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Abstract
How does the brain learn those visual features that are relevant for behavior? In this article, we focus
on two factors that guide plasticity of visual representations. First, reinforcers cause the global release
of diffusive neuromodulatory signals that gate plasticity. Second, attentional feedback signals
highlight the chain of neurons between sensory and motor cortex responsible for the selected action.
We here propose that the attentional feedback signals guide learning by suppressing plasticity of
irrelevant features while permitting the learning of relevant ones. By hypothesizing that sensory
signals that are too weak to be perceived can escape from this inhibitory feedback, we bring
attentional learning theories and theories that emphasized the importance of neuromodulatory signals
into a single, unified framework.

Perception improves with training
Visual perception improves with practice. A birdwatcher sees differences between birds that
are invisible to the untrained eye. To gain an understanding of perceptual learning one can
compare the perception of bird experts to the perception of subjects with other interests [as
explained in detail in 1]. Alternatively, one can study perceptual learning in the laboratory,
which has produced many important insights. Training improves perception, even in adult
observers, provided they are willing to invest some effort in the task. Subjects typically have
to train for a few hundred trials per day over a few days before perceptual improvements are
noticeable. Under these conditions, subjects can even become better in discriminating between
basic features, for example, between subtle variations in the orientation or motion direction of
a visual stimulus [2]. Once perceptual learning has occurred, it is persistent and can last for
many months [3] or years [4]. The learning effects are often specific so that perceptual
improvements in a particular version of a task do not generalize to other versions. Performance
improvements are not observed, for example, if the test stimulus has a different orientation
[4-6], motion direction [7,8] or contrast [9,10] than the trained stimulus. Moreover, the training
effects are often retinotopically specific. After training in one region of the visual field, the
improvement in performance does not transfer to other visual field locations [4,6-9,11,12],
although special learning procedures can cause better generalization [13,14].
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What are the mechanisms that determine perceptual learning? The improvements in perception
could be the result of changes in sensory representations, but they could also be the result of
the way that sensory representations are read out by decision-making areas [15-17].
Furthermore, the role of selective attention in learning is unclear. It appears to be important
for some forms of learning [10,18-22], but not for others [8]. Similarly, in some cases learning
takes place without giving explicit feedback to the subject about the accuracy of the responses
[23], while in other cases such feedback facilitates learning [24]. The goal of the present review
is to put together recent neurophysiological and psychological findings into a coherent
theoretical framework for perceptual learning. In the context of this framework, we will discuss
attention-gated reinforcement learning (AGREL), a model that posits that selective attention
and neuromodulatory systems jointly determine the plasticity of sensory representations [25].
We will proceed by proposing a generalization of this model that provides a new,
neurophysiologically plausible demarcation between the conditions where attention is required
for learning and the conditions where it is not.

Neuronal correlates of perceptual learning
How does the visual cortex change as a result of perceptual learning? The available evidence
implicates early sensory representations but also higher association areas in perceptual
learning, although the relative contribution of low-level and high-level mechanisms is under
debate [15,16]. With regard to early visual representations, functional imaging studies have
revealed increases in neuronal activity at the representation of the location in the visual field
that is trained [26], often with particularly strong effects in the primary visual cortex [27-31].
Moreover, neurophysiological studies have demonstrated that neurons in early visual areas
change their response properties during perceptual learning [5,32-34]. For example, when
monkeys are trained to judge the orientation of a stimulus, neurons in the primary visual cortex
(area V1) become sensitive to small variations around the trained orientation. In addition to
area V1, increased sensitivity of neurons to category boundaries is also observed in higher
visual areas, including area V4 [32,35], the inferotemporal cortex [36], area LIP [37] and the
prefrontal cortex [38]. From a functional point of view, the amplified representation of feature
values close to a category boundary is useful, because small changes in input should lead to
categorically different behavioral responses [39,40]. If the stimuli that need to be classified
differ in multiple feature dimensions, the increases in sensitivity caused by training are
strongest for the features that distinguish between categories and weaker for features that do
not [41,42]. Thus, neurons in many areas of the visual cortex change their tuning in accordance
with the arbitrary categories imposed by a task.

