
On the relation between fluctuation and response in
biological systems
Katsuhiko Sato*, Yoichiro Ito†, Tetsuya Yomo*†‡§, and Kunihiko Kaneko*¶

*Department of Pure and Applied Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan; †Department of Biotechnology, Graduate
School of Engineering, and §Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University,
2-1, Yamadaoka, Suita, Osaka 565-0871, Japan; and ‡Intelligent Cooperation and Control Project, Precursory Research for Embryonic
Science and Technology, Japan Science and Technology Corporation, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan

Edited by John Ross, Stanford University, Stanford, CA, and approved September 17, 2003 (received for review August 18, 2003)

A general relationship between fluctuation and response in a
biological system is presented. The fluctuation is given by the
variance of some quantity, whereas the response is given as the
average change of that quantity for a given parameter change. We
propose a relationship where the two are proportional, in a similar
way to the fluctuation–dissipation theorem in physics. By studying
an evolution experiment where fluorescence of protein in bacteria
increases, we confirm our relation by observing a positive corre-
lation between the speed of fluorescence evolution and the phe-
notypic fluctuation of the fluorescence over clone bacteria. The
generality of the relationship as well as its relevance to evolution
is discussed.

L iving organisms are composed of many different types of
molecules, such as proteins, RNA molecules, phospholipid

molecules, and so on. Because these molecules are synthesized
and decomposed by chemical processes occurring at finite
temperatures, the molecules are inevitably affected by thermal
fluctuations, as a consequence of the laws of physics and
chemistry, no matter how well the mechanism of the organism
is designed. Even when experimental conditions are controlled
as carefully as possible, most cellular variables, such as the
quantities of any types of molecules, will vary from cell to cell to
some extent, i.e., there will inevitably be fluctuations. Therefore,
to obtain experimentally reproducible data, one needs to mea-
sure the entire distribution of the variable in question.

Indeed, f luctuations in both quantity and behavior are inev-
itable for living organisms. The relevance of fluctuations has
been previously investigated with regard to the enzymatic func-
tion of protein (1), a molecular machine (2), and also a macro-
molecular system (3), whereas fluctuations in gene expression in
cells have been extensively investigated (4–6).

Organisms, however, respond to changes in their surround-
ings. For example, bacteria tumble with a frequency that de-
pends on the temperature of the external medium as well as on
the concentrations of the various chemicals in the medium (7).
If the external medium changes, the bacterial tumbling fre-
quency changes. In fact, the average numbers of any given
molecules, such as proteins, in a cell will depend on the
surrounding conditions and will change in response to changes
in the surroundings, such as changes in temperature, pH value,
and so on (8). This change gives a basis for a cell to respond.
Indeed, understanding how organisms and cells respond to
environmental changes is of great importance for the under-
standing of all biological functions and the processes of adap-
tation. Also, of course a great many biological experiments have
been performed to study and measure such effects.

In the present paper, we propose a relationship between
fluctuation and response that should hold in a broad class of
systems, discuss its relevance to biological systems, and give an
explicit experimental demonstration of the relationship in an
experiment on the evolution of functional protein in a cell. In the
evolution experiment we report here, f luctuation is defined to be
the variance of the fluorescence of a bacterial protein in
genetically identical clone bacteria. The fluorescence fluctuates

due to phenotypic fluctuations. The response is defined to be the
average change in this f luorescence per genetic mutation. We
compare our proposed theoretical relationship with the exper-
imental results and find good agreement. We then discuss the
relevance of phenotypic fluctuations to evolution, in the frame-
work of our fluctuation–response relationship.

In the analysis of both theory and experiment, we adopt the
following terminology. We refer to a measurable quantity (e.g.,
the concentration of a protein) in a biological system (a cell or
an organism) as a ‘‘variable’’ of the system. We adopt the term
‘‘parameter’’ for a quantity that specifies a condition of the
system, which influences the system’s variables and can be
controlled externally in each experiment. According to this
definition, the DNA sequence of a gene in a cell is to be regarded
as one of the system’s parameters, in the artificial evolution
experiment that we will discuss later. Last, the terms ‘‘average’’
and ‘‘variance’’ apply to the distribution of the variable over
biological systems, such as over cells or organisms.

