided) Power (2 sided)

(95% C.I.) (95% C.I.) (95% C.I.) (95% C.I.)

Trapezoidal 0.021 (0.013, 0.032) 0.100 (0.082, 0.120) 0.130 (0.102, 0.163) 0.076 (0.054, 0.103)

Mean AUC 0.050 (0.037, 0.065) 0.049 (0.036, 0.064) 0.910(0.881,0.933) 0.842(0.807, 0.873)

Table 2. Bias and Power for Exponential Data MCAR

Null Alternative

Methods Type I error (1 sided) Type I error (2 sided) Power (1 sided) Power (2 sided)

(95% C.I.) (95% C.I.) (95% C.I.) (95% C.I.)

Trapezoidal 0.035 (0.025, 0.048) 0.096 (0.078, 0.116) 0.172 (0.140, 0.208) 0.118 (0.091, 0.150)

Mean AUC 0.058 (0.044, 0.074) 0.049 (0.036, 0.064) 0.910 (0.881, 0.934) 0.840 (0.805, 0.871)

15

Spritzler et al.: Two Sample AUC Test

Published by The Berkeley Electronic Press, 2008



Table 3. Bias and Power for Normal Data MAR

Null Alternative

Methods Estimate Missing Type I error (1 sided) Type I error (2 sided) Power (1 sided) Power (2 sided)

(95% C.I.) (95% C.I.) (95% C.I.) (95% C.I.)

Trapezoidal Logistic 0.000 (0.000, 0.004) 0.872 (0.850, 0.892)

ICCPW Truth Logistic 0.048 (0.036, 0.063) 0.053 (0.040, 0.069) 0.917 (0.898, 0.933) 0.865 (0.842, 0.886)

ICCPW Truth U-shape 0.045 (0.033, 0.060) 0.045 (0.033, 0.059) 0.898 (0.878, 0.916) 0.848 (0.824, 0.870)

ICCPW Logistic U-shape 0.045 (0.033, 0.060) 0.040 (0.029, 0.054) 0.940 (0.923, 0.954) 0.893 (0.872, 0.911)

ICCPW Truth Threshold 0.025 (0.016, 0.037) 0.037 (0.026, 0.050) 0.762 (0.734, 0.788) 0.620 (0.589, 0.650)

ICCPW Logistic Threshold 0.006 (0.002, 0.013) 0.009 (0.004, 0.017) 0.320 (0.291, 0.350) 0.169 (0.146, 0.194)
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Figure 1
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