A few studies have directly compared plasticity in lower and higher visual areas and found
stronger effects in the higher areas [15,36,43], although there are also tasks where the changes
in lower areas predominate [27,28]. Some tasks require a categorization on the basis of features
that are easy to discriminate, and subjects can learn these tasks as new stimulus-response
mappings that may not depend on plasticity in the visual cortex. Genuine perceptual learning
paradigms, on the other hand, train subjects to perceive small variations in features invisible
to the untrained eye, and may therefore engage plasticity in the visual cortex. Ahissar and
Hochstein [19,44] demonstrated that learning in easy (or low precision [45]) tasks generalizes
across locations and feature values, suggestive of plasticity at high representational levels,
while training in higher precision tasks is more specific to the trained stimulus implicating
lower representational levels.

Theories of perceptual learning therefore have to explain where, when and why plastic changes
occur. A particularly challenging question for these theories is how learning effects occur in
early sensory areas, remote from the areas where perceptual decisions are made and task
performance is monitored. What signal informs the sensory neurons to become tuned to the
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feature variations that matter? In what follows we consider two important routes for these
effects to reach sensory areas: diffuse neuromodulatory systems and feedback connections
propagating attentional signals from higher to lower areas.

Global neuromodulatory systems that gate plasticity
There are a number of neuromodulatory systems that project broadly to most areas of the
cerebral cortex and deliver information about the relevance of stimuli and the association
between stimuli and rewards. The two neuromodulatory systems that are most often implicated
in neuronal plasticity are dopamine and acetylcholine. The substantia nigra and the ventral
tegmental area are dopaminergic structures in the midbrain that project to the basal ganglia and
the cerebral cortex. In an elegant series of studies (reviewed in [46]), Schultz and co-workers
demonstrated that dopamine neurons code deviations from reward expectancy. They respond
if a reward is given when none was expected and also to stimuli that predict rewards, causing
a surge of dopamine in the basal ganglia and cerebral cortex [47]. Because the increase in the
dopamine concentration signals that the outcome of a behavioral choice is better than expected,
it is beneficial to potentiate active synapses and thereby increase the probability that the same
choice will be made again in the future. In slice preparations of the basal ganglia, dopamine
has indeed been shown to control synaptic plasticity [48]. Moreover, there is in vivo evidence
for the control of plasticity by dopamine. If transient dopamine signals are paired with an
auditory tone, the representation of this tone is expanded in the auditory cortex [49].

Acetylcholine is another neuromodulator that has been linked to synaptic plasticity. Neurons
in the basal forebrain project to the cortex to supply acetylcholine. These neurons also respond
to rewards [50], although the relation between their activity and reward prediction is not as
well understood as for the dopamine neurons. If artificial stimulation of the basal forebrain is
paired with an auditory tone, then the representation of this tone in the auditory cortex increases
[51,52]. Thus acetylcholine promotes neuronal plasticity in vivo and it also influences synaptic
plasticity in cortical slice preparations [53]. Other studies have shown that acetylcholine is
necessary for plasticity, because a reduction of the cholinergic input reduces cortical plasticity
[54] and impairs learning [55-57]. These results, taken together, provide strong support for the
idea that learning and plasticity of cortical representations are controlled by neuromodulatory
systems that change their activity in relation to rewarding stimuli or stimuli that predict reward.

Role of selective attention in learning
Visual attention provides a second route for signals about behavioral relevance to reach the
visual cortex. There is substantial evidence for a role of selective attention (here we will not
consider the effects of ‘general attention’ or arousal [58] and do not use the word ‘attention’
for the effects of neuromodulators) in determining what is learned and what not. One powerful
approach for studying the role of attention in learning is given by the ‘redundant relevant cues’
method [18,59]. The subjects have to learn to associate stimuli with responses and can use
multiple features of a stimulus, e.g. color and shape, to determine the correct response. The
critical manipulation is that the subjects are cued to direct their attention selectively to one of
the features and not to the other. In these situations, they usually learn to use the attended
feature and even exhibit an increase in perceptual sensitivity for this feature [18] while they
do not learn to use the other, redundant feature even though it is presented and rewarded equally
often. As a result, the subjects cannot perform the task after the training phase if the attended
feature is taken away so that they are forced to use the redundant feature. Thus, in these cases
attention to a feature determines which representations undergo plasticity and which do not.
Similar effects occur for spatial attention, because perceptual learning is particularly
pronounced for stimuli at attended locations [e.g. 22].
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How do these feature-based and spatial attentional effects reach the early levels of the visual
system? The most likely route is through feedback connections that run from the higher areas
back to lower areas of the visual cortex [60,61]. Cortical areas involved in response selection
feed back to sensory areas so that objects relevant for behavior are represented more strongly
than irrelevant ones. Such a direct relationship between behavioral relevance and visual
selection was made very explicit in the ‘premotor theory’ of attention [62,63]. When a stimulus
is selected for a behavioral response, the relevant features automatically receive attention. This
theory is supported by experiments on eye movements, as attention is invariably directed to
items that are selected as target for an eye movement [64-66].