To begin with, we will state our theoretical proposition as
follows: When we change the value of a parameter a slightly so
that a 3 a � �a, the change in the average value of a variable
x will be proportional to its variance at the initial parameter value
a, i.e.,

�x�a��a � �x�a � b�a�a
2, [1]

where the coefficient b is a constant independent of the param-
eter a, and �x�a and �a

2 are the average and variance of the
variable x at the initial parameter value a, respectively. They are
explicitly defined as �x�a � �� xP(a, x)dx and �a

2 � �(x �
�x�a)2�a � �� (x � �x�a)2P(a, x)dx, where P(a, x) is the normal-
ized distribution function of x at the parameter a, and the symbol
� under the integral symbol means that the integral is taken over
the whole range of x. In this paper, the symbol � �a denotes the
average of a given function of x between the brackets with respect
to the distribution function P(a, x), i.e., for any function g(x),
�g(x)�a :� �� g(x)P(a, x)dx. We assume that the parameter a and
the variable x are both scalars.

In the next section, we present the mathematical assumptions
underlying the derivation of Eq. 1 and explain the general
conditions the distribution P(a, x) must satisfy for our formula
to apply to biological systems. In Experiment, we examine the
validity of our formula by studying an experiment on the
evolution of GFP in bacteria. As explained, in this experiment,
the variable is taken to be the magnitude of fluorescence per cell,
whereas the parameter and its change correspond to the DNA
sequence and its change by mutation, respectively. In Summary
and Discussion, we discuss the relevance of our results to a few
biological issues.
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Formal Derivation of Formula 1
Before we formally derive formula 1, we first derive a general
relation holding for distributions having the following property:
The distribution can be approximately written in Gaussian form
even when the control parameter a is changed, i.e., the distri-
bution function is approximated by the following form for any
value of a:

P	a, x
 � Ne�	�	a
/2
x2��	a
x,

where N is a normalization constant so that �� P(a, x)dx � 1,
and � and � are functions of the parameter a [�(a) must be
positive for all a]. In other words, this property can be expressed
as follows: If the logarithm of the distribution P is expanded in
powers of x, the terms with powers of x higher than x2 are always
much smaller than those with x and x2. We label such a
distribution a ‘‘Gaussian-like’’ distribution in this paper and
restrict our theory to this distribution. Such distributions are
observed quite often in biological experiments, thus the relation
derived below does not hold for special cases only but holds for
most practical cases prevalent in biology.

Assuming this distribution holds, we now consider the differ-
ence between the average values of x evaluated at the parameter
values a and a � �a, where �a is supposed to be such a small
quantity that both the average value and the variance of x do not
much vary. We first write the distribution function at the
parameter a � �a in terms of that at the parameter a as follows:

P	a � �a, x
 � P	a, x
elog P	a��a,x
�logP	a,x


�: P	a, x
e�	a,�a,x
,

where we have introduced, for convenience of notation, the
quantity �(a, �a, x) :� log P(a � �a, x) � log P(a,x). By
expanding this term in powers of (x � �x�a), with �x�a as the
average of x at the parameter value a, we obtain

�	a, �a, x
 � �	0
	a, �a
 � �	1
	a, �a
	x � �x�a


�
1
2

�	2
	a, �a
	x � �x�a

2 � · · · ,

where �(n)(a, �a) :� (�n�(a, �a, x)��xn)�x��x�a
with n �

0, 1, 2, . . . . Because of our assumption that the distribution be
a Gaussian-like one, the terms of powers of x higher than x2 can
be neglected. Using this expression, we obtain

P	a � �a, x
 � P	a, x
e�	0
	a,�a
��	1
	a,�a
	x��x�a
�	1/2
�	2
	a,�a
	x��x�a
2.

[2]

Because the distribution must satisfy the normalization condi-
tion, it must be written as

P	a � �a, x
 � P	a, x
Ne�	1
	a,�a
	x��x�a
�	1/2
�	2
	a,�a
	x��x�a
2,

[3]

where N � 1��exp[�(1)(a, �a)(x��x�a)� (1�2)�(2)(a, �a)(x��x�a)2]�a.
Note that this rewriting is always correct, i.e., the factor e�(0)

(a,
�a) is almost equal to N, as long as the distribution is a
Gaussian-like one. Using expression 3 valid to the first order in
�a, we obtain

�x�a��a � �x�a � �	1
	a, �a
�a
2 � b	a
�a�a

2, [4]

where b(a) is the first-order derivative of �(1)(a, �a) with respect
to �a, i.e., b(a) � ��(1)(a, �a)���a��a�0. Eq. 4 is a general
relation, which always holds for a Gaussian-like distribution up
to the order of �a. This expression shows that the difference
between the average values of x evaluated at the parameters a

and a � �a is proportional to its variance at a with the
coefficient of proportionality �(1). As long as we set up an
experiment in which the parameter a changes slightly, this
assumption at the linear relationship with �a is guaranteed.

So far, the coefficient b(a) can depend on a. Now, if we assume
its dependence is negligible, we obtain the relationship

�	1
	a, �a
 � b�a, [5]

where b is a constant independent of the parameter a. This leads
to the first relationship (Eq. 1). For example, if parameter a can
vary only across a limited range, it may be possible to neglect the
a dependence.

Now we reconsider the assumptions underlying this deriva-
tion.� First, note that the above form is quite similar to the
fluctuation–dissipation relation in statistical physics (9). In
thermodynamics, the term �(1) in relation 4 is called a general-
ized force that produces a deviation of the variable x from an
equilibrium point. The size of the deviation is of the order of �a.

In this case, however, because the fluctuation–dissipation
relation in statistical physics is restricted to linear nonequilib-
rium thermodynamics, the relation holds only near the equilib-
rium point x � 0, where �a is small, and therefore the depen-
dence on a need not be considered.

For example, consider a bead attached to a spring placed in a
fluid with shear flow, where the magnitude of shear flow, �a, is
controlled by the speed of a wall of the container enclosing the
fluid. The force acting on the bead is proportional to the relative
velocity of the fluid around the bead, and the deviation of the
bead from the equilibrium position x � �x� is proportional to the
force and the fluctuation �2 (10).

Although formula 1 is formally similar to the fluctuation–
dissipation theorem, the system in question is not near thermal
equilibrium, and hence neglecting the a dependence is an
assumption here. The validity of this assumption and the plau-
sibility of the correlation between the fluctuation and response
should be examined experimentally, as will be discussed later.
Finally, we remark on the choice of parameter a at the beginning
of the above derivation. If we choose the parameter arbitrarily,
however, relationship 1 is expected to hold only in some rare
cases. Indeed, often the distribution of a given variable x is
modified only slightly by a change of some parameter value. In
the above argument, it is assumed that parameter a and variable
x are ‘‘closely associated,’’ in the sense that change in parameter
a strongly influences the change in the distribution of x. Al-
though our term ‘‘closely associated’’ is a little ambiguous, it is
generally possible to determine from one’s experience which
parameter is closely associated with any variable in question. For
example, consider the measurement of the growth rate of
Escherichia coli in a medium with some source of nutrition. The
growth rate is influenced by the concentration of the nutrient.
Hence, the concentration, controlled externally, is the parameter
most closely associated with the growth rate. As another exam-
ple, consider the evolution of some characteristic of a cell that
is under the control of a particular gene. If the gene’s DNA
sequence changes through a mutation, its influence on the
characteristic will also change. In this case, the parameter most
closely associated with the characteristic is the degree of sub-
stitution in the gene’s DNA sequence. And here the rate of
change of the parameter will be given by the gene mutation rate.

�The derivation could be a little simplified, if we assume the Gaussian distribution com-
pletely and take the �a 3 0 limit in the beginning, as is often adopted in standard
statistical physics. We adopted the present derivation to see under what conditions the
linearity approximation holds and also to conveniently discuss the decrease of variance
through evolution observed in the experiment (to be shown later). Further elaboration on
our framework and the linearity condition should be pursued in the future.
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In fact, in general, there is usually little difficulty in choosing the
associated parameter.

From the above argument, we propose that for a certain class
of biological systems, relationship 1 holds for variables with
Gaussian-like distributions if the controllable parameter is
closely associated with the variable. Of course, this proposal
must be carefully verified and the relationship validated by
several experiments. As a first step in this direction we now
discuss our experiment on the evolution of a functional protein.

Experiment
To check whether the proposed relationship holds true in
biological systems, we analyzed data from an evolution experi-
ment. In our experiment, we artificially selected GFP mutants
with higher fluorescence and evolved them for several genera-
tions (11, 12).