Neurophysiological findings provide support for the coupling between movement selection
and spatial as well as feature-based attention. During visual search, for example, the
representation of the features of the item that is searched as well its spatial location are enhanced
in the visual cortex [67] and also in the frontal eye fields (area FEF) [68], and the frontal eye
fields may feed back to cause attentional selection in the visual cortex [69]. The same is true
in other tasks where visual stimuli compete for selection. Figure 1 shows data from a study
where monkeys were trained to select the circle at the end of a curve that was connected to a
fixation point as the target for an eye movement (Figure 1b), while ignoring a distractor curve
[70]. Neurons in area FEF responded to the appearance of the stimulus in their receptive field,
although their initial response did not discriminate between the target curve and the distractor
(Figure 1c). After a short delay, however, responses evoked by the target curve became much
stronger than those evoked by the distractor (striped bar), and this enhanced activity is a
neuronal correlate of target selection [71]. A similar selection signal is observed in area V1
(Figure 1c), where responses evoked by the relevant, attended curve are enhanced over the
responses evoked by a distractor curve, in a later phase of the response.

These results support the idea that the appearance of a visual stimulus, be it a target or distractor,
initially triggers the rapid propagation of activity from lower to higher areas of the visual cortex
through feedforward connections (Figure 1a) [72,73]. This phase is followed by an epoch where
neurons in the frontal cortex that code different actions engage in a stochastic competition. The
cells that code the action that wins the competition have stronger responses than the neurons
that lose, and feed back to the representation of the selected object in the visual cortex [74,
75], causing a response enhancement that is a correlate of selective attention [76]. Such a
counterstreams model [77] requires reciprocal connections between the visual and frontal
cortex, so that actions that are selected in the frontal cortex provide feedback to neurons that
gave input for this particular choice (orange neurons in Figure 1a), thus highlighting the circuits
in the visual cortex that determine the course of action. Reinforcement learning theories (like
AGREL, see below) hold that actions are selected stochastically, so that the same visual
stimulus can give rise to different actions and therefore also different patterns of feedback
[25] (see Box 1).

Such a coupling between motor selection in the frontal cortex and attentional effects in the
visual cortex during action selection is useful for guiding plasticity because plasticity occurs
for connections between neurons that are important for the selected response. This
computational idea is supported by psychological studies showing that attention gates learning
[18,59,78-80]. Moreover, a recent pharmacological study that investigated the role of different
receptors in feedforward and feedback processing demonstrated that feedback connections
have a larger proportion of NMDA-receptors than feedforward connections [81]. This result
suggests that the feedback connections might gate perceptual learning [82] by activating
NMDA receptors [83]. Another hypothetical route for feedback connections to gate plasticity
involves acetylcholine receptors that are involved in selective attention [84] and also play a
role in the gating of synaptic plasticity, as was discussed above.
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Interactions between attention and diffuse reinforcement learning signals
So far we have reviewed evidence for the gating of plasticity by neuromodulatory systems as
well as selective attention. Roelfsema and van Ooyen proposed a framework called ‘attention-
gated reinforcement learning’ (AGREL) [25] that holds that these two signals are
complementary and jointly determine plasticity (Box 1). The network receives a reward for a
correct choice, while it receives nothing if it makes an error. After the action, neuromodulators
are released into the network to indicate whether the rewarded outcome is better or worse than
expected (Figure 1) [46]. If the network receives more reward than expected, the
neuromodulators cause an increase in strength of the connections between active cells, so that
this action becomes more probable in the future; the opposite happens for actions with a
disappointing outcome. The second signal is the attentional feedback during action selection
that ensures the specificity of synaptic changes. Although the neuromodulators are released
globally, the synaptic changes occur only for units that received the attentional feedback signal
from the response selection stage during action selection. AGREL causes feedforward and
feedback connections to become reciprocal, in accordance with the anatomy of the cortico-
cortical connections. Consequently, the neurons that give most input to the winning action also
receive most feedback. As a result, only sensory neurons involved in the perceptual decision
change their tuning, while the tuning of other neurons remains the same. The attentional
feedback signal thereby acts as a credit assignment signal, highlighting those neurons and
synapses that are responsible for the outcome of a trial, thus increasing the efficiency of the
learning process substantially [85]. A remarkable result is that under some conditions, the
global neuromodulatory signal combined with the attentional feedback signal gives rise to
learning rules that are as powerful as supervised learning schemes, like error-backpropagation,
although the learning scheme operates by trial and error and is plausible from a
neurophysiological point of view. Learning rules that combine the two factors, like AGREL,
can reproduce the effects of categorization learning if there is a direct mapping of stimuli onto
responses. They steepen the tuning curve of sensory neurons at the boundary between
categories and cause a selective representation of ‘diagnostic’ features that matter for the task.
It is still an open question whether these reinforcement learning models can be adapted to
explain perceptual learning in tasks that require a comparison between stimuli presented at
different times, for example in delayed match-to-sample tasks where subjects have to judge
whether two sequentially presented stimuli are the same. These tasks require the comparison
between a memory trace of the first stimulus and the perceptual representation of the second
stimulus, while the existing reinforcement learning models do not have such a working
memory.