Previously, one of us (T.Y.) and colleagues (13, 14) succeeded
in synthesizing a protein with a random sequence. By genetically
attaching an arbitrarily chosen random sequence to the N
terminus of a wild-type GFP gene and transforming E. coli with
the gene, a GFP mutant with low fluorescence was formed as
initial material for the evolution experiment. By applying ran-
dom mutagenesis to only the attached fragment before GFP, a
mutant pool with a diversity of 106 was prepared. One of the
transformed E. coli cells possessing the different mutant genes
was selected based on its level of f luorescence intensity to be the
parent clone of the next generation. Successive generations were
then generated so that the (n � 1)th generation was generated
from a parent clone selected from the nth generation, while
always keeping diversity size and selection pressure the same as
in the first generation.

To observe the diversity of green fluorescence shown by the
single gene under unvarying experimental conditions, the clone
selected at each generation was cultured in a liquid medium, and
the grown cells were applied to flow cytometry to measure the
distribution of fluorescence intensity per cell (11). In this
experiment, the fluorescence magnitude is the natural choice for
the variable x. The fluorescence distributions obtained in each
generation are shown in Fig. 1. It should be noted first that each
distribution has a finite width, although the E. coli cells are
‘‘clones’’ generated of the same genetic information from the
same gene under the same conditions. The distribution here

originates from the phenotypic variation (i.e., the fluorescence
variation) of the clones and does not relate to the gene variation
(4, 5).

However, genetic mutation at each generation changes the
protein structure, leading to a change in the (average) fluores-
cence, with the average fluorescence increasing through the
selection process. Hence the mutation, i.e., amino acid substi-
tution of the polypeptide sequence attached to the GFP, corre-
sponds to a scalar parameter a that controls the variable x, the
fluorescence intensity. If the mutation rate is sufficient (but not
too high) in the experiment, the average fluorescence intensity
produced by the clone selected at each generation will increase
further, which shows that the parameter and the variable are
closely associated with each other. Note also that in artificial
evolution experiments, the number of mutations away from the
original clone is often adopted as a scalar parameter represent-
ing the fitness landscape describing the property in concern.

Shown in Fig. 2 is the average value of the distribution and its
variance plotted against generation number. Note that both the
change in the average value between two successive generations
and the variance at each generation decrease generation by
generation. Thus this result shows a positive correlation between
the response and the fluctuation roughly consistent with our
result (Eq. 1), which predicts that the change of average value
should be proportional to its variance.

To check the validity of relationship 1 more quantitatively
from the experimental results, we plot in Fig. 3 the change in the
average value per generation against the variance multiplied by
the parameter change, where the parameter change is given by
the synonymous mutation rate, also shown there. If the propor-
tionality in Eq. 1 holds perfectly, all these points should lie on
a straight line that passes through the origin. Also in Fig. 3, to
serve as a comparison, we plot the change in the average value
per generation directly against the parameter, that is, without
multiplying by the variance. The correlation shown by the results
where we multiply by the variance is clearly much better than that
shown by the results when we do not. Indeed, the correlation
coefficient of the variance-multiplied results is 0.79, whereas
the unmultiplied is only 0.21. From this result, it is likely that
the change of fluorescence is more highly correlated with the
mutation rate multiplied by the variance than with only
the mutation rate. It should also be noted that this correlation
appears irrespective of the sudden change in the mutation rate
that occurred in this experiment at the fifth generation, as can

Fig. 1. Histogram of the logarithm of fluorescence intensity for each gener-
ation, in the experiment described in the text. The number above the peak of
each distribution indicates its generation number. We evaluated the fluores-
cence intensity of each E. coli in each generation by dividing its measured
fluorescence intensity value (FL) by its forward scatter (FS) value measured
with the cytometry, because the FS value roughly indicates the size of E. coli,
whereas the FL value is usually proportional to the FS value.

Fig. 2. The average (black squares) and variance (red circles) of fluorescence
over clone cells selected at each generation, plotted vs. the generation num-
ber. The average values and variances are computed from the Gaussian-like
distributions as their peak position and half-width in Fig. 1. The synonymous
mutation rate for each generation, which was determined by DNA sequenc-
ing, is also plotted as blue triangles.
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be seen in Fig. 2. This observed correlation is not a trivial result
because the variance is about one-third decreased in later
generations compared to the first generation. In other words,
explicit a dependence of b(a) in Eq. 5 is not observed.

The present relationship may remind us of the fundamental
theorem of natural selection established by Fisher (15, 16), which
asserts that evolution speed and genetic variance are propor-
tional. Here, we should note again that in contrast to this
celebrated theorem, our relationship holds for the phenotypic
variance of clones, having the same genes, i.e., with null genetic
variance.

To close this section, we note that the variable of concern here
is not the fluorescence intensity itself but its logarithm. Indeed,
the distribution functions in Fig. 1 are plotted by using the
logarithm of fluorescence intensity, and the average in Fig. 2 is
also computed from the logarithm of the fluorescence. In other
words, we adopted the logarithm of the fluorescence as the
variable x of our theory. The reason for this choice is as follows.
First, the distribution is close to Gaussian in the logarithmic
scale. If we directly use the intensity itself, the distribution is
highly asymmetric about the peak position and has a larger tail
on the higher value side. In fact, we have recently confirmed both
in theory and experiments that the distribution of abundances of
most chemicals (e.g., proteins) in a cell shows log-normal
distributions, i.e., the logarithms of the abundances obey the
Gaussian distribution (ref. 17; C. Furusawa and A. Kashiwagi,
private communication). Because our theory is based on
Gaussian-like distributions, it is natural to use the logarithm of
the abundances as the variable x. Indeed, the observed linear
relationship between the response and variance is true only with
this choice of variable. Finally, it should also be noted that most
chemical characteristics depend on the logarithm of chemical
abundances (recall that in chemical thermodynamics equations,
the logarithm of the concentration generally appears as a
relevant term; an example is seen in the definition of pH).

Summary and Discussion
We proposed relation 1 between fluctuation (variance) and
response (change of variable with change of parameter) in
biological systems and examined the derivation of relation 1, to
reveal the underlying assumptions for it. The validity of the
relation was examined experimentally by an experiment on the

evolution of GFP in E. coli, and a positive correlation between
the fluctuation and response was confirmed.

As mentioned above, our relation 1 is analogous to the
fluctuation–dissipation theorem in statistical physics (9). Of
course, that theorem is directly applicable to the fluctuation and
response of biomolecules near thermodynamic equilibrium. For
example, by measuring the average and variance of the DNA
radius and then by measuring the change under a force acting on
two sides of the molecule, one could straightforwardly confirm
relation 1. This application, however, is not surprising at all,
because the condition for the fluctuation–dissipation theorem in
physics is satisfied, and the DNA molecule is regarded as a
circular polymer in an aqueous solution at equilibrium.

On the other hand, the main issue of the present paper is the
application of relation 1 to a more general biological system,
where the fluctuation–dissipation theorem in physics is no
longer applicable. Indeed, in the experiment we adopted, the
variable and the parameter are not thermodynamic quantities,
and the fluctuation–dissipation theorem in physics is not appli-
cable at all. However, the experimental result suggests the
relevance of relationship 1 to such a system.

The argument for deriving relation 1 is rather general, as long
as the system in concern is stable and the distribution of variables
in concern is Gaussian-like. For example, by measuring the
abundances of some proteins in a cell with cytometry, the
distribution is obtained. Then, by measuring the change of
distribution against the change of the medium condition such as
the pH value, concentration of nutrition chemical, and so forth,
we can test the validity of the relation.

By closely analyzing the derivation of the relation, we have
shown that the following three conditions are necessary for
relation 1 to hold: (i) that the distribution of the variable (the
measurable quantity) is Gaussian-like; (ii) that the parameter we
control is closely associated with the variable and finely influ-
ences the distribution of the variable; and (iii) that the parameter
dependence on the proportionality coefficient is negligible.

Requirement i is necessary for general relation 4 to hold,
whereas condition ii is necessary for relation 5 to hold and iii, for
relation 1. Following these considerations, we propose that
relation 1 will be observed, by suitably choosing a variable that
shows a Gaussian-like distribution and a corresponding param-
eter. Even though assumption iii and accordingly the propor-
tionality in the relationship may not be completely satisfied, a
positive correlation between the fluctuation and response itself
should be generally observed, and the relation, once verified in
several biological systems, may introduce novel directions in the
study of biology.

Based on relationship 1, we are able to introduce the notion
of ‘‘softness’’ into a biological system: When the variance is large,
the system is said to be soft with respect to the variable, because
the system shows a large response to the change in the parameter
associated with the variable.

In biology, we often use the term ‘‘plasticity’’ to represent the
impression that a system is easily changeable in response to
external change. In this case, the left-hand side of Eq. 1 is large.
Relation 1 implies that a system having significant softness is
plastic in this sense. Fluctuations can also be a way to measure
and characterize the adaptability of a system.