Perceptual learning without attention
Although the studies reviewed above demonstrate that attention gates learning, there are also
forms of perceptual learning that occur without attention. Watanabe and his colleagues [8]
demonstrated that perceptual learning can occur for stimuli too weak to be perceived, if they
are paired with the detection of another stimulus. In one of their experiments [86], subjects
monitored an RSVP (rapid serial visual presentation) stream for target digits that were
presented on a background of moving dots (Figure 2a). Unbeknownst to the subjects, the target
digits were consistently paired with a very weak motion stimulus in one direction and,
remarkably, the subjects became better in detecting motion in the paired direction. It is unlikely
that they directed their attention to this subthreshold motion stimulus, and yet they learned.

Seitz and Watanabe [87] proposed that neuromodulatory signals can explain these findings if
the successful detection of a target letter in the RSVP stream generates an internal reward. In
accordance with this view, the pairing of subliminal stimuli only results in learning if they are
paired with successfully detected target digits and not if they are paired with targets that are
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missed [88]. Moreover, it is possible to replace the internal reward by an external one. A recent
experiment tested subjects who were deprived of water and food for several hours and then
exposed to an orientation that was paired with water as reward, and also to another orientation
not paired with water [89]. The subjects became better in discriminating between orientations
around the paired orientation. These findings, taken together, indicate that task-irrelevant
learning occurs for subliminal, task-irrelevant features if they are paired with external or
internal rewards, which presumably cause release of neuromodulatory factors such as
dopamine and acetylcholine [87].

Reconciliation of new results and theories
It is evident that the studies reviewed so far agree about the role of neuromodulatory signals
but also that they appear to contradict each other regarding the role of selective attention. Some
studies demonstrated an important role for attention in learning while others demonstrated
learning for unattended, irrelevant and even imperceptible stimuli. Theories about the
mechanisms for learning may appear to be equally contradictory. While AGREL [25] stresses
the importance of attention, the model by Seitz and Watanabe [87] indicates that the
coincidence of a visual feature and an internal or external reward is sufficient for learning.

To resolve these apparent contradictions, we propose that the attentional feedback signal that
enhances the plasticity of task-relevant features in the visual cortex also causes the inhibition
of task-irrelevant features so that their plasticity is switched off. We further propose that stimuli
that are too weak to be perceived escape from the inhibitory feedback signal so that they are
learned if consistently paired with the neuromodulatory signal. This proposal can explain why
studies using stimuli close to or below the threshold for perception observed task-irrelevant
perceptual learning while studies using supra-threshold stimuli invariably implicate selective
attention in learning. A recent study [90] directly compared task-irrelevant learning for a range
of stimulus strengths and indeed observed that learning only occurred for motion strengths at
or just below the threshold for perception but not for very weak or strong stimuli (Figure 2b).
It is easy to understand why very weak motion signals are not learned because they hardly
activate the sensory neurons (Figure 2c, left). According to our proposal, the strong motion
signals could interfere with the primary letter detection task and are therefore suppressed by
the attentional feedback that also blocks plasticity (Figure 2c, right). Threshold stimuli,
however, might stay ‘under the radar’ of this attentional inhibition mechanism so that they are
not suppressed and can be learned if consistently paired with the neuromodulatory signal
(Figure 2c, middle).

Recent results of Tsushima, Sasaki and Watanabe [91] provide further support for this view.
They measured the interference caused by irrelevant motion stimuli in the letter detection task
of Figure 2 and found an unexpected dependence on signal strength. Weak motion stimuli
interfered more than suprathreshold motion stimuli, and an fMRI experiment revealed that they
caused stronger activation of motion sensitive area MT+. The reason for the enhanced
activation of MT+ by threshold stimuli was observed in the dorsolateral prefrontal cortex
(DLPFC), a region that generates attentional inhibition signals. The suprathreshold stimulus
activated DLPFC, which then suppressed MT+, while the threshold stimulus did not (Figure
2c). These psychophysical and fMRI results, taken together, indicate that the weak motion
signals can indeed escape from the attentional control system so that they can be learned
[91].

Concluding remarks
We conclude that there is substantial evidence for an important role for neuromodulatory
reward signals and selective attention in the control of perceptual learning. These two factors
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can act in concert to implement powerful and neurobiologically plausible learning rules in the
cortex. The neuromodulatory signals reveal whether the outcome of a trial is better or worse
than expected, while the attentional feedback signal highlights the chain of neurons between
sensory and motor cortex responsible for the selected action.

We here proposed that the attentional feedback signals guide learning by suppressing plasticity
of irrelevant features while permitting the learning of relevant ones. By hypothesizing that
sensory signals that are too weak to be perceived can escape from this inhibitory feedback, we
have brought attentional learning theories, like AGREL [25], and theories that emphasized the
importance of neuromodulatory signals, like the model of Seitz and Watanabe [87], into a
single unified framework.

In most studies on task-irrelevant perceptual learning, attention was focused on the primary
RSVP task which was in close proximity to the threshold stimulus to be learned. If task-
irrelevant learning and attention-dependent learning are manifestations of the single unifying
learning rule, it should even be possible to influence task-irrelevant learning by shifts of
selective attention. A recent study [92] manipulated spatial attention by presenting two RSVP
streams while instructing subjects to attend only one of them. Task-irrelevant learning occurred
for subthreshold stimuli close to the relevant RSVP stream but not for stimuli close to the
irrelevant one. In this case the selective attentional signal that gates plasticity has a different
origin than the attentional signal in the AGREL model: it could now either come from the
instruction to attend one of the RSVP streams or from the response selection stage of the RSVP
task. Thus, even the learning of subliminal task-irrelevant stimuli can be brought under
attentional control by changing the relevance of nearby suprathreshold stimuli.

In the introduction we asked how sensory neurons can be informed about the relevance of
stimuli so that they can sharpen their tuning for features that are important for behavior. The
present framework requires two such signals: a global, neuromodulatory signal that signals the
rewarded outcome of a trial and an attentional credit assignment signal that restricts plasticity
to those sensory neurons that matter in the decision. If acting in concert, these factors can give
rise to biologically realistic learning rules that are as powerful as error-backpropagation. Future
studies could test the predictions of this new perceptual learning theory, and unravel the
mechanisms underlying the interactions between learning, selective attention and reward
signaling at the systems level as well as at the cellular and molecular level (Box 2).

Box 1

Attention-gated reinforcement learning (AGREL)

Attention-gated reinforcement learning (AGREL) is a reinforcement learning model that
learns by trial and error. AGREL uses two complementary factors to guide learning: (1) a
global neuromodulatory signal that informs all synapses whether the outcome of a trial is
better or worse than expected; (2) feedback from the response selection stage restricts
plasticity to those synapses that were responsible for the behavioral choice.

On every trial, a pattern is presented to the input layer (left in Figure Ia), activity is
propagated by feedforward connections to the intermediate layer and from there to the
output layer. Output units engage in a stochastic competition, where units with stronger
input have a higher likelihood to win. During the action selection process, the winning
output unit gives an attentional feedback signal to those lower level units that provided the
input during the competition and helped it win. This feedback signal enables plasticity for
a selected subset of the connections (thick lines on the right side of Figure Ia). After the
response, a reward is delivered or not, and the network computes a global error signal that
depends on the difference between the amount of reward that was expected and that is
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obtained. If the outcome is better than expected, globally released neuromodulators (green
in Figure Ia) cause synapses between active units to increase in strength. In case of a wrong
response, the neuromodulators produce a decrease in synapse strength (red in Figure Ia).