As our experiment shows, application of the relation to
evolution will have biological significance. In this case, a change
of phenotype by genetic mutation gives a response (the left-hand
side of Eq. 1) that is proportional to the fluctuation of pheno-
types for the clone organisms of the same gene, hence the greater
the phenotypic fluctuation, the higher the evolution speed.
Organisms with larger phenotypic diversity may have higher
evolution speed. Possible relationships of phenotypic variability
with evolution have often been discussed, but so far no quanti-

Fig. 3. �2 (variance of fluorescence intensity) multiplied by �a (synonymous
mutation rate) is plotted vs. the change of average fluorescence intensity as
red circles by using the data from Fig. 2. The red line is a linear fit to the data,
which turn out to pass through the origin. For reference, the synonymous
mutation rate �a vs. the change of average fluorescence intensity value is also
plotted as black squares. The correlation coefficient for the linear fit is 0.79,
whereas that for the synonymous mutation rate (black squares) is 0.21.
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tative means to examine the validity of the discussion are
available. Our relation 1 may provide one such means.

As mentioned, the fundamental theorem of natural selection
by Fisher (15, 16) proves that evolution speed and genetic
variance are proportional. As a mathematical expression, our
relationship takes a similar form with regard to the proportion-
ality between the phenotypic fluctuation and the speed of
evolution. In the case of the theorem by Fisher (15, 16), the
formula for the genetic variance is established by genetics, and
the proportionality derived is exact. In contrast, the relationship
we have proposed here is concerned with the phenotypic fluc-
tuations of clones having identical genes. In this case, the
detailed mechanism producing the phenotypic fluctuation has
not yet been elucidated, and no established formula is available
concerning the degree of phenotypic fluctuation. Still, we have
obtained the approximate formula that states that the variance
of the phenotype and the evolution speed are proportional. This
formula is valid under a certain condition, and its plausibility has
been experimentally verified. In this sense, our findings provide
insight into the relationship between phenotypic fluctuation and
evolution.

We finally comment on �(2) appearing in Eq. 3. Although the
term �(2) does not appear in relations 1 and 4, and thus it is not
involved in the main subject of this paper, it is worth discussing
this �(2) coefficient a little from a biological point of view. As we
have seen, �(1) is the coefficient relating the change of average
value of the variable to its variance. On the other hand, �(2) is the
coefficient connecting the change of the variance with the
variance. Indeed, calculating the change of the variance in a way
similar to the derivation of Eq. 4, we get the relation

�a��a
2 � �a

2 � �	2
	a, �a
	�a
2
2. [6]

It is thus possible to use the coefficient �(2) to explain the change
of variance. For example, in our experiment, the variance shrinks
as the generation progresses. This decrease can be interpreted by
a negative value of the coefficient �(2). It should be noted that the

positive sign of �a is defined here to correspond to the direction
of optimization in the evolution. Hence, the variance of pheno-
type, i.e., the softness of a certain property, decreases as
optimization progresses in evolution. This general statement, of
course, needs to be confirmed through further experiments.

The negative value of �(2) might also provide an understanding
for the empirical rule that the more optimized a certain gene, the
less frequently mutants with higher fitness will appear. The rule
is confirmed by many evolution experiments [see for example,
Matsuura et al. (18)]. In our evolution experiment, the change in
fluorescence intensity at each generation decreases as fluores-
cence intensity increases and as optimization progresses. This
occurs because around a parent clone with a high fluorescence,
the probability that mutants that bring about much higher
fluorescence will appear is lower. Although this is generally just
because the gene gets closer to a local maximum in the fitness
landscape, it does not explain why there is a local maximum. On
the other hand, if �(2) is negative, the cell system in question will
lose its softness as generations progress. When this happens, the
system, according to Eq. 1, will lose its plasticity, and the rate of
evolutionary optimization will decrease. In other words, the
decrease in softness due to the negative �(2) brings the system to
a local maximum in the fitness landscape.

Basically, the two equations, Eqs. 1 and 6, predict the evolu-
tion rate of the property in question and its deceleration, in terms
of the variance of the phenotype and of the variance. In the study
of evolution, where many researchers try to trace back to
biological events in the past, the two relationships might offer a
base for experimental studies with quantitative predictions.
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