The problem of adjusting the deep weights vij in the network proceeds according to the
following rule:

(1)

Here Δvij is the change in synaptic strength, β is the learning rate, Xi and Yj are pre- and
postsynaptic activity, and FBsj is the attentional feedback signal from the winning output
unit s. Thus, the plasticity depends on the product of pre- and postsynaptic activity and is
gated by the reward through the function g and by the attentional feedback FBsj that conveys
whether unit Yj is responsible for selected action s. This feedback signal could operate by
enhancing the plasticity of unit j or by blocking plasticity of other units Yl, l ≠ j, by providing
inhibition directly or indirectly (Figure Ib). Note that these signals are all available locally,
at the synapse. The learning rule for the connections wjk to the output layer is even simpler
because it does not depend on the attentional feedback signal. On average, AGREL changes
the connections in the same way as error-backpropagation, a learning rule that is popular
and efficient but usually considered to be biologically implausible [93]. Further details about
the AGREL model can be found in [25].

Box 2

Questions for future research

- Which neuromodulatory signals determine learning?

- When are the neuromodulatory signals released?

- How do neuromodulatory signals and selective attention interact with each other?

- Which neurotransmitter receptors convey the reward signals and which ones the effect of
attention?

- How do lateral inhibition and top-down inhibition contribute to the gating of plasticity?

- Can the AGREL learning rules be generalized to tasks other than categorization?

- How should perceptual learning in delayed match to sample tasks be modeled?

- Can purely bottom-up signals lead to plasticity without attention or reward signals?
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Glossary

AGREL attention-gated reinforcement learning

Feedforward connection propagates information from lower to higher levels

Feedback connection propagates information from higher back to lower levels
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Perceptual learning improvement of perception through learning

Selective attention behavioral selection of one representation over another one

Neuromodulatory systems systems that release neuromodulators to code the rewarded
outcome of a trial

RF receptive field
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Figure 1. Factors that modulate visual cortical plasticity
(a) Left, a visual stimulus is initially registered by a fast feedforward wave of activity that
activates feature selective neurons in the many areas of the visual cortex. Right, neurons in the
frontal cortex engage in a competition to select a behavioral response, and the neurons that win
the competition feed attentional signals back to the visual cortex. Neuromodulatory systems,
including acetylcholine (green) and dopamine (purple), modulate the activity as well as the
plasticity of sensory representations. (b) Contour grouping task where monkeys have to trace
a target curve (T) that is connected to a fixation point (FP). A red circle at the end of this curve
is the target for an eye movement (Figure 1b). The animals have to ignore a distractor curve
(D). The two stimuli differ so that the RFs of neurons in areas V1 and FEF are either on the
target curve (upper panel) or on the distractor curve (lower panel). (c) Neurons in the frontal
cortex (area FEF) and the visual cortex (area V1) enhance their response when the target curve
falls in their receptive field. Note that this attentional modulation comes at a delay (striped
bar), while the initial neuronal responses do not discriminate between the relevant and
irrelevant curve (black bar). Modified from Khayat et al. [70].

Roelfsema et al. Page 13

Trends Cogn Sci. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Task-irrelevant perceptual learning
(a) Subjects monitor a central RSPV stream to detect target digits that are presented among
letter distractors. In the background, motion signals are presented that are irrelevant for the
subject's task. (b) A separate test determines the motion sensitivity of the subjects. This test
reveals that the sensitivity for the motion direction paired with the target digits (red arrows in
a) increases. Learning occurs for paired motion stimuli that are at or below the visibility
threshold, but not for very weak or strong motion stimuli. (c) Blue circles denote neurons
involved in the RSVP task. Red circles denote the representation of the irrelevant motion
signals. Left, weak motion stimuli are not registered well by the visual cortex and are not
learned. Middle, threshold motion stimuli are represented by motion sensitive neurons and are
learned if paired with the neuromodulatory signal. Right, strong motion signals might cause
interference and therefore receive top-down inhibition from the frontal cortex. These
suppressive signals block perceptual learning. Adapted from Tsushima et al. [90].
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Figure I. Attention-gated reinforcement learning
(a) Left, activity is propagated from lower to higher layers through feedforward connections.
The output units engage in a competition to determine the selected action. Right, if an action
has been selected, the winning output units provide an attentional feedback signal that
highlights the lower level units responsible for the selected action (thick connections) enabling
their plasticity. The plasticity of other connections is blocked by inhibition (dashed
connections). Different actions thereby enable plasticity for different sensory neurons.
Neuromodulators indicate whether the rewarded outcome was better (green) or worse (red)
than expected. (b) Inhibition (red connections) blocks the plasticity of connections that are not
involved in the selected action. At the output level, the actions compete through inhibitory
interactions (connection type 1). The winning output unit could directly inhibit neurons at lower
levels (connection type 2) or indirectly through inhibitory lateral interactions between the lower
level units (connection type 3). These inhibitory effects do not occur for stimuli too weak to
be consciously perceived.